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Efficient description of strongly correlated electrons with mean-field cost
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We present an efficient approach to the electron correlation problem that is well suited for strongly interacting
many-body systems, but requires only mean-field-like computational cost. The performance of our approach
is illustrated for one-dimensional Hubbard rings with different numbers of sites, and for the nonrelativistic
quantum-chemical Hamiltonian exploring the symmetric dissociation of the H50 hydrogen chain.

DOI: 10.1103/PhysRevB.89.201106 PACS number(s): 71.10.−w, 31.15.V−, 31.10.+z, 31.15.X−

The accurate description of the electron-electron interaction
at the quantum-mechanical level is a key problem in condensed
matter physics and quantum chemistry. Since most of the
quantum many-body problems are extraordinarily difficult
to solve exactly, different approximation schemes emerged
[1–5], among which the density matrix renormalization group
(DMRG) algorithm [6–8] gained a lot of popularity in both
condensed matter physics [7] and quantum chemistry [9–16]
over the past decade. Since the DMRG algorithm optimizes
a matrix product state wave function, it is optimally suited
for one-dimensional (1D) systems, though DMRG studies
on higher-dimensional and compact systems have been re-
ported [10,13,15,17]. Yet, novel theoretical approaches are
desirable that can accurately describe strong correlation effects
between electrons where the dimension of the Hilbert space
exceeds the present-day limit of DMRG or general tensor-
network approaches [18] allowing approximately 100 sites or
60 (spatial) orbitals, respectively.

Another promising approach, suitable for larger strongly
correlated electronic systems, uses geminals (two-electron
basis functions) as building blocks for the wave function
[19–26]. One of the simplest practical geminal approaches
is the antisymmetric product of 1-reference-orbital geminals
(AP1roG) [27–29]. Unique among geminal methods, AP1roG
can be rewritten as a fully general pair-coupled-cluster doubles
wave function [30], i.e.,

|�AP1roG〉 = exp

(
P∑

i=1

K∑
a=P+1

ca
i a

†
a↑a

†
a↓ai↓ai↑

)
|�0〉, (1)

where a
†
pσ and apσ (σ = ↓,↑) are the fermionic creation and

annihilation operators, and |�0〉 is some independent-particle
wave function (usually the Hartree-Fock determinant). Indices
i and a correspond to virtual and occupied sites (orbitals) with
respect to |�0〉, P and K denote the number of electron pairs
(P = N/2 with N being the total number of electrons) and
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orbitals, respectively, and {ca
i } are the geminal coefficients.

This wave-function ansatz is size extensive and has mean-
field scaling, O(P 2(K − P )2) for the projected Schrödinger
equation approach [27].

To ensure size consistency, however, it is necessary to
optimize the one-electron basis functions [27], where all
nonredundant orbital rotations span the occupied-occupied,
occupied-virtual, and virtual-virtual blocks with respect to the
reference Slater determinant |�0〉. We have implemented a
quadratically convergent algorithm: We minimize the energy
with respect to the choice of the one-particle basis functions,
subject to the constraint that the projected Schrödinger
equations for the geminal coefficients hold. Specifically, we
use a Newton-Raphson optimizer and a diagonal approxi-
mation of the orbital Hessian to obtain the rotated set of
orbital expansion coefficients. Our algorithm is analogous to
the orbital-optimized coupled-cluster approach [31–33]. Due
to the four-index transformation of the electron repulsion
integrals, the computational scaling deteriorates to O(K5).
The orbital-optimized AP1roG (OO-AP1roG) approach was
implemented in a developer version of the HORTON program
package [34].

The half-filled one-dimensional Hubbard Hamiltonian.
First, we consider the 1D Hubbard model Hamiltonian with
periodic boundary conditions,

ĤHub = −t
∑
j,σ

(a†
(j+1)σ ajσ + a

†
jσ a(j+1)σ ) + U

∑
j

nj↑nj↓,

(2)

where the first term represents nearest-neighbor hopping and
the second term is the repulsive on-site interaction. The
operators a

†
jσ and ajσ are again the fermionic creation and

annihilation operators on a lattice with sites j = 1, . . . ,Nsites,
and njσ = a

†
jσ ajσ is the local number operator.

