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Zero-energy Majorana states in a one-dimensional quantum wire
with charge-density-wave instability
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A one-dimensional lattice with strong spin-orbit interactions (SOIs) and a Zeeman magnetic field is shown
to lead to the formation of a helical charge-density-wave (CDW) state near half filling. The interplay between
the magnetic field, SOI constants, and the CDW gap seems to support Majorana bound states under appropriate
values of the external parameters. An explicit calculation of the quasiparticles’ wave functions supports the
formation of a localized zero-energy state, bounded to the sample end points. Symmetry classification of the
system is provided. The relative value of the density of states shows a precise zero-energy peak at the center of
the band in the nontrivial topological regime.
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I. INTRODUCTION

Recently, new exotic topological states of condensed mat-
ter, capable of supporting non-Abelian quasiparticles [1], have
been suggested [2–5], which can be used as a fault-tolerant
platform for topological quantum computation [6,7]. These
topological phases reveal chiral Majorana edge particles, being
their own antiparticles, which are represented by the non-
Abelian statistics with noncommutative fermionic exchange
operators.

A suggestion by Read and Green [3] that Majorana states
can be realized at the vortex cores of a two-dimensional
(2D) px + ipy superconductor has provoked new advances
in engineering a semiconductor nanostructure with a zero-
energy state. Kitaev showed [2] a possible realization of a
single Majorana fermion at each end of a p-wave spinless
superconducting wire. The effective p-wave superconductors
were shown [8–11] to be realized in a semiconductor film, in
which s-wave pairing is induced by the proximity effect in
the presence of spin-orbit interactions (SOIs) and a Zeeman
magnetic field.

The formation of zero-energy Majorana bound states in a
one-dimensional (1D) quantum wire in proximity to an s-wave
superconductor and in the presence of SOIs and the magnetic
field has been argued recently in Refs. [12,13].

In this paper we predict a different realization mechanism
of Majorana quasiparticles in a 1D crystal with charge-density-
wave (CDW) instability. We consider the model of a 1D crystal
around half filling with strong spin-orbit interactions and in the
presence of a Zeeman magnetic field. There is an instability

against the formation of a CDW and spin-density wave (SDW)
in a such model. The key to the quantum topological order is
the coexistence of SOIs with the CDW or SDW state and an
externally induced Zeeman coupling of spins. We show that
for the Zeeman coupling below a critical value, the system
is a nontopological CDW semiconductor. However, above the
critical value of the Zeeman field, the lowest energy excited
state is a zero-energy Majorana fermion state for topological
CDW crystals. Thus, the system is transmuted into a non-
Abelian CDW state by increasing the external magnetic field.

SDW and CDW are broken-symmetry ground states of
highly anisotropic, so-called quasi-1D metals which are
thought to arise as a consequence of electron-phonon or
electron-electron interactions [14,15]. These states have a typi-
cal 1D character, and they can be conveniently discussed within
the framework of various 1D models [16]. CDW and SDW
states are successfully realized in quasi-1D structures such
as organic molecules of (TMTSF)2PF6, (MDTTF)2Au(CN)2,
(DMET)2Au(CN)2, and Au, In, Ge atomic wires grown by
self-assembly on vicinal Si(553), Si(557), or Ge(001) surfaces
[17,18].

II. DENSITY-WAVE ORDERING IN THE PRESENCE
OF RASHBA AND DRESSELHAUS SOIs

The model considered here is essentially a 1D Hubbard
model with on-site Coulomb interactions in the presence of
both Rashba and Dresselhaus SOIs and a Zeeman magnetic
field. The noninteracting part Ĥ0 of the Hamiltonian Ĥ =
Ĥ0 + Ĥint in momentum space reads

Ĥ0 =
∑

0<k<G/2

∑
σ,σ ′

{ξkc
†
k,σ ck,σ ′δσ,σ ′ + ωZc

†
k,σ (σx)σσ ′ck,σ ′ + αR sin(kd)c†k,σ (σz)σσ ′ck,σ ′ + αD sin(kd)c†k,σ (σy)σσ ′ck,σ ′

