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Phase diagrams of voltage-gated oxide interfaces with strong Rashba coupling
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We propose a model for the two-dimensional electron gas formed at the interface of oxide heterostructures that
includes a Rashba spin-orbit coupling proportional to an electric field oriented perpendicularly to the interface.
Taking into account the electron density dependence of this electric field confining the electron gas at the interface,
we report the occurrence of a phase separation instability (signaled by a negative compressibility) for realistic
values of the spin-orbit coupling and of the electronic band-structure parameters at zero temperature. We extend
the analysis to finite temperatures and in the presence of an in-plane magnetic field, thereby obtaining two phase
diagrams that exhibit a phase separation dome. By varying the gating potential, the phase separation dome may
shrink and vanish at zero temperature into a quantum critical point where the charge fluctuates dynamically.
Similarly, the phase separation may be spoiled by a planar magnetic field even at zero temperature leading to a
line of quantum critical points.
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I. INTRODUCTION

The observation of a two-dimensional (2D) metallic state
at the interface of two insulating oxides LaAlO3/SrTiO3

(LAO/STO) [1–4] has brought forward a novel class of high-
mobility electron gases (EGs), which proves to be important
in both theoretical and practical prospects. The occurrence
of superconductivity in this 2DEG [5,6] and in similar het-
erostructures such as LaTiO3/SrTiO3 (LTO/STO) [7,8], with
the possibility to control the transition by voltage gating, has
further attracted great attention. There is, however, increasing
evidence that inhomogeneity plays a relevant role in these
systems. Not only is the large width of the superconducting
transition measured in transport experiments a clear indication
of charge inhomogeneity [9–11], but also magnetometry
[12–17], tunneling [18], and piezoforce spectroscopy [19]
report inhomogeneities on a submicrometric scale. Extrinsic
mechanisms, like impurities and defects, surely introduce in-
homogeneities [20]. However, the recent discovery of negative
compressibility in a low-filling regime [21] provides, in our
opinion, a clear indication that intrinsic mechanisms (i.e.,
effective electron-electron attractions) are present, which may
render these 2DEGs inhomogeneous by phase separation even
in a perfectly clean and expectedly homogeneous system.
Moreover, even if such mechanisms were not strong enough
to drive the EG unstable, they would still increase the charge
susceptibility, reinforcing the extrinsic mechanisms.

Several mechanisms providing negative contributions to
the electronic compressibility are known [22], like the ex-
change term of the repulsive electron-electron interaction or
the confinement mechanism forcing the EG at the interface.
The former mechanism is only active at very low densities
(even for semiconducting systems) up to a threshold density
nc, which is further reduced by large values of the dielectric
constant. Therefore this mechanism is surely not effective at
the densities relevant for the metallic regime of the 2DEG in
LXO/STO interfaces (henceforth, the symbol LXO stands for
LAO or LTO, whenever we generically refer to both), where
the typical electron density is quite large, of order of 1013

electrons per cell, and the STO dielectric constant may reach
very high values, of order of 104. On the other hand, concerning
the latter mechanism, the self-consistent solution of the
Schrödinger and Poisson equations relating the electronic
wave functions and the electric potential arising from external
potential and electronic density itself usually shows [22] that
the EG becomes more compressible once its finite transverse
confinement is taken into account. Also in this case, the large
dielectric constant of the material hosting the EG favors its
“softening”, leading to an increased compressibility. Whether
and under which conditions this mechanism may lead alone to
a negative compressibility and to phase separation is presently
under investigation [23]. In this general framework, looking
for possible realistic sources of intrinsic mechanisms of phase
separation, we recently proposed a possible explanation for
the occurrence of an inhomogeneous electronic phase, which
is based on a coupling between the electron orbital degree
of freedom and its spin [24]. The confinement of the 2DEG
at the interface restricts the electronic motion to the plane
parallel to the interface, while the electric field confining the
electrons is oriented perpendicularly. In this configuration,
the interaction between the moving electron and the electric
field gives rise to the so-called Rashba spin-orbit coupling
(RSOC) [25]; in simple terms, the moving electron perceives
the electric field as a magnetic field in its rest frame, which
then couples to its spin. As it will be explained in detail
below, the key point of our argument is the dual role assumed
by the confining electric field; the field is proportional to the
electron density and controls at the same time the RSOC.
This leads to a density-dependent RSOC (via the electric
field). Since the band structure depends on the strength of
the coupling, the system acquires a nonrigid band structure,
which evolves as a function of the electron density. This
nonrigidity gives rise to a 2DEG, which may differ strongly
from a standard metallic system with rigid bands. For instance,
the chemical potential μ in the latter case is an increasing
function of the electron density n and the compressibility
κ ≡ ∂n/∂μ is always positive. This statement holds no longer
true for a system with nonrigid bands; the 2DEG may be
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in a (thermodynamically unstable) phase with a negative
compressibility and separate into two subphases with densities
n1 and n2.

The analysis of the precise conditions leading to such
an unstable phase will be the focus of this paper, which is
organized as follows. In Sec. II, we present in detail our model
used for the description of the 2DEG at the interface. We study
the model at zero and low temperatures as well as zero and
small in-plane magnetic field and report the obtained results in
Secs. III–V. In Sec. VI we comment on the effects of Coulomb
interaction. Our concluding remarks are given in Sec. VII.

II. MODEL

A. Origin of the 2DEG

The prototype systems we have in mind are oxide het-
erostructures formed by an STO bulk with a thin LXO film
(of the order of a few unit cells) on top [Fig. 1(a)]. The
LXO film consists of alternating polar layers of (LaO)+
and (XO2)−, with X = Al, Ti, whereas the STO bulk is
formed by nonpolar layers of TiO2 and SrO. This difference
in polarity leads to a charge discontinuity at the interface.
Depending on the termination, two different types of interface
may arise: XO2/LaO/TiO2, called n-type, and XO2/SrO/TiO2,
called p-type. In both cases, the charge discontinuity at the
interface leads to a build-up of the electrical potential in the
LXO film, which increases monotonically with the number
of layers and would diverge for an infinite number of layers.
Due to this (theoretical) divergence, the scenario is termed
polarity catastrophe [26–30]. According to theory, the system
avoids this unphysical limit through a redistribution of the
charges at the interface. By adding half an electron per unit
cell to the interfacial TiO2 layer coming from the uppermost
XO2 layer (n-type), or by removing half an electron from
the interfacial SrO plane in the form of oxygen vacancies
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+   +   +   +   +   + 
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Epc

a

b c + +

+ +

+ +
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E

FIG. 1. (Color online) (a) Schematic view of the LXO/STO
interface in the presence of a gate potential Vg . The 2DEG created at
the interface resides in the STO conduction bands. (b) Illustration
of electronic reconstruction due to polarity catastrophe in an n-
type interface at zero gating. Epc is the associated electric field.
(c) Illustration of the metallic interface due to oxygen vacancies.

(p-type), a small dipole arises that causes the electric field to
oscillate about zero and the potential to remain bounded. While
n-type interfaces exhibit a metallic behavior, experiments
show that p-type interfaces are insulating. The experiments
further report a smaller transferred amount of charge of order
n0 ∼ 0.02 electrons per unit cell (el./u.c.) [31,32], instead of
the theoretical 0.5 el./u.c. [see Fig. 1(b) for an illustration].
These charges create a strong electric field,

Epc = ν n0, with ν = e

ε0εra2
,

where εr ∼ 20 is the dielectric constant of LXO and a =
3.905 × 10−10 m is the linear size of the STO unit cell.

The polarity catastrophe is not the only mechanism leading
to the formation of a 2DEG at the LXO/STO interface. The
gas can be also formed as a consequence of oxygen vacancies
(mostly located in LXO, which is interposed between STO
and vacuum), that act as electron dopants, each oxygen
vacancy nominally providing two electrons [see Fig. 1(c)].
These additional electrons then are confined at the interface
by the self-consistent potential due to the other electrostatic
fields (e.g., bulk fields or gates) and the electronic density
itself. Solving the Schrödinger and Poisson equations, one
finds that this confining potential generates an electric field
perpendicular to the interface, which is roughly proportional
to the density of the confined electrons. Therefore also oxygen
vacancies eventually produce an interface field, which is
strictly related to the local density of the 2DEG, similarly
to the outcome of the polarity catastrophe. The orders of
magnitude, as expected in the presence of similar confined
densities, should be comparable.