Figure 1 shows the differences in total energies obtained
for OO-AP1roG with respect to reference data obtained
from the solution of the Lieb-Wu equations [35] (Nsites =
6,10,14,50,122). OO-AP1roG can reproduce the exact total
energies in the limit of zero and infinite (repulsive) on-site
interaction. The largest deviations from the exact solution (up
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FIG. 1. (Color online) Deviation of the OO-AP1roG total ener-
gies from exact values (blue dashed line) for different strengths of the
repulsive on-site interaction for the 1D Hubbard model (with periodic
boundary conditions) for Nsites = 6,10,14,50,122. The exact values
for small U (U < 0.001t) for Nsites = 50,122 could not be converged.

to 0.075t per site) are found for the intermediate region of
the on-site interaction, that is, for 2t < U < 50t . Figure 2
shows the percentage of the correlation energy captured by
OO-AP1roG calculated as %κ = EOO-AP1roG−EHF

Eexact−EHF × 100. In the
limit of zero and infinite U , the OO-AP1roG model becomes
exact; for U = 0 the wave function can be exactly described
by a single Slater determinant and thus the correlation energy
approaches zero, while for U → ∞ the quantum state can be
represented by the perfect-pairing wave function. For growing
(repulsive) U , the percentage of the correlation energy covered
by OO-AP1roG increases gradually.

For small values of U , the geminal coefficient matrix {ca
i } is

sparse and thus far from perfect pairing, which is represented
by a diagonal geminal coefficient matrix (see Fig. 1 in the
Supplemental Material [36]). In the limit U → 0, the gemi-
nal coefficient matrix correctly approaches the zero matrix,
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FIG. 2. (Color online) Percentage of the correlation energy %κ

for different strengths of the repulsive on-site interaction in the half-
filled 1D Hubbard model (with periodic boundary conditions) for
Nsites = 6,10,14,50,122 captured by OO-AP1roG. The exact values
for small U (U < 0.001t) for Nsites = 50,122 could not be converged.

TABLE I. Spectroscopic constants: equilibrium bond distance
(Re), potential energy depth (De), and harmonic vibrational frequency
(ωe) for the ground state of H50 (STO-6G). Differences with respect
to the DMRG reference data are listed in parentheses.

Method Re (Å) De (eV) ωe (cm−1)

RHF 0.940 (−0.030) 199.0 (+109.3) 25089 (+2268)
AP1roG 0.941 (−0.029) 198.2 (+108.5) 23013 (+2252)
MP2 0.955 (−0.015) 144.1 (+54.4) 24568 (+1747)
PBE 0.971 (+0.001) 146.6 (+56.9) 23662 (+841)
OO-AP1roG 0.966 (−0.004) 82.2 (−7.5) 23013 (+192)
DMRG [40] 0.970 89.7 22821

indicating that a single Slater determinant is sufficient to
exactly describe the quantum state. For increasing U , {ca

i }
becomes diagonal dominant and adopts a diagonal structure
in the limit of U → ∞. Thus, in the limit of infinite (re-
pulsive) interaction, OO-AP1roG optimizes a perfect-pairing
(seniority-zero) wave function [37,38],∏

i=1,3,...

[(a†
i,↑ + a

†
i+1,↑)(a†

i,↓ + a
†
i+1,↓)

− (a†
i,↑ − a

†
i+1,↑)(a†

i,↓ − a
†
i+1,↓)]|0〉. (3)

To conclude, OO-AP1roG has mean-field-like scaling, but
can recover about 71% of the correlation energy in the weak
interaction regime, about 80% for intermediate interaction
strengths, and approximately 93% in the case of strong
on-site interaction for all chain lengths studied (a numerical
comparison is presented in Table I of the Supplemental
Material).