+ (k ↔ k − G/2)}, (1)

where αR and αD are constants of the Rashba and Dresselhaus SOIs [19], correspondingly, ωZ = g�μBB/2 is the Zeeman energy
of a magnetic field B, ξk = εk − μ with εk = −2t cos(kd), and μ is the Fermi energy. At half filling μ = 0, and the electron-hole
symmetry ξk−G/2 = −ξk for one-particle states is realized. G = 2π/d is the reciprocal lattice vector with d being the unit cell
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size. The interaction term Hint in the Hamiltonian is written as

Ĥint = 1

2N

∑
0<q<G

∑
σ

⎧⎪⎨
⎪⎩

∑
−G/2<k<G/2−q

q−G/2<k′<G/2

U (k,k′; q)c†k+q,σ ck,σ c
†
k′−q,−σ ck′,−σ +

∑
G/2−q<k<G/2

−G/2<k′<q−G/2

U (k,k′; q)c†k,σ ck+q−G,σ c
†
k′,−σ ck′−q+G,−σ

⎫⎪⎬
⎪⎭ ,

(2)

where U is a strength of the Hubbard interaction and N

is the number of lattice sites. Note that the momentum
summation in Eq. (1) is taken over the positive part of
the Brillouin zone, and the first four terms in the Hamil-
tonian describe the right moving (k > 0) particles. The
left moving (k − G/2 < 0) particles are taken into account
by adding the terms with k ↔ k − G/2. The electron-hole
order parameter at the density-wave instability is introduced
as 	σ = V

N

∑
0<k<G/2〈c†k−G/2,σ ck,σ 〉 under the assumption

that U (k,k′,q) = V δ(q − G/2). The complex-conjugate order
parameter is obtained by summing the electron-hole pairing
over the negative momentum part of the Brillouin zone,
	∗

σ = V
N

∑
−G/2<k<0〈c†k+G/2,σ ck,σ 〉. The CDW and SDW order

parameters are defined as 	CDW = (	↑ + 	↓)/2 and 	SDW =
(	↑ − 	↓)/2, respectively. Assuming 	↑ = 	↓ for CDW,
thereby we eliminate SDW ordering, and 	CDW = 	↑ = 	↓.
For SDW we assume 	↑ = −	↓, at the same time CDW
formation is eliminated, and 	SDW = 	↑ = −	↓. Further, we
use a common notation 	 for both CDW and SDW ordering,
and replace Ĥint in the mean field approximation by Ĥ MF

int ,

Ĥ MF
int =

∑
0<k<G/2,σ

σ̄ {	c
†
k,σ ck−G/2,σ + 	∗c†k−G/2,σ ck,σ }, (3)

where σ̄ = 1 for CDW ordering, and σ̄ = −σ = ∓1 for the
SDW state. The Hamiltonian ĤMF = Ĥ0 + Ĥ MF

int is written in
the basis 
† = (c†k,↑c

†
k,↓c

†
k−G/2,↓ − c

†
k−G/2,↑) as

ĤMF =
∑

0<k<G/2

{
†Ĥ
 + ξk + ξ−k+G/2} + 2

V
|	|2, (4)

with

Ĥ = ξkτz ⊗ σ0 + αR sin kτ0 ⊗ σz + αD sin kτz ⊗ σy

+ωZτz ⊗ σx + τj (	) ⊗ σj , (5)

where the Pauli matrices σ and τ operate in spin and particle-
hole spaces, and ⊗ is the Kronecker product of matrices. In
the last term, j = y for CDW and j = x for SDW pairing,

τy(	) =
(

0 −i	

i	∗ 0

)
and τx(	) =

(
0 	

	∗ 0

)
. (6)

The first term of Eq. (5) in the linearized form −�∂yτz, with
the third Zeeman term ωZσx , constitutes the massive Dirac
equation. The charge-density ordering, however, with the last
term τj (	)σj , transforms the model into a four-band model.