In our model, we focus on n-type interfaces. For the
sake of concreteness, but without being necessarily tied to
this mechanism, we consider here electronic charges due
to the polarity catastrophe and explore a range of values
of n0 up to 0.08 el/u.c. (corresponding to an electric field
Epc � 5 × 108 V m−1), in which, as we will show, the system
may undergo electronic phase separation.

B. Effect of gate voltage

As mentioned, the density of the 2DEG can be addition-
ally increased (decreased) by the application of a positive
(negative) gate voltage on the sample. Typically, the voltage
is applied by back-gating to the STO bulk alone, while the
interface is grounded. Applying a voltage Vg ∼ 100 V to a
layer of thickness d ∼ 5 × 10−4 m yields an electric field
Eg = Vg/d ∼ 2 × 105 V m−1, which is orders of magnitude
smaller than the electric field due to the polarity catastrophe,
Epc [see Fig. 2(a)].

In the low-temperature region we are interested in, the
dielectric constant of STO is a highly nonlinear function of
the electric field of the form [8,33,34]

εSTO(Eg) = ε∞ + 1

A + B|Eg| , (1)

where ε∞ = 300 is the saturation value for very high field,
A ∼ 4 × 10−5 and B ∼ 5 × 10−10 V−1 m are temperature-
dependent parameters and |Eg| is the amplitude of the electric
field. Considering systems at zero or low temperature, where
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FIG. 2. (Color online) (a) Illustration of electronic reconstruction
due to polarity catastrophe in an n-type interface at finite gating. n0 is
the density of the electrons transferred to the interface by the polarity
catastrophe giving rise to the Epc electric field. δn is the electron
density tuned by the gating field Eg , with Eg � Epc. (b) Field-effect
charge modulation in the STO bulk as a function of gate voltage. A
carrier density of 0.016 el./u.c. corresponds to 1013 cm−2.

the values of A and B change slowly, we take εSTO to be
temperature independent. The integration of the capacitance
per unit surface ε0εSTO/d from zero voltage to Vg yields
the charge density |e|δn(Vg), where δn(Vg) is the particle
density plotted in Fig. 2(b). In particular, the 2DEG can be
greatly depleted tuning the density to δn ∼ −n0, while the
total electric field E = Eg + Epc ≈ Epc stays large. We will
see that this implies the persistence of a strong RSOC also in
the negative voltage region.

C. SrTiO3 band structure

The mobile electrons at the interface reside in the STO t2g

conduction bands originating from the 3d orbitals of titanium.
Experiments and theoretical calculations suggest that for the
strictly 2D case the t2g bands are split into an isotropic band
dxy (with light mass ml) separated by an energy � from two
anisotropic bands dxz and dyz (each with a light mass ml and
a heavy mass mh) [35–39]. In addition, a finite extension of
the gas perpendicular to the plane may give rise to multiple
dxy (and dxz,dyz) subbands. While the experiments performed
at the STO/vacuum interface report masses of the order of
ml ∼ 0.6m0 and mh ∼ 10m0–20m0 (m0 the bare electron
mass), recent density functional theory (DFT) calculations
report smaller masses of the order ml ∼ 0.5m0 and mh ∼
1.1m0. Experiments indicate a gap � of the order of 50 meV
[35]. DFT calculations for LAO/STO report � ∼ 250 meV,
with subbands which lay closer (at about 50 meV) to the
bottom of the heavier bands. In any case, these values depend
strongly on the details of the interface and smaller values are
conceivable. Caviglia et al. obtain RSOC values of the order of
10−12–10−11 eV m by fitting magnetoresistance measurements

with Maekawa-Fukuyama and Dyakonov-Perel theory with a
single band of mass 3m0. Zhong et al. find couplings of the
same order in the limit � → 0.

In addition to the rather wide range of reported parameters,
the precise form of the RSOC in the different bands remains
an open issue. While in Ref. [6] the RSOC at the LAO/STO
interface was successfully fitted assuming a linear in k

dependence for all gate voltages, the authors of Ref. [40]
found evidence of cubic Rashba spin splitting in the 2DEG
formed at the STO/vacuum interface. In Ref. [39], the authors
arrived at yet another conclusion, reporting that the induced
spin-orbit coupling in the dxz and dyz bands is cubic in k,
whereas the spin-orbit interaction in the lower band (dxy),
has a linear momentum dependence. Reference [38] points
out that the inconsistencies may be partially resolved by the
fact that the two interfaces are different. More to the point,
the authors show that a negative �, as it may occur at the
STO/vacuum interface, leads to a cubic-in-k RSOC. However,
the similarity of the 2DEG at the STO surface to those reported
in STO-based heterostructures suggests that different forms of
electron confinement at the surface of STO should lead to
essentially the same 2DEG [36].

In the present paper, we shall mainly consider a model with
linear RSOC and an expedient band structure composed of
one anisotropic band with mass ml = 0.7m0 separated by � =
50 meV from two anisotropic bands with masses ml = 0.7m0

and mh = 21m0, allowing for a simpler analytical treatment.
For completeness, in Appendix A, we also report results
obtained for different values of the parameters ml,mh,�,
and RSOC. In addition, in Appendix B, we show that the
main conclusions of our work remain valid for more complex
band structures arising from orbital mixing, for which an
analytical determination of the bands in not possible. Indeed,
the DFT calculations mentioned above elucidate how the
Rashba splitting arises from the combined effects of atomic
spin-orbit coupling and the interfacial electric field, so that
the corresponding tight-binding Hamiltonian is nondiagonal
in the orbitals. However, to perform analytic calculations
of various quantities that are impossible for the complex
tight-binding band structure derived from DFT calculations,
we adopt in this work a simplified Hamiltonian of the
form:

Htot =

⎛
⎜⎝
H1 0 0

0 H2 + � 0

0 0 H3 + �

⎞
⎟⎠ (2)

with the single-orbital Hamiltonian Hi :

Hi =
(

�
2k2

x

2mx,i

+ �
2k2

y

2my,i

)
σ0 + α

(
kyσx − kxσy

)
, (3)

where σx and σy are the standard Pauli matrices (σ0 is the
unity matrix) and α is the strength of the RSOC. The first band
is isotropic, mx,1 = my,1 = ml , whereas the second and third
bands are anisotropic, mx,2 = my,3 = ml , my,2 = mx,3 = mh.
The case of a k-cubic RSOC is briefly discussed in Appendix C,
where we show that also this modification of our model leads
to very similar physical results.
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Diagonalizing the Hamiltonian of Eq. (3) we obtain the
following dispersion relations:

isotropic band :

εi
±(k) = �

2k2

2ml

± αk,with k =
√

k2
x + k2

y, (4)

anisotropic bands :

εa
±(kx,ky) = �

2k2
x

2mx

+ �
2k2

y

2my

+ � ± αk, (5)

where mx = ml(mh), my = mh(ml) for the second (third) band
of Eq. (2). Although an anisotropic RSOC could be considered
for the anisotropic bands [24], for simplicity, we assume here
the same RSOC for all bands. Henceforth, the superscripts
“i” and “a” label quantities defined for the isotropic and the
anisotropic bands, respectively.

Due to the RSOC the quantum number associated to the
spin degree of freedom is no longer the spin itself but the
so-called chirality, which for a given band and wave vector
k characterizes the orientation of the eigenspinor, which we
label by + and −. The resulting Fermi surface is formed by
two circles (ellipses for the anisotropic bands) and shown in
Fig. 9. The peculiar spin structure will be important when we
consider the effect of a magnetic field parallel to the interface.

The anisotropic bands have each two minima at ka
0 =

±mhα/�
2 on the axis corresponding to the heavy mass. The

separated minima become a ring of radius ki
0 = mlα/�

2 in
the isotropic band. A schematic view of the resulting band
structure is given in Fig. 3.

We will see in the following how, due to the density-
dependent Rashba coupling, the band structure, and in par-
ticular its (local) minima ε

i,a
0 = αk

i,a
0 /2 are functions of the

electron density.

