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The recently synthesized silicene as well as theoretically discussed germanene are examples of buckled
honeycomb structures. The buckled structures allow one to manipulate asymmetry between two underlying
sublattices of honeycomb structures. Here by taking germanene as a prototype of buckled honeycomb lattices,
we explore magnetism induced by breaking sublattice symmetry through saturating chemical bonds on one
side of the buckled honeycomb lattice. It is shown that when fractions of chemical bonds on one side are
saturated, two narrow bands always exist at half filling. Furthermore, the narrow bands generally support flat
band ferromagnetism in the presence of the Hubbard U interaction. The induced magnetization is directly related
to the saturation fraction and is thus controllable in magnitude through the saturation fraction. Most importantly,
we find that depending on the saturation fraction, the ground state of a one-side-saturated germanene may
become a quantum anomalous Hall (QAH) insulator characterized by a Chern number that vanishes for larger
magnetization. The nonvanishing Chern number for smaller magnetization implies that the associated quantum
Hall effect tends to survive at high temperatures. Our findings provide a potential method to engineer buckled
honeycomb structures into high-temperature QAH insulators.
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I. INTRODUCTION

Since the pioneering work by Kane and Mele in 2005, [1]
the quantum spin Hall (QSH) state has gathered great interest
in the condensed matter field. The QSH state is characterized
by an insulating bulk and gapless helical edge states [2,3]. The
original candidate with the QSH effect proposed by Kane and
Mele [1] was graphene in which spin-orbit coupling (SOC)
opens a gap at the Dirac points and turns the semimetal into a
topological insulator. However, SOC in graphene was reported
very weak such that QSH effect can be observed only at
low temperatures [4,5]. For stronger SOC, heavier elements
are possible candidates. Honeycomb lattices formed by other
elements of group IV, such as Si and Ge which are termed
as silicene and germanene, respectively, are predicted to be
stable as planar lattices by first-principles calculations [6–9].
A prominent feature of these materials is the buckled geometry,
which allows a tunable band gap via the vertical electric
field [10,11]. Although silicene or germanene has not been
successfully isolated yet, recent synthesis of silicene through
epitaxial growth on silver substrate indicates the feasibility of
realizing silicene and germanene [12–14]. It is thus possible
that silicene and germanene could follow graphene and open
new perspectives for applications, especially due to their
compatibility with Si-based electronics.

In addition to the QSH state, another interesting state in
graphene-related materials that has been proposed theoreti-
cally is the quantum anomalous Hall (QAH) state [15–19].
Similar to the quantum Hall state, the QAH state is also
an insulating state without time-reversal symmetry and is
characterized by quantized Hall conductance Cne

2/h (Cn,
the Chern number) and the presence of chiral edge states.
However, unlike the quantum Hall state which originates from
quantized Landau levels induced by magnetic fields, the QAH

state arises by nontrivial topology of electronic states asso-
ciated with SOC and internal magnetization [17,18,20–22].
Some proposals of the QAH effect on graphene have been
suggested like such as adatoms [23] and proximity [24].
Due to the difficulty in controlling magnetization and SOC,
the QAH effect has not been observed experimentally until
very recently, when it has been realized in a magnetically
doped topological insulator of Cr-doped (Bi,Sb)2Te3 [25],
where the Cn = 1 Hall conductance has been observed in
low temperatures around hundreds of mK. The realization of
the QAH states has revived hopes for using dissipationless
edge states to develop low-power-consumption electronics.
However, from fundamental and practical points of view, QAH
states with larger band gaps and larger Chern numbers [26–29]
have the advantage of a lower contact resistance and possible
applications at higher temperatures. Therefore, it is desirable
to search for QAH insulators with larger Chern numbers and
larger band gaps [26–29].

In this paper, we explore QAH effects driven by sponta-
neous ferromagnetic (FM) order induced by the Hubbard U

interaction in a buckled honeycomb. While our theory and
results apply to silicene as well, we shall take germanene
as a prototype of buckled honeycomb lattices due to its larger
spin-orbit coupling. We show that instead of doping the system
using magnetic atoms [25], magnetism can be spontaneously
induced by breaking sublattice symmetry through saturating
chemical bonds on one side of the buckled honeycomb
lattice. One of the ways to saturate the chemical bonds is
to hydrogenate silicene or germanene [30]. Ferromagnetism
in semihydrogenated honeycomb structures has been reported
by means of first-principles calculations for graphene [31]
and silicene [32]. In our work, we find that saturation of
chemical bonds generally tends to localize electrons and results
in flat bands. Furthermore, in the presence of the Hubbard U
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interaction, spontaneous ferromagnetism is generally induced
in the flat bands. The flat band ferromagnetism for the QAH
effect is studied on the dice lattice [33] and a decorated lattice
[34]. Here we investigate the QAH effect in flat bands of
a one-side-saturated buckled honeycomb lattice for different
saturation fractions characterized by 1/q with q being an
integer. For q = 1,2, . . . ,6, we find that the critical U for
ferromagnetism increases with increasing q. The induced mag-
netization is directly related to the saturation fraction and is
thus controllable in magnitude through the saturation fraction.
Furthermore, we find that QAH states with Cn = −1 or 2
can be realized among these saturation fractions. Specifically,
the band gap of the system is given by the difference of
the intrinsic SOC (λSO) and the FM gap (�FM). For smaller
magnetization, �FM < λSO and the Chern number is nonzero.
As a result, the Chern number Cn starts from −1 for a smaller
magnetization and becomes 0 when the magnetization is large
enough (a Cn = 2 phase precedes the Cn = −1 phase in the
1/4-vacancy system). The nonvanishing Chern number for
smaller magnetization implies that the associated QAH effect
tends to survive at high temperatures. Our