The pole of the single particle Green’s function
G−1(E,k) = E − Ĥ determines the quasiparticle energy

E2
CDW = ξ 2

k + α2 sin2 k + |	|2 + ω2
Z

± 2
√

ξ 2
k α2 sin2 k + ω2

Z|	|2 + ξ 2
k ω2

Z, (7)

E2
SDW = (|ξk| ±

√
α2 sin2 k + ω2

Z)2 + |	|2, (8)

for the CDW and SDW states, correspondingly. The SO
coupling constant α in the expressions for the energy spectrum

is a renormalized constant α =
√

α2
R + α2

D . Equation (8) does
not allow a zero-energy mode due to a finite gap 	 at the origin.
However, experimental evidences in many quasi-1D materials,
e.g., in Bechgaard salt (TMTSF)2PF6, suggest a realization of
an unconventional SDW with an order parameter ∼	1 sin k

yielding a zero-energy state. The dispersive CDW or SDW
gap can be derived from the extended Hubbard model with
a nonlocal interaction [20]. Further, we will discuss only the
topological CDW state.

A small deviation from half filling at T = 0 was shown by
Brazovskii et al. [21] to create a band of kink states within
the Peierls gap. This picture is changed at finite temperatures.
According to the phase diagrams in the temperature-chemical
potential (T ,μ) and temperature-density (T ,n) planes, calcu-
lated in Ref. [22] on the basis of Brazovskii et al.’s theory
[21], for a fixed electron density 1 < n < nL, where nL is
Leung’s density [23] at the triple point of the normal (N),
commensurate (C), and incommensurate (IC) phases, the kink
band shrinks with increasing temperature until it vanishes at
the IC-C transition. For fixed temperature 0 < T < TL the kink
band arises at some electron density n > 1 and broadens with
increasing density until the kinks become soft. At finite tem-
peratures (T < T0) and for a small deviation of the chemical
potential from half filling |μ| < T0 = 1.056Tc(0) = (2/π )	,
where Tc(0) = (4Weγ /π )e−1/λ is the transition temperature
at μ = 0 [22], the system is in the C phase with vanishing
mismatching between the electronic states k and G/2 − k.

The solution of the energy spectrum for different values of
α̃, μ̃, 	̃, and ω̃Z is plotted in Fig. 1, where the dimensionless
parameters with a tilde are given in the units of the halved
bandwidth 2t . The solution of Eq. (7) αR = αD = 	 = ωZ

yields a usual cosine band in the reduced Brillouin zone.
The SOI results in two shifted cosine bands along the k axes,
whereas Zeeman splitting doubles the band along the energy
axes, opening a gap at the anticrossing point [see Fig. 1(a)].
The formation of the density wave opens a gap at the boundary
of the Brillouin zone.

The energy spectrum at the center of the Brillouin zone
for the topological CDW with gapped “bulk” states and zero-
energy end states can be written as

E
(0)
CDW = E(0) = |ωZ −

√
μ2

t + |	|2|, (9)

where μt = −2t − μ. A magnetic-field-dominated gap at
the center of the band for ω2

Z > |	|2 + μ2
t turns to the

pairing-dominated one for ω2
Z < |	|2 + μ2

t [Figs. 1(d) and
1(b), correspondingly]. A quantum phase transition from a
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FIG. 1. (Color online) The energy spectrum is plotted according
to Eq. (7) for fixed values of t = 0.5, α̃ = 0.8, and for the following
values of the dimensionless parameters: (a) 	̃ = 0.0, ω̃Z = 0.05,
μ̃ = 0.0; (b) 	̃ = 0.5, ω̃Z = 0.7, μ̃ = 0; (c) 	̃ = 0.7, ω̃Z = √

1.3,
μ̃ = −0.1; and (d) 	̃ = 0.7, ω̃Z = √

2.18, μ̃ = −0.3.

topological nontrivial to trivial phase occurs at ω2
Z = |	|2 +

μ2
t . The gap at k = 0 vanishes under this condition, with

emerging Majorana fermion states at the ends of the wire,
which is plotted in Fig. 1 for the dimensionless parameters
α̃ = 0.8, 	̃ = 0.7, ω̃Z = √