D. Field-dependent Rashba coupling

Concerning the dependence of the Rashba coupling on the
electric field, in the absence of compelling first-principles
calculations, we borrow its functional form from semicon-
ductor physics, while the appearing parameters are inferred

FIG. 3. (Color online) Schematic view of the STO band structure
formed by an isotropic Rashba band (grey) and two anisotropic bands
(orange and blue). The isotropic band has a ring of minima at ki

0 =
m∗α/�

2, while the anisotropic bands have each two minima at ka
0 =

±mhα/�
2, where ka

0 is along the direction with the heavy mass mh.

from LXO/STO experiments. More precisely, we take [41,42]

α ∝ 〈ψ(z)| d

dz

[
1

ε̄(z)
− 1

ε̄(z) + �SO

]
|ψ(z)〉, (6)

where ψ(z) is the electron wave function (for simplicity we
here display only its z dependence) and ε̄(z) ≡ ε + V (z) +
Egap, ε is the subband energy relative to the bulk conduction
band, V (z) is the band-bending potential, Egap is the band gap,
and �SO is a measure of the spin-orbit splitting within a Kane
k · p approach [43]. Expanding for small values of �SO, taking
the electric field E � Epc uniform along z [44], and replacing
V (z) in the denominator by E z after the differentiation (z
being the width of the confining potential well), Eq. (6) can be
written in the simple form

α(E) � α(Epc) = γEpc(
1 + βEpc

)3 , (7)

which in terms of the polarity catastrophe electron density n0

becomes

α(n0; Vg) � α(n0) = γ ν n0(
1 + βν n0

)3 . (8)

The expression (7) has the standard linear behavior at small
electric field, but saturates at E ∼ Ē = (2β)−1 and then
decreases at larger fields. This latter behavior is important
to stabilize the system against an unphysical unbounded
growth of the RSOC. We define the parameters β and γ on
purely phenomenological grounds. Experimental observations
[45–47] report Rashba couplings of order 10−12–10−11 eV m,
based on which we take αmax = 4γ

27β
= 0.67 × 10−11 eV m.

Assuming that this maximum value is attained for densities
n0 ∼ 0.1 el/u.c. (for typical experimental values of the
densities at the interface, see, e.g., Ref. [8]), we get γ =
3.82 × 10−20 eV m2 V−1 and β = 8.45 × 10−10 m V−1. Note
that this value of β corresponds to a maximum field at the
interface of Ē = 6 × 108 V m−1, comparable to the values
estimated in Ref. [8].

A comment is now in order about the choice of the field-
dependent RSOC in Eq. (7). Since LXO and STO are different
materials, inversion symmetry at the interface is broken even
in the absence of polarity catastrophe reconstruction (i.e., for
n0 = 0). This means that a residual electric field besides Epc

should always be present, leading to a finite RSOC, α(n0 = 0),
even for vanishing Epc(n0 = 0). This additional field, no matter
how small, has been shown in Ref. [24] to always produce
phase separation at low enough densities (n0 � 1012 el./u.c.)
for the linear–in-k RSOC considered here. However, we are
interested in the typical regime of real materials with densities
n0 � 1013 el./u.c. Therefore, in order to keep the smallest
number of model parameters, we omit this term, which, in any
case, favors the occurrence of phase separation and therefore
would strengthen our conclusions.

As will become clearer below, the possibility of a phase
separation depends only marginally on the precise density
dependence of the RSOC. The crucial point is that when the
Fermi energy enters the heavy bands, the coupling and/or its

195448-4



PHASE DIAGRAMS OF VOLTAGE-GATED OXIDE . . . PHYSICAL REVIEW B 89, 195448 (2014)

derivative with respect to n0 need to exceed a certain value in
order for the instability to occur.

E. Chemical potential

From the band structure, we deduce the density of states
(DOS):

gn(ε) = 1

(2π )2

∫
δ(ε(kx,ky) − ε) dkxdky,

where the subscript n reminds us that, like the band structure,
also the DOS depends on the density. These density depen-
dencies add some subtleties to the calculation of the chemical
potential which we will discuss in the following.

We begin by considering the simple example of a constant
DOS gn(ε) = g and a density-dependent band bottom ε0(n),
in which case the Fermi level εF reads

n =
∫ εF

−ε0(n)
g dε ⇒ εF = n

g
− ε0(n), (9)

and the total energy per unit cell is given by

E =
∫ εF

−ε0(n)
ε g dε ⇒ E = n2

2g
− nε0(n).

Differentiating once (twice) with respect to the density we
obtain the chemical potential (inverse compressibility)

μ = ∂E

∂n
= n

(
1

g
− ∂ε0

∂n

)
− ε0(n),

κ−1 = ∂μ

∂n
= 1

g
− 2

∂ε0

∂n
− n

∂2ε0

∂n2
.

The inverse compressibility, instead of being equal to 1/g as
in the standard case of a constant band structure, has two ad-
ditional contributions coming from the density dependence of
the energy. Therefore we find that already in the simplified case
of a constant DOS, the density dependence of ε0 introduces
new terms to the chemical potential and its derivative.

Next, we address the implications of the density dependence
of the DOS. To calculate the thermodynamic properties of the
system we consider the grand-canonical ensemble defined by
the potential � = F − μN , where F is the free energy and N

is the total particle number of the system. In this ensemble,
the chemical potential is fixed, while the particle density n =
n0 + δn = N/L2 is a fluctuating quantity (L2 is the number
of lattice sites). To be precise, the fluctuating quantity here
is n0, while δn is univocally fixed by the gating Vg , which
is an external parameter. Therefore, when we calculate the
chemical potential via the density-dependent grand-canonical
potential, the density [and therefore also α(n0)] is not known
a priori. An elegant way to circumvent this problem is the
introduction of a Lagrange multiplier λ; we take the energy to
be dependent on a real parameter x, determine the chemical
potential μ(λ,x + δn), and then chose λ to impose x = n0. So,
we consider the following grand-canonical Hamiltonian:

Hλ(x) = H(x) − μ
∑
kσ

c
†
kσ ckσ + λ

∑
kσ

[c†kσ ckσ − (x + δn)]

= H(x) − μ∗ ∑
kσ

c
†
kσ ckσ − λL2(x + δn),

where c and c† are the usual electron destruction and
creation operators, H(x) is the canonical one-particle Rashba
Hamiltonian of Eq. (3), and μ∗ = μ − λ. The grand-canonical
potential density ω = �/L2 reads

ω = − T

L2
ln

[
Tr

(
e−Hλ(x)/T

) ]
= − T

L2

∑
kγ

ln
[

1 + e−(εkγ (x)−μ∗)/T
] − λ(x + δn),

(for simplicity, we here take the Boltzmann constant kB = 1),
where εkγ are the eigenvalues of H(x) given in Eqs. (4) and
(5). The electron density is given by

n = −∂ω

∂μ
= − ∂ω

∂μ∗
∂μ∗

∂μ
= 1

L2

∑
kγ

f [εkγ (x) − μ∗], (10)

where f (ε) = (e ε/T + 1)−1 is the Fermi-Dirac function at a
temperature T . The equations for x and λ read

∂ω

∂λ
= 0 ⇒ n = x + δn,

∂ω

∂x
= 0 ⇒ λ = 1

L2

∑
kγ

∂εkγ

∂x
f (εkγ − μ∗)

= ∂α

∂x

1

L2

∑
k

k [f (εk+ − μ∗) − f (εk− − μ∗)]. (11)

Notice that λ depends on both the absolute value of α [via
the difference f (εk+ − μ∗) − f (εk− − μ∗)] and its derivative
with respect to x (i.e., n0). It is also worth noticing that μ∗, and
not the chemical potential μ, coincides with the Fermi energy
at T = 0.