Figure 3 shows the single-orbital entropy for different
lengths of the 1D lattice as a function of the repulsive on-site
interaction U . The single-orbital entropy is the analog of the
one-site entropy, but determined in the natural orbital basis: It
is calculated as the von Neumann entropy from a single-orbital
density matrix (a many-particle reduced density matrix of one
orbital). It measures the entanglement of one orbital with
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FIG. 3. (Color online) Pair entanglement Ep (single-orbital en-
tropy) for different strengths of the repulsive on-site interaction in the
half-filled 1D Hubbard model (with periodic boundary conditions)
for Nsites = 6,10,14,50,122 calculated by OO-AP1roG.
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the remaining (Nsites − 1) ones [14]. In particular, since the
optimized orbitals are localized on two neighboring sites, the
von Neumann entropy describes the correlation of a pair of
sites and the other part of the system. In the following, we will
refer to the single-orbital entropy as the pair entanglement Ep,
in accordance with the local entanglement determined for the
on-site basis [39].

The pair entanglement takes its minimum value at U = 0t ,
where the wave function can be exactly represented by a
single Slater determinant. It is easy to verify that all orbital
pairs are uncorrelated in a one-determinant wave function
and thus Ep = 0. For increasing on-site interaction, the
pair entanglement smoothly accumulates (see Fig. 3) and
reaches its maximum value of ln 2 in the large U limit (for
U → ∞, the single-orbital density matrix has the diagonal
elements {0,0,0.5,0.5}). Note that OO-AP1roG yields similar
pair entanglement profiles for all chain lengths studied and
correctly reproduces the small and large U limits.

Symmetric dissociation of the H50 molecule. The nonrela-
tivistic quantum-chemical Hamiltonian in its second quantized
form reads

Ĥ =
∑
pq,σ

hpqa
†
pσ aqσ

+ 1

2

∑
pqrs,στ

〈pq|rs〉a†
pσ a†

qτ asτ arσ + Hnuc, (4)

where the first term comprises the kinetic energy and nuclear-
electron attraction, the second term is the electron-electron
interaction, and the third term represents the nuclear-nuclear
repulsion energy, respectively. In Eq. (4), indices p, q, r , and
s run over all one-particle basis functions, while σ and τ

denote the electron spin ({↑,↓}). The Hamiltonian as defined
in Eq. (4) was used for the study of the symmetric stretching of
the H50 hydrogen chain, which is a commonly used molecular
model for strongly correlated systems and which remains
a challenging problem for conventional quantum-chemistry
methods [40–43].

In Fig. 4, the performance of AP1roG and OO-AP1roG
is compared to restricted Hartree-Fock (RHF), second-order
Møller-Plesset (MP2) perturbation theory, coupled-cluster the-
ory with singles, doubles and perturbative triples [CCSD(T)],
and density functional theory using the Perdew-Burke-
Ernzerhof (PBE) [45] exchange-correlation functional. As
a reference, the DMRG potential energy curve determined
in Ref. [40] was used, which can be considered as the
exact-diagonalization limit. None of the standard quantum
chemical methods, such as MP2, CCSD(T), or DFT using
the PBE exchange-correlation functional, yield qualitatively
correct energy curves for the symmetric stretching of the H50

chain. In particular, the potential energy depth determined
from DFT and MP2 is too deep, while CCSD(T) does not
converge for interatomic distances larger than 2.0 Å. Note that

FIG. 4. (Color online) Symmetric dissociation of the H50 chain
using the STO-6G basis set [44] obtained from different methods.
The DMRG reference data are taken from Ref. [40].

the lack of size consistency in AP1roG is cured by orbital
optimization in the OO-AP1roG approach. The latter yields a
potential energy curve that is closest to the DMRG reference
data along the whole dissociation pathway and leads to a
proper dissociation limit of H50. Moreover, the OO-AP1roG
method gives spectroscopic constants (presented in Table I)
that are in excellent agreement with DMRG reference data,
outperforming standard quantum-chemistry approaches.

Wave functions constructed as antisymmetric products of
nonorthogonal geminals, such as the AP1roG wave function
scrutinized here, provide an alternative approach to electronic
structure, with mean-field scaling. Because it uses electron
pairs as a building block, AP1roG is a suitable way to describe
strong correlations dominated by electron pairing. However,
in order to ensure size consistency, the single-particle (orbital)
basis used to construct the electron pairs must be optimized.
Our results show that orbital-optimized AP1roG is a robust
method all the way from the weakly correlated to the strongly
correlated limit, in both molecules and periodic systems.
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