1.3, and μ̃ = −0.1.
It is possible to check that the Hamiltonian Ĥ respects time-

reversal symmetry (TRS) UT Ĥ∗(k)U−1
T = Ĥ(−k) with the

TRS operator T = UT K in the absence of the magnetic field,
and particle-hole symmetry (PHS) UP Ĥ∗(k)U−1

P = −Ĥ(−k)
with the PHS operator P = UP K . Here, K is the complex
conjugate operator, UT = σ0 ⊗ iσy , and UP = σx ⊗ σ0, sat-
isfying T 2 = −1 and P 2 = 1. The TRS operator transforms
k → −k as well as ck↑ ⇔ c

†
k↓ and ck↓ ⇔ −c

†
k↑, resulting in

	 ↔ 	∗ for the order parameter and keeping the excitation
spectrum unchanged, ξ−k = ξk . Instead, the PHS operator
transforms

ck↑ ⇔ c
†
k−G/2↓ and ck↓ ⇔ −c

†
k−G/2↑, (10)

keeping the order parameter 	 unchanged. PHS entails an
energy spectrum symmetric about the Fermi level. According
to symmetry classification the system belongs to the DIII class,
which can be topologically nontrivial [24] provided that both
TRS and PHS are satisfied. An external magnetic field breaks
TRS and drives the system from DIII to the D class, which
possesses a single Majorana zero-energy mode at each end of
the wire.

III. MAJORANA FERMIONS

The main feature of a Majorana fermion is that it is its
own “antiparticle.” This property can be proved for a 1D
unconventional CDW model [14,20] with a dispersive and
complex order parameter 	k = 	0 sin(kd) by mapping it to
the Kitaev model [2] for the p-wave superconductor. The
Hamiltonian of a 1D unconventional CDW model becomes
invariant under the particle-hole transformations cv

k ≡ ck ↔
c
c†
k ≡ c

†
k−G/2 and c

v†
k ↔ cc

k in momentum space or dv
n ↔ d

c†
n

and d
v†
n ↔ dc

n in site representation, where the spin index is

neglected due to the spin degeneration. The PHS transforms it
to Kitaev’s one,

Ĥ0 =
∑

n

{−2t
(
dv†

n dv
n+1 + d

v†
n+1d

v
n

) + 2i	0d
v†
n d

v†
n+1

+ 2i	∗
0d

v
n+1d

v
n

}
, (11)

which reveals the Majorana end states. It is easy to show
that the PHS conditions (10) transform our Hamiltonians (1)
and (3) to the form, describing the s-wave type supercon-
ductor with misaligned spins but with the same momenta
k of Cooper pairs, which should reveal again the Majorana
quasiparticles.

A. Wave functions of Majorana bound states

Majorana bound states arise at the interface of trivial and
topological regions under certain conditions by varying the
parameters of the 1D wire. In order to understand the localized
character of the zero-energy state, we rewrite the Hamil-
tonian in the real coordinate space. We linearize the co-
sine energy spectrum around the Fermi level kF = G/4
as ξk = εk − μ = 4t sin (k+kF )d

2 sin (k−kF )d
2 ≈ vF �(k − kF ) →

vF �(−i ∂
∂y

− kF ) for the right mover, and ξk−G/2 ≈ −vF �(k +
kF ) → −vF �(i ∂

∂y
− kF ) for the left mover, and the SO cou-

pling term sin(dk) → −id ∂
∂y

. One can see that μz = vF kF �;
at half filling μ = 0 and μt = vF kF � = 2t . The Schrödinger
equation, corresponding to zero energy, reads

[
−μt − i(vF � + νσαR)

∂

∂y

]
ψR

σ +
(

ωZ − νσαD

∂

∂y

)
ψR

−σ

+	ψL
σ = 0,[

μt + i(vF � + νσαR)
∂

∂y

]
ψL

σ +
(

ωZ + νσαD

∂

∂y

)
ψL

−σ

+	∗ψR
σ = 0, (12)

where −σ = ↓,↑, and νσ = ± for σ = ↑,↓, correspondingly.
For a long enough wire L � 1, we choose the magnetic
field ω2