Eventually, we want to know whether for a given experi-
mentally observed value of n0, say n

exp
0 , fixed by the chemistry

of the sample, the EG is stable or not. This amounts to
determine whether the chemical potential μ is an increasing
or a decreasing function of n0 in the vicinity of n

exp
0 . To

accomplish this, we vary n0 over the interval I0 = [0,0.08]
el./u.c. for Vg � 0 and I0 = [|δn|,|δn| + 0.08] el./u.c. for
Vg � 0, keeping the gating fixed, and calculate for each density
the chemical potential

μ(n0; Vg) = μ∗(n0; Vg) + λ(n0; Vg), n0 ∈ I0,

which yields curves of the form shown in Fig. 4. The respective
densities n01 and n02 of the coexisting phases are then
determined by the Maxwell construction∫ n02

n01

μ(n0; Vg) dn0 = μ̄(n02 − n01),

where n01(Vg), n02(Vg), and μ̄(Vg) satisfy the relations
μ(n01; Vg) = μ(n02; Vg) = μ̄(Vg). In case n

exp
0 falls into the

interval [n01,n02], the system is unstable and separates into
two phases with density n1 = n01 + δn and n2 = n02 + δn,
respectively. An example of the Maxwell construction is given
in the right panel of Fig. 4 for Vg = 100 V, where n01 ∼ 0 and
n02 ∼ 0.04. The contribution of the Lagrange multiplier λ to
the chemical potential and to the compressibility, which was
neglected in Ref. [24], enhances the tendency to electronic
phase separation.
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FIG. 4. (Color online) (Left) μ(n0; Vg) for various gate voltages.
The green (lowest) curve corresponds to the critical curve at a
gating Vg = −60 V. The dotted line (and right y axis) reports
the Rashba coupling α(n0) according to Eq. (8). (Right): Enlarged
view of μ(n0; Vg) for various gate voltages. The dashed lines and
shaded areas report the Maxwell construction for Vg = 100 V. The
values −60,−20,0,50,100,200 V indicate the gate voltage of the
corresponding curves.

III. THE PHASE SEPARATION AT T = 0, B = 0

We commence the study of the phase separation instability
with the calculation of the chemical potential at zero tempera-
ture and zero magnetic field and analyze how it evolves upon
varying the gate voltage Vg . As mentioned above, the electric
field due to the charge reconstruction is much larger than the
one arising from gating and we omit this latter contribution to
α. Consequently, the only effect of increasing (decreasing) Vg

is to increase (decrease) the density by δn with respect to n0,
leaving the value of α(n0) essentially unchanged. Furthermore,
we remind that temperature, magnetic field, and gate potential
are (the) external parameters determining the thermodynamic
state of the system, while the density n0 and its fluctuations
are determined by its internal stability.

We anticipate here that for the (physically realistic) values
of the RSOC considered in this paper, no instability occurs
as long as only the lower-lying dxy low-DOS band is filled.
On the contrary, a phase separation instability is possible at
higher electron density, when the heavier dxz,yz bands start to
be filled. A precondition for this possibility is that the RSOC
and its derivative with respect to n0 are large enough (see
below). Quite remarkably, we find that the values of α(n0) at
which the instability occurs are well in the range of those
inferred from magnetotransport experiments in LAO/STO
[45,46] and LTO/STO [47]. Before considering the occurrence
of the instability in a more detailed and quantitative way, we
address the numerical solutions of μ(n0; Vg) shown in Fig. 4
and explain them on a qualitative basis.

First of all, one has to bear in mind that, although in
the real systems n0 is determined by the chemistry of the
system, for a given n0 one has to explore a whole interval of
μ(n0; Vg) to establish whether the system stays homogenous
at this n0 or whether it is energetically convenient to split into
separate phases with different electronic reconstructions (n01

and n02). Let us start with a system having, say, nexp
0 = 0.015 at

Vg = 0. Only the dxy band is filled and the chemical potential

μ(0.015; 0 V) has a positive slope as a function of the electron
density. Upon increasing Vg = 50 V, other electrons δn > 0
are introduced and the anisotropic bands start to be filled, while
α(nexp

0 = 0.015) and α′(nexp
0 = 0.015) are large enough to

render the system unstable [negative slope of μ(0.015; 50V)].
The system therefore becomes inhomogeneous and splits
into regions at densities to be determined by the Maxwell
construction (see the enlarged view in the right panel of Fig. 4,
where the construction is explicitly done for Vg = 100 V).
If the chemistry were such that n

exp
0 = 0.08 in the as-grown

system, the heavy bands would be filled, but α(n0) would
vary too mildly with n0 and therefore the bands would be too
rigid to allow for the instability to occur. On the other hand,
if the chemistry were such that no electrons were transferred
at the interface of the as-grown system (nexp

0 = 0), then the
gated electrons only would fill the lower band and one should
apply a gate voltage Vg ≈ 100 V before δn is large enough
to fill the heavy bands. At this point, upon increasing Vg , the
system becomes unstable and regions with different electronic
reconstructions, n01 = 0 and n02 ∼ 0.04, are formed.

Once this rapid survey of the unstable reconstruction has
been given, we now move to a more analytic understanding
of the above phenomenology at zero temperature and zero
magnetic field.

The chemical potential for a constant isotropic band of mass
m∗ is

μ∗(n0; Vg) =
{

(n0+δn)2

4g2
0ε0

− ε0, n0 + δn � 2g0ε0

n0+δn

g0
− 2ε0, n0 + δn � 2g0ε0

, (12)

where g0 = m∗/�
2π corresponds to the constant DOS of a

2DEG. The correction term due to the density dependence of
the Rashba coupling reads

λ(n0; Vg) =
{

−α′(n0)
6π

(
k3
−2 − k3

−1

)
, n0 + δn � 2g0ε0

−α′(n0)
6π

(k3
− − k3

+), n0 + δn � 2g0ε0

, (13)

where

k−1,2 = m∗

�2

(
α ∓

√
α2 + 2�2μ∗/m∗

)
,

k± = m∗

�2

(
±α +

√
α2 + 2�2μ∗/m∗

)
.

For the chosen values of the parameters β and γ , the
condition ∂μ(n0; Vg)/∂n0 < 0 is never satisfied [48], and the
terms, which depend on α and α′ [via ε0 = ε0(α)], are small
compared to (n0 + δn)/g0. Therefore the major effect of gating
is to translate the (quasi-) linear curves μ(n0; Vg) by δn(Vg) as
it is shown in Fig. 4. In terms of the total density n, a rigid shift
by δn translates into coinciding μ(n). We note that here we can
write μ(n), because it does not matter whether the electrons
come from the polarity catastrophe or gating.

What happens when the anisotropic bands start to be filled?
In general, one expects the effects due to the RSOC to increase.
Indeed, inspecting Fig. 4, one observes a strong flattening of
the chemical potential when μ ∼ �. In order to pinpoint the
density at which the anisotropic bands begin to be filled, we
solve the equation

μ = � − εa
0, (14)
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FIG. 5. (Color online) (Left) The green curve (and left y axis)
reports n̄0 vs Vg obtained from Eq. (14), which corresponds to the
density n̄0 at which the anisotropic bands start to be filled. The same
result but with the gating induced density included is shown by
the blue dotted curve (right y axis). (Right): The full black curve
shows the inverse compressibility μ′(n0) evaluated as n0 → [n̄0]+

(right y axis). Zeros are indicated by the black dotted line. The red
curve (left y axis) reports the analogous result but for n0 → [n̄0]−. For
comparison, the red curve with triangles shows the constant inverse
compressibility 1/g0 of a rigid isotropic band.

where εa
0 = mhα

2/(2�
2). The solutions n̄0 and n̄ = n̄0 + δn are

reported in the left plot of Fig. 5 and correspond, as expected,
to the densities at which the chemical potential shown in Fig. 4
changes abruptly.

For Vg � 100 V, we find n̄0 ∼ 0, meaning that δn fills up
the isotropic band to the bottom of the anisotropic bands.

In general, the equations for μ > � − εa
0 do not allow for

a simple solution due to the absence of rotational symmetry.
If, however, we are only interested in the region n0 � n̄0, we
can expand εa

−(k) around its four minima kxz
0 = (±mhα

�2 ,0) and
kyz

0 = (0, ± mhα

�2 ). Due to invariance of the Hamiltonian under
a rotation of π/2, it is sufficient to consider one minimum
only (and multiply by 4 at the end). Taking, for example,
k0 = (mhα

�2 ,0), we obtain

εa
−(kx,ky) ≈ � − εa

0 + �
2

2mx

(
kx − mhα

�2

)2

+ �
2k2

y

2M
,

where M = mxmy/(mx − my).
Based on this quadratic dispersion relation, we derive the

following quantities, valid for k ∼ k0:

ga
0 =

√
mxM

π�2
,

μ∗(n0; Vg) = 1

gi
0 + ga

0

[
(n0 + δn) − 2gi

0ε
i
0 + (

� − εa
0

)
ga

0

]
,

λ(n0; Vg) = −α′
{

α
√

mxM

π�2

[
2mx

�2

(
μ∗ − � + εa

0

)]

+ �
2

8παmx

(
M

mx

)3/2[2mx

�2

(
μ∗ − � + εa

0

)]2}
.