Z < μ2
t + |	|2 for y ∈ [0,L] and ω2

Z > μ2
t + |	|2

outside this interval. By choosing the wave functions 
T (y) =
exp{iky}(bR

↑ ,bR
↓ ,bL

↓ ,−bL
↑ )T , one gets the determinant equation

det|H̄| = 0 to find k, where

H = vF �(k − kF )τz ⊗ σ0 + αRkτ0 ⊗ σz

+ωZτz ⊗ σx + αDkτz ⊗ σy + 	σy ⊗ τy. (13)

The allowed values of k are obtained from the equation
(v2

F �
2 − α2)k2 − 2k(μtvF � ± i|	|α) − L = 0, where L =

ω2
Z − |	|2 − μ2

t . For L = 0 this equation has a real root
k = 0, corresponding to a single allowed state in the gap.
Since there is no other state for a quasiparticle to move, this
state is localized and it seems to be protected against local
perturbations. For L �= 0, k takes complex values, signaling
on the realization of a gapped state. In this case the wave
function decays exponentially in both sides of y = 0 but
with different localization lengths. The general solution for k
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reads

kν =
kF ± i|	̄|ᾱ + ν

√(
kF ᾱ ± i|	̄|)2 + ω̄2

Z(1 − ᾱ2)

1 − ᾱ2
,

(14)

where ᾱ = α
vF �

, 	̄ = 	
vF �

, ω̄Z = ωZ

vF �
, and ν = ±. The wave

function decays exponentially if, generally speaking, |	|, α �=
0. For α = 0, k± = μt±

√
ω2

Z−|	|2
vF �

, and the trivial CDW state is
gapped for ωZ < |	|, which is destroyed for ωZ > |	|.

B. Domain wall formation

The Majorana bound state is formed by varying the param-
eters 	, ωZ , and μ. We consider a linearized Hamiltonian,
Eq. (13), for the relevant momenta near k = 0 and μt = 0,
assuming a spatial variation of the magnetic field ωZ =
	 + by near y = 0, which crosses a constant gap 	 > 0. For
simplicity, the Dresselhaus SOI is neglected, αD = 0, and 	

is chosen to be real. Following Oreg et al. [13], the squared,
due to the particle-hole symmetry, Hamiltonian (13), H2, is
reduced to the diagonal form by means of the unitary operator
U = 1

2 (τz + iτy + iσxτz + σxτy),

H̃ = UH2U †

= [
ω2

Z + 	2 + (αRk)2] − αR�bσzτz + 2ωZσzτ0, (15)

with the spectrum E2 = (ωZ ± 	)2 ± αR�b. The term, pro-
portional to bσz, appears in the Hamiltonian due to the
topological defect at the ends of the wire, which bridges the
two edges of the conduction and valence bands. The bound
state may form if 	 varies in space and crosses ωz.

IV. DENSITY OF STATES AND ZERO-BIAS ANOMALY

The zero-energy Majorana state in the Peierls gap can
be experimentally detected from the tunneling experiments,
where the conductivity of the tunneling contact is ex-
pressed through the one-particle density of states (DOS),
ρ(ε,T ), as

δG(V,T )

G(0)
=

∫ +∞

−∞

dε

4T

δρ(ε)

ρ(0)

[
1

cosh2 ε−eV
2T

+ 1

cosh2 ε+eV
2T

]
.

(16)

At T = 0 this expression is written δG(ε)/G(0) = [ρ(ε,0) −
ρ(0)]/ρ(0) = δρ(ε)/ρ(0), where ρ(0) is the DOS of a pure
system. The DOS is found from the conventional expression
ρ(ε) = ∫ π

−π
dk
2π

∑
n δ(ε − En(k)), where En(k) is the energy

spectrum for n = 1,2,3,4 given by Eq. (7). The delta function
is regularized for numerical calculations, replacing it with
the Lorenzian function δ(ε − En(k)) = η/{[ε − En(k)]2 +
η2}, where η is the rate of inelastic processes. A formation of
the Majorana quasiparticle in the center of the band is clearly
seen in the relative value of the DOS, δρ(ε)/ρ(0). The evolution
of the central peak in δρ(ε)/ρ(0) is depicted in Fig. 2, where
the central peak emerges only for special values of the external
parameters satisfying the critical condition ω2

Z = |	|2 + μ2
t .