In addition, we calculate the chemical potential for densities
n0 � n̄0,

n0 + δn =
∫ μ∗

−εi
0

gi
0(ε) dε +

∫ μ∗

�−εa
0

ga
0(ε) dε

= n̄ + ml

�2π
(μ − λ) + 2

√
Mmh

�2π

(
μ − λ + εa

0

)
,

from which we deduce the value of the inverse compressibility,

∂μ

∂n0
= 1

X

(
1 + X

∂λ

∂n0
− 2

√
Mmh

�2π

∂εa
0

∂n0

)
, (15)

where X = (ml + 2
√

Mmh )/(�2π ). Evaluating Eq. (15) at n̄0,
we obtain the (inverse) compressibility when the anisotropic
bands start to be filled, which is shown in the right plot of
Fig. 5. We find that at large negative voltage Vg ∼ −100 V,
μ′(n̄0) > 0, i.e., the EG is stable. Increasing the voltage, we
arrive at a critical value Vgc ≈ −60 V where μ′(n̄0) changes
sign, which means that the EG becomes locally unstable.
Increasing further the gate voltage, it becomes stable again
at n̄0, and the phase separation occurs at higher density (see
also Fig. 4). For comparison, we plot the derivative at the top
of the isotropic band. One observes that the derivative is close
to 1/gi

0, which corresponds to its value for a constant band.
This confirms that the contribution from α and α′ are indeed
small in the isotropic band.

To summarize the above findings, we plot in Fig. 6 the
density dependence of α (red curve) and α′ (green curve) for
Vg = 0, 100, and −60 V (from left to right).

We also include n̄0 (dots) and the density ñ0 at which
the chemical potential attains its local maximum (square
markers). At zero gating, the blue and purple lines coincide,
i.e., the EG becomes unstable as soon as the anisotropic
bands start to be filled. Lowering the gating down to Vg ∼
−60 V, the phase separation vanishes. Figure 6 reveals
that α[n̄0(Vg = −60 V)] > α[n̄0(Vg = 0)] and α′[n̄0(Vg =
−60 V)] < α′[n̄0(Vg = 0)] thereby illustrating the importance
of a sizable derivative of the Rashba coupling with respect
to density (i.e., a sufficiently nonrigid band) in order to drive

0 0.02 0.04 0.06 0.08

n0 + δn

heavy bands
unstable phase

0 0.02 0.04 0.06 0.08
0

0.2
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0.6

0.8
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−11
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1
25

∂α
∂n0

α(n0)

−0.02 0 0.02 0.04 0.06

n0 + δn

δn > 0 δn < 0

FIG. 6. (Color online) Rashba coupling α (red) and its derivative
α′ (green) as a function of the total density n = n0 + δn at a gating
0 (left), 100 (middle), −60 V (right). The dots and square markers
correspond to the densities n at which the anisotropic bands start
to be filled and at which the region with ∂μ/∂n < 0 is reached,
respectively.
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the system unstable. Increasing the gating up to Vg ∼ 100 V,
the EG remains stable upon initially filling the anisotropic
bands and it is only after further augmenting the density
that the instability occurs. The explication is identical to
the previously discussed case, with the roles of α and α′
interchanged. According to Fig. 6, α′[n̄0(Vg = 100 V)] >

α′[n̄0(Vg = 0)] and α[n̄0(Vg = 100 V)] < α[n̄0(Vg = 0)] with
α[n̄0(Vg = 100 V)] yet too small to cause the instability so that
the density has to be augmented by going to larger Vg’s (or
the chemistry should have been different, providing a larger
n0 = ñ0 > n̄0) to attain a negative compressibility.

IV. FINITE TEMPERATURE EFFECTS

The equations relating the particle density to the chemical
potential μ and to the Lagrange multiplier λ at finite tempera-
ture maintain the same form as at T = 0; only the Fermi-Dirac
distribution ceases to be steplike and acquires a temperature
dependence. This dependence leads to a mixing of states with
an energy |ε − μ∗| ∼ kBT when calculating the integrals in
Eqs. (10) and (11). As a consequence, the transition from the
isotropic to the anisotropic bands smoothens.

More importantly, the phase separation, if present at
T = 0 K, vanishes at a temperature Tc of the order of δμ/kB

equal to the difference between the two spinodal points
divided by the Boltzmann constant. This means that the energy
associated to the thermal excitations is comparable to the
energy the EG gains when it phase separates. In Fig. 7, we
report the thermal evolution of μ(n0; Vg) for Vg = 100 V and
find δμ ≈ 0.8 meV and kBTc ≈ 2.4 meV.

In Fig. 8, we report the evolution of the phase separated
densities n1 and n2 in temperature for Vg ∈ [−60,200] V.
The obtained phase diagram has a domelike shape separating
the stable from the unstable phase. The black shaded area
corresponds to the physically inaccessible region n0 < 0 and
the markers to n(Vg) at n0 fixed, which represents the behavior
of the density in gating and temperature for an actual sample
(where n0 is fixed by its specific chemistry). We find that
for realistic values of n0 ∼ [0.01,0.05] el/u.c., the EG is
unstable in a large range of gating and (at T = 0 K) exits the
phase separation dome near the quantum critical point at Vg ≈
−60 V [49].
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FIG. 7. (Color online) (Left) Thermal evolution of μ(n0; Vg) for
Vg = 100 V. The green (lowest) curve corresponds to the critical curve
at Tc ≈ 28 K. (Right) Zoom of the left panel to give an enlarged view
of the unstable region.

FIG. 8. (Color online) Phase diagram: electronic phase separa-
tion as a function of temperature. The markers correspond to (from
left to right) n0 = 0.02, 0.03, and 0.04 el/u.c.. In this (n,Vg,T ) plot,
the system is unstable below the dome-shaped surface and the black
shaded area corresponds to the physically inaccessible region n0 < 0.

This is an interesting occurrence because it implies that near
this gating value the system is characterized by strong nearly
critical quantum (i.e., intrinsically dynamical) fluctuations
of its reconstructed structure. This entails strong density
fluctuations, which at zero temperature display critical dynam-
ical behaviors with large dynamical critical exponents z = 3
(for clean nearly ballistic electrons) or z = 4 (for diffusive
electrons). Of course, these critical behaviors rest on the as-
sumption that these large scale density fluctuations are neutral
at long distance because they are charge compensated by
other mechanisms (like, e.g., variations of the Ti, Al valency),
which should still be able to follow the slow critical electronic
dynamics. The possible consequences of slow nearly critical
density fluctuations on the superconducting critical behavior
of these oxide interfaces at low gating/densities are presently
under investigation.

V. EFFECTS OF A FINITE MAGNETIC FIELD PARALLEL
TO THE INTERFACE, B ‖ x y

In this section, we analyze the effects of a magnetic field
on the electronic phase separation at zero temperature. We
limit our considerations to the simpler case of an in-plane
magnetic field, where the magnetic field is parallel to the
interface and couples to the electron spin only, leaving the
orbital part unaltered. The dispersion relations read

εi
±(k,φ) = �

2k2

2m

±
√

α2k2 + 2αkμBB sin(φ) + μ2
BB2, (16)

εa
±(kx,ky,φ) = � + �

2k2
x

2mx

+ �
2k2

y

2my

±
√

α2k2 + 2αkμBB sin(φ) + μ2
BB2, (17)

where μB is the Bohr magneton, B = |B| is the strength of the
magnetic field, and φ denotes the angle between k and B. As the
equations suggest, the presence of a magnetic field leads to a
rich band structure. Indeed, the evolution of the band structure
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FIG. 9. (Color online) (a) and (b) Spinor structure on the Fermi
surface and band structure of the RSOC system for B = 0. (c) and
(d) Resulting band structure for an applied magnetic field along the
y and x directions.

differs from the previous case where the minima were fixed at
ki,a

0 . Here, the positions and the number of minima depend on
the values of mx , my , α, B, and φ. We will not go into details
of the band structure, but focus instead on the general features
important to understand the effects of the magnetic field.