Note that midgap states have been observed recently in a
topological superconducting phase by Mourik et al. [25] and
by Das et al. [26] in zero-bias measurements on InSb and
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FIG. 2. (Color online) The relative change in the DOS,
δρ(ε,V )/ρ(0)(ε), for (a) α̃ = 0.8, 	̃ = 0.0, and ω̃Z = 0.3, (b) α̃R =
0.6, 	̃ = 0.7, and ω̃Z = 0.5, (c) α̃R = 0.3, 	̃ = 1.0, and ω̃Z = √

2.0,
and (d) α̃R = 0.3, 	̃ = 1.0, and ω̃Z = 1.6. The inelastic scattering
rate is chosen to be η̃ = 0.05. The inset in (c) shows a zero-energy
peak, corresponding to the Majorana quasiparticle, which disappears
in the inset in (d) by destroying the condition.

InAs nanowires, contacted with one normal (gold) and one
superconducting electrode.

An artificial string of Au, In, Ge, and Pb atoms on vicinal
Si(557), Si(553), and Ge(001) surfaces seems to be suitable
for experimental realizations. These structures with a large
lateral chain spacing (∼1.6 nm) can be built [27] by placing
metallic atoms side by side on a nonconducting template by
using, e.g., a scanning tunneling microscope. Angle-resolved
photoemission data indicate a 1D electron pocket with very
weak transverse dispersion in these structures. The ratio of the
parallel and transverse hopping integrals t‖/t⊥ was determined
from a tight-binding fit to the Fermi contour to be larger
than 60 [18]. Therefore, the structures are three dimensional
with practically in-wire motion of particles. These structures
exhibit a Peierls instability below ∼150–200 K. Recently, a
spin polarized CDW has been observed [28] in Pb/Si(557),
where the Fermi surface nested charge-density instability
occurs by an appropriate choice of band filling, spin-orbit
coupling, and external parameters. The Rashba parameter in
this structure was found to be 1.9 eV Å for the value of
the Rashba splitting 0.2 Å−1. High values of the band gap
and the SOI constants may allow one to realize a topological
CDW phase at higher temperatures, making a significant step
compared to previous mechanisms to detect the Majorana state
in topological superconductors.

V. CONCLUSIONS

In this paper, we showed a possible realization of a zero-
energy Majorana state in the CDW phase of a 1D crystal. The
CDW state in a 1D crystal is realized due to the nesting of the
Fermi level. The wave function of this state “mixes” an electron
state ψk,σ with a momentum k > 0 above the Fermi level with
a hole state ψk−G/2,σ with a momentum k − G/2 < 0 below
the Fermi level, which resembles the Bogolyubov–de Gennes
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wave function with mixed electron and hole states, too. A
quasiparticle excitation in the topological CDW state emerges
as a localized zero-energy state in the middle of the Brillouin
zone. Since the CDW phase is realized at higher temperatures,
this mechanism facilitates an observation of Majorana particles
and their implementation for quantum computations.
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[17] C. Blumenstein, J. Schäfer, S. Mietke, S. Meyer, A. Dollinger,

M. Lochner, X. Y. Cui, L. Patthey, R. Matzdorf, and R. Claessen,
Nat. Phys. 7, 776 (2011).

[18] P. C. Snijders and H. H. Weitering, Rev. Mod. Phys. 82, 307
(2010).

[19] Rashba and Dresselhaus SOIs, resulting from the bulk inversion
asymmetry and structural inversion asymmetry, correspond-
ingly, are expressed in a 2D {yz} plane as HR = αR(pyσz −
pzσy) and HD = αD(pyσy − pzσz), which are reduced to the
forms of HR = αRpyσz and HD = pyσy for a 1D wire lying
along the y direction.
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