The Fermi surface and the band structure along kx of the
isotropic band in the absence of a magnetic field are displayed
in Figs. 9(a) and 9(b). From the spin structure of the Fermi
surface, it is readily seen that one has a competition between
the chiral structure of the RSOC and the magnetic field, which
tends to polarize the spins along its direction. As a result, the
application of a magnetic field B causes a band shift for states
k perpendicular to B (panel c) and a Zeeman splitting for states
parallel to the field (panel d).

According to Eqs. (16) and (17), the phase separation, if
it occurs for B = 0, vanishes for magnetic fields of the order
Bc ∼ αk0/μB . Physically, this means that the magnetic field
polarizes the spins so strongly, that the effect of the RSOC,
which is central for the phase separation, is suppressed. As
an example, the evolution of the chemical potential with
increasing magnetic field at gating 100 V is given in Fig. 10,
where δμ ≈ 0.8 meV and μBBc ≈ 3.3 meV.

In Fig. 11, we report the evolution of the phase separated
densities n1 and n2 in magnetic field for Vg ∈ [−60,200] V.
Similar to the evolution in temperature, we obtain a phase
diagram with a domelike shape separating the stable from
the unstable phase. Being at zero temperature, the locus of
the critical fields at which phase separation disappears, as a
function of the gate voltage Vg , defines a line of quantum
critical points. The black shaded area corresponds to the
physically inaccessible region n0 < 0.

Again, we find regions in the phase diagram where strong
density fluctuations are expected. Also in this case, slow
critical quantum fluctuations with z = 3 or 4 are expected
provided the long-range Coulomb interactions are ineffective
and do not spoil the whole phase separation structure.
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FIG. 10. (Color online) (Left) Evolution of μ(n0; Vg) for Vg =
100 V with the magnetic field. The green (lowest) curve corresponds
to the critical curve at Bc ≈ 52 T. (Right) Zoom of the left panel to
give an enlarged view of the unstable region.

VI. EFFECTS OF COULOMBIC INTERACTIONS

The phase separation analyzed above involves the segre-
gation of charged carriers, entailing an energetic cost due to
Coulombic interactions. In a first step, one can assume that,
while electrons acquire a negative compressibility and tend
to segregate, the background of positive countercharges stays
infinitely rigid. This causes a local charge imbalance, which
eventually stops the charge segregation at finite length scales
as soon as the electrostatic cost overcomes the energy gain due
to phase separation. This so-called frustrated phase separation
was extensively investigated in the context of cuprates as a
possible mechanism of charge inhomogeneous (stripe) states
[50,51]. The issue then becomes whether the inhomogeneous
state occurs on large scales comparable to the experimentally
observed nano/mesoscopic disorder (for instance in Ref. [52] a
typical size of inhomogeneous regions of order 50–100 nm was
estimated) or on shorter scales. In the latter case, it might even
happen that the scales are so short that inhomogeneities simply
do not occur and phase separation is spoiled. To complement
our analysis of the phase separation mechanism, we therefore
estimate, as a function of size, the electrostatic cost of a disk
with excess electron charge −δQ embedded in the STO matrix,
but close to the LXO/STO interface. A positively charged ring
of excess charge δQ, arising from a depletion of the electron
density, is also considered, giving rise to a “disk+ring” with

FIG. 11. (Color online) Phase diagram similar to Fig. 8 but with
the magnetic field along the x axis and with a temperature T = 0.
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FIG. 12. (Color online) (a) Cross section of the excess positive
and negative charge density with respect to the uniform surface
charge density n0 that the polarity catastrophe forms at the LXO/STO
interface. (b) Schematic view of the excess charge disk+ring residing
on the STO side and its image residing on the LXO side, used to
compute the electrostatic potential. For the sake of a clearer display,
we draw the disk+ring with diameter 2l and a finite thickness, while
in the calculation this thickness was set to zero.

an average charge density equal to its surrounding. [see
Fig. 12(a)]. For the sake of concreteness, we take for the
excess electron density the form n(r) = (A/r)sin(2πr/l),
where r ∈ [0,l/2] corresponds to the disk and r ∈ [l/2,l]
corresponds to the ring.

The electrostatic potential generated by this charge distri-
bution is calculated using the standard image-charge method
considering the limiting case εSTO � εLXO [the dielectric
constant of STO is strongly field-dependent, see Eq. (1), but
always at least one order of magnitude larger than the dielectric
constant of the nearby LXO]. The charges in STO are taken at a
typical distance d ∼ 0–5 nm from the interface (this distance
turns out to be much smaller than the disk+ring diameter
2l). The cost of this inhomogeneous charge distribution is
then compared to the energy gain from phase separation, as
determined from our μ versus n curves obtained above. We find
l ≈ aεSTO/30, where a is the linear size of the STO unit cell.
Taking for εSTO the geometric average of the minimal (∼300)
and maximal (∼25000) value, we obtain l ∼ 35–40 nm. This
means that even in the worst case of an infinitely rigid
background, sizable nanoscopic inhomogeneities are produced
by phase separation despite the Coulombic cost of charge
segregation.

The worst-case situation sets a lower bound to the size of
inhomogeneities. Assuming, as it seems to be more realistic,
that the charge distribution in the LXO/STO heterostructure is
not rigid, the possibility arises that an inhomogeneous distribu-
tion of electrons at the interface is (at least partially) balanced
by a corresponding redistribution of opposite countercharges
at the top of (and possibly inside) the LXO film, leading to
an increase of the size of the inhomogeneous regions. We
stress that these adjustments are not necessarily due to any

FIG. 13. (Color online) Illustration of the phase separation of the
LXO/STO interface into two phases with densities n01 and n02,
respectively. The positive charges are distributed according to the
negative ones, thereby rendering the system neutral on length scales
greater than the LXO layer thickness. The charge modulation in the
top (yellow) XO2 layer does not correspond to a redistribution of X

ions but to a redistribution of the valency of X.

displacement of ionic positions, but may simply arise from
small variations of the X = Al, Ti ion valency [see Fig. 13].

Given the smallness of n0, we can assume that the energetic
cost of this even smaller modulation of the valency of X is not
exceedingly large. Then, the thickness of the LXO film being
small, the negative charges at the interface and the positive
countercharges at the top of the LXO film can be considered
as a neutral system over distances larger than the thickness of
the LXO layer.

Of course, one should worry about the fact that inside
the LXO layer the inhomogeneous distribution of charges
produces an inhomogeneous electric field distribution like
in joined capacitors with different surface charges on their
plates (see Fig. 13). This will generate an increase of
electrostatic energy with respect to the homogeneous case,
likely overcoming the phase separation gain. However, one
should bear in mind that (i) the charge reconstruction precisely
occurs to avoid the presence of an average electric field in the
interstitial polar planes of LXO and (ii) this reconstruction
is only partial because the interface charge, even taking into
account possible trapping of charge carriers, never coincides
with the nominally required n0 = 0.5 el./u.c. (the density
of charge carriers is roughly ten times smaller). The real
amount n0 of charges transferred from the LXO top layer
(or bulk) to the interface region is unknown. Most of these
charges are either trapped at STO impurity states or simply
they are not transferred because 0.5 is the nominal limit value
expected when a (macroscopically) thick stack of LXO planes
is deposited on the STO substrate, while for smaller thickness
(1–10 layers) the systems finds a compromise between having
a smaller but finite average electric field in LXO and the
energy cost involved in transferring charge to the interface.
In this complex situation it is really awkward to estimate,
e.g., the different energy cost for transferring to the interface,
say, 0.4 el/u.c. uniformly or creating inhomogeneous regions
with 0.38 and 0.42 el/u.c. This estimate would involve:
(a) DFT calculations keeping track of the rigidity of small
valence fluctuations of Ti ions; (b) the screening associated
with tiny lattice deformations of the LXO planes; (c) the
possibility for a slightly non uniform redistribution of the
charge in the intermediate ionic planes: the nominal polarity
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catastrophe distribution (0.5) (−1) (+1). . . (−1) (+1) (−0.5)
could well become, say, (0.6) (−0.9) (+0.8). . . (−0.9) (+0.8)
(−0.4). Moreover, all these effects related to the polarity
catastrophe could well coexist and cooperate with a not fully
uniform distribution of the oxygen vacancies. An analysis of
all these issues is far beyond the scope of our paper and an
analysis by means, e.g., of DFT calculations, would be made
difficult by the smallness of the charge imbalances and of the
related energies involved (a few meV) so that a first-principles
analysis would be very delicate.

It is, however, conceivable that small redistributions of
the charge in the top layer and in the internal polar planes
of LXO balance the excess (or lack) of electrons in the
2DEG without creating substantial changes in the electric
field inside the LXO. In this respect, we point out that the
worst-case scenario of a rigid background already gives rise
to large enough inhomogeneities to justify our analysis of
phase separation. Additional mechanisms related to the charge
flexibility of these systems can only extend the effects of
phase separation in generating the experimentally observed
inhomogeneous interface state.

VII. CONCLUSIONS

Based on a simple and general model we demonstrated
that, as soon as the Rashba coupling depends on the density,
the possibility for an intrinsic electronic phase separation
arises. In this framework, we showed that the instability
occurs for values of the Rashba coupling and the band
structure parameters that are reasonable for LXO/STO in-
terfaces. We then systematically analyzed how the phase
separation instability changes upon varying the gating Vg , the
temperature T , and the magnetic field B (applied parallel to
the interface). The dependence on the parameters defining
the RSOC, β and γ , and the band structure � and the
heavy-to-light mass ratio ν is discussed in Appendix A,
whereas the case of more realistic band structures is dealt with
in Appendix B. Also the case of a k-cubic RSOC is addressed
in Appendix C, where a coupling is considered leading to
a band splitting of the same order of the one obtained in
Ref. [38].

In all the above cases, a main finding of our work is the
possible occurrence of the phase separation instability for
quite realistic values of the RSOC as soon as the heavier
(mostly with dxz,yz character) bands start to be filled. The
filling of these bands, despite their location at higher energies
� ∼ 0.05 eV, is a reasonable occurrence at the accessible
electron densities both on experimental [35] and theoretical
grounds [32,38,39,53]. Furthermore, the idea that qualitatively
new physics then emerges when the heavier dxz and dyz bands
start to be filled is also gaining consensus on the basis of both
theoretical results [54] and experimental evidences [55–58].
Our scenario does not contradict these evidences but suggests
that these new physical effects may occur on an intrinsically
inhomogeneous state.

In our opinion, a negative compressibility like the one mea-
sured in Ref. [21] cannot be explained by impurities, defects
and so on, but is a distinct signature of an intrinsic mechanism
leading to an effective charge segregating attraction like the
one proposed here [59].

In any case, the instability gives rise to dome-shaped
coexistence surfaces in the parameter spaces below which the
electronic reconstruction due to the polarity catastrophe and
the related electron densities cannot occur homogeneously,
but rather give rise to domains with different densities.
The Maxwell construction only determines the densities of
the coexisting phases, but says nothing on the size and structure
of the phase separated regions. These nonuniversal details are
instead determined by the energy cost of the interfaces between
regions with different densities, by the strain effects, and so on.
The residual amount (if any) of Coulombic forces opposing
phase separation, also contributes to non universal features like
size and shape of the inhomogeneous regions [50,51].

Another remarkable finding is related to the closing of
the phase-separation domes upon varying the gating potential.
This gives rise to quantum critical points of a novel type, where
the Landau damped electron density fluctuates with a relatively
large dynamical critical index z = 3 [60,61], or z = 4. The
fact that (nearly) neutral large-scale density fluctuations might
occur in these systems is the key point allowing to escape
the Coulombic frustration usually invoked to produce z = 1
critical fluctuations [62–64]. Of course, the possibility is also
open that Coulombic forces frustrate the phase separation
giving rise to charge-density waves (or even anharmonic
stripes) similar to what has been proposed in high-Tc cuprates
[50,51,60,65–68], likely yielding a dynamical critical index
z = 2 [60].

Recent experiments [52] do reveal the presence of quantum
critical behavior under magnetic field in the low-voltage
region, suggesting nontrivial interplay between the supercon-
ducting fluctuations and the nanoscale inhomogeneities. Work
is in progress to investigate the possible connection between
these observed quantum critical behaviors and the quantum
critical points found in the present work.

The generality of our model is based on the idea that
RSOC arises at interfaces where a metallic 2DEG forms with
a density which self-consistently adjusts itself on the basis
of a local confining electric field. If one allows the RSOC
to depend on this density via the orthogonal electric field,
the issue of a charge instability naturally arises. Of course,
the details of the system then enter to establish whether or
not the frustration due to long-range Coulombic forces is
present or not. It is anyhow tempting to investigate whether our
instability mechanism is applicable to other systems as well.
For instance, one could consider an EG with a sizable RSOC
and/or very low densities in quantum wells, at the boundaries of
heavy metal alloys like BixPb1−x , on the reconstructed surfaces
of Ag(111), in MOSFET and semiconducting heterostructures
at low densities, and on the surface of topological insulators.

Previous work in strongly correlated systems [60,69–74]
shows that electron-electron correlations and electron-phonon
coupling favor phase separation. Therefore, while it is natural
that weak repulsive electron-electron interactions turn out to
weakly stabilize the phase-separation instability [75], strong
correlations induce an intrinsic nonrigidity to the quasiparticle
bands and may cooperate with the RSOC to produce a charge
instability.

On more general grounds, the present analysis paves the
way for further models apt to describe the inhomogeneities
at the LXO/STO interface. From experiments and theory we
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know that the superconducting state is inhomogeneous [10,11].
As a possible variation/improvement of our approach, one
could then think of a model with superconductivity in which
the coupling constant between Cooper pairs (or even supercon-
ducting islands) depends on the density. Based on the current
work, one expects that also in this case the effective attraction
leads to an unstable EG. Of course, one would need to check
whether the orders of magnitude of the involved physical
quantities are such to cause a measurable instability or not.
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APPENDIX A: HOW THE INSTABILITY DEPENDS ON
THE PARAMETERS OF THE RSOC AND OF THE BANDS

We have shown the rather delicate dependence of the phase
instability on the values of α and α′. This suggests a strong
dependence on the parameters β and γ as well. To investigate
in more detail this dependence, we solve Eq. (15) for a
range of values of β and γ and determine the minimum gate
voltage at which the instability occurs. The possible case of a
phase separation only in the isotropic band is taken into account
by calculating μ′ for n0 < n̄0 from Eqs. (12) and (13) versus
the density. In this way, we get an understanding about how
much the quantum critical point Vgc changes upon varying the
parameters of the model. In Fig. 14, we plot Vgc as a function
of α(Ē) ∝ γ and n0(Ē) ∝ β−1, which denotes the density n0

at which α attains its maximal value. The values chosen cor-
respond to a cutoff field Ē ∈ [5 × 107,2 × 109] V m−1 and a
maximal Rashba coupling α(Ē) ∈ [10−12,1.2 × 10−11] eV m.
The possible interval of the quantum critical point is chosen as
Vgc ∈ [−200,100] V. The dark red region (upper left corner)
corresponds to a (possible) quantum critical point above 100
V where our quadratic approximation of the anisotropic band
structure does not hold anymore, while the dark blue region
(upper right corner) corresponds to values of β and γ such that
Vgc � −200 V.
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FIG. 14. (Color online) Critical gate voltage Vgc as a function of
α(Ē) and n0(Ē). The white cross corresponds to the values of α(Ē)
and n0(Ē) chosen throughout the paper.
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FIG. 15. (Color online) Critical gate voltage Vgc as a function of
� and ν. The white cross corresponds to the values of � and ν chosen
throughout the paper.

For small densities n0(Ē) � 0.02 el./u.c., the function
α(n0) attains its maximum in the isotropic band (unless
we partially fill the band by gating) and the occurrence
of a phase separation either requires a large α(Ē) to drive
the instability in the isotropic band already, or additional
electrons δn to reach n0(Ē) when μ has already entered
the anisotropic bands. In the former case, which occurs for
α(Ē) � 8 × 10−12 eV m and n0(Ē) � 0.01 el./u.c., we obtain
Vgc ∼ 0 V, whereas in the latter case the critical voltage is
necessarily shifted towards positive gating. Increasing n0(Ē),
the voltage necessary to partially fill the band decreases, and
thus Vgc as well. For large values of α(Ē), the minimal value
−200 V is reached at n0(Ē) � 0.05 el./u.c. and stays low
all the way up to n0(Ē) � 0.25 el./u.c., where the critical
value passes in an abrupt manner from Vgc < −200 V to
Vgc > 100 V.

In addition to the parameters β and γ defining the RSOC,
the model contains the band structure parameters � and
ν = mh/ml , where ml = 0.7 m0. To gain insights about the
dependence of Vgc on these two parameters, we solve Eq. (15)
for � ∈ [0.01,0.1] eV and ν ∈ [20,40] with β and γ the same
as initially (β = 8.45 × 10−10 m V−1 and γ ≡ 27α(Ē)β/4 =
2.28 × 10−20 eV m2 V−1).

The resulting phase diagram reported in Fig. 15 shows that
for small values of the gap � ∼ 0.01 eV the instability arises
at low gating because the Fermi energy enter the anisotropic
bands at comparatively lower density. Then, increasing the gap
leads to an increasing Vgc because one has to introduce more
electrons in the system before the anisotropic bands start to be
filled.

Concerning the masses, the ratio has to exceed ν = 26 for
the EG to become unstable in the physically meaningful range
of gate voltages. This value corresponds to a large heavy mass
of 18m0, especially when compared with the values reported
from DFT calculations. Roughly speaking, if the mass is
reduced by a factor of x, the RSOC has to be increased by
a factor of x in order to get the same effect. More to the point,
consider the Hamiltonian

H = �
2k2

2m
± αk (A1)

= 1

x

(
�

2k2

2m/x
± αxk

)
, (A2)
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where Eq. (A2) leads to the same energy spectrum as Eq. (A1)
(up to a factor x).

APPENDIX B: MORE REALISTIC BAND STRUCTURES

In the present Appendix, we show that our conclusions
concerning RSOC-driven electronic phase separation also
hold for more realistic band structures, which we borrow

from a tight-binding transcription of the results of DFT
band calculations. Specifically, we numerically solved a
tight-binding Hamiltonian H = H0 + HSO in the form of a
6 × 6 matrix in the space of the three t2g orbitals of Ti
and spin. H0 describes the interface hopping and splitting
in the (dxy,dxz,dyz) basis, and is diagonal in spin space
(i.e., its spinor structure is proportional to the 2 × 2 identity
matrix σ0),

H0 =
⎛
⎝−2t1(Cx + Cy) − 4t3(Cxy − 1) 0 0

0 −2t1Cx − 2t2Cy − 2t3Cx + � 0
0 0 −2t1Cy − 2t2Cx − 2t3Cy + �

⎞
⎠ ⊗ σ0,

where Cx,y ≡ cos(kx,y) − 1, Cxy = cos(kx) cos(ky), t1 = 0.277 eV is the larger nearest-neighbor hopping corresponding to the
direction of lighter band mass, t2 = 0.031 eV is the smaller nearest-neighbor hopping corresponding to the direction of heavier
mass, while t3 = 0.05 eV is the planar next-nearest neighbor hopping. The spin-orbit Hamiltonian reads

HSO =

⎛
⎜⎜⎜⎜⎜⎝

0 0 −2iαSy iξ/2 0 ξ/2
0 0 iξ/2 −2iαSy ξ/2 −2iαSx

2iαSy −iξ/2 0 0 iξ/2 0
0 2iαSy 0 0 0 −ξ/2

2iαSx ξ/2 −ξ/2 0 0
−ξ/2 2iαSx 0 iξ/2 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

where Sx,y ≡ sin(kx,y), ξ = 2�SO/3 is the atomic spin-orbit
strength (see Ref. [38]), while α = α(n0) is the interorbital
hopping term due to the interface asymmetry, eventually
producing the Rashba-like band splittings (see Refs. [38],
[39], and [76] for details). The resulting band structures are
reported in the left and middle panel of Fig. 16. For the
parameters of α(n0) we phenomenologically adjusted β and
γ , such as to yield a value α(0.025) = 4 × 10−12 eV m at
n0 = 0.025 el./u.c. The value ξ = 0.005 eV is accordingly
adjusted to produce a band structure similar to the one reported
in Fig. 3 of Ref. [39]. The chemical potential as a function of
n0 is the red curve reported in the right panel of Fig. 16.
For this choice of the parameters, the system is still stable,
although a substantial decrease of the inverse compressibility
(the slope of the μ versus n0 curve) is found. Remarkably,
by simply increasing by a factor two the strength of α, we
find a negative compressibility. We conclude that also for

0 0.02 0.04 0.06
0

0.01

0.02

μ
[e

V
]

0 0.02 0.04 0.06
0

2

4

6

8

10

0 0.02 0.04 0.06
0

2

4

6

8

10

α
[e

V
m

]×
10

−
1
2

n0 [el./u.c.]

FIG. 16. (Color online) Band structure for n0 = 0.025 el./u.c.
with α(n) according to Eq. (8) and parameters ξ = 0.005 meV,
β = 8.45 × 10−10 m V−1, αmax = 0.41 × 10−11 eV m (left panel)
and 0.82 × 10−11 eV m (middle panel). (Right) chemical potential
μ(n0) for parameters ξ = 0.005 meV, β = 8.45 × 10−10 m V−1,
and αmax = 0.41 × 10−11 (red curve), 0.67 × 10−11 (blue curve), and
0.82 × 10−11 eV m (green curve).

more complex (and realistic) band structures the instability
occurs in a range of RSOC strengths which is fully compatible
with the experimentally inferred values. This result is quite
reasonable. Indeed, although the band structure of Fig. 16
looks quite different form the bands described by Eqs. (4) and
(5), it results in fact from an admixture and spin-orbit splitting
of the (dxy,dxz,dyz) bands, which were split by the RSOC,
but not mixed (by hybridization and/or spin-orbit coupling),
within our simplified approach. For similar values of the
physical parameters, the two band structures qualitatively
share the same physics, with minor quantitative differences.
On the other hand, the simplified band structure adopted in
the main part of this piece of work has the advantage of
allowing for more transparent analytical results, highlighting
the physical mechanisms leading to RSOC-driven electronic
phase separation.
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FIG. 17. (Color online) (a) Chemical potential as a function of
n0 for three values of α3. α3 = 0.67 × 10−11 (green line), 1.33 ×
10−11 (red line), and 2.0 × 10−11 eV m (blue line). (b) Plot of the
momentum dependent RSOC factor �R(k). (c) Band structure for
n0 = 0.02 el./u.c. with α(n0) according to Eq. (8).
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APPENDIX C: CUBIC RASHBA COUPLING

For the sake of completeness, in this Appendix we briefly
consider the possibility that RSOC lacks k-linear dependence
and starts with a k3 term [39] in the anisotropic bands. To
implement this RSOC, we phenomenologically start from the
simplified expression of the band structure in Eqs. (2) and
(3) and take a momentum dependent spin splitting of the
form

�R(k) = 2
a2k3

(ak)6 + 1
(C1)

to replace the k-linear term (a is the lattice spacing). The
denominator has been chosen to match the generic shape of
the cubic spin splitting (see, e.g., Ref. [38,76]). The strength of
this RSOC is varied by multiplying �R(k) by a factor α3(n0),

with the same density dependence as in the main part of the
paper [see Eq. (8) and Fig. 4]. The resulting anisotropic band
structure in the heavy-mass direction acquires a dispersion as
reported in Fig. 17.

As it can be seen in Fig. 17(a), a phase separation
instability takes place also in this case for values of α3 ≈
1.33 × 10−11 eV m, such that the lowering of the lower part of
the (heavy) bands is comparable to the analogous lowering in
the case of k-linear RSOC. Indeed, the chemical potential
starts to bend down with a negative slope as soon as the
Fermi energy enters the bottom of the band provided this is
located at finite momenta, where the momentum dependent
RSOC has a finite value. Notice that the chosen values of
the parameters for the RSOC lead to a band splitting of the
order of 25 meV, comparable with the values obtained in
Ref. [38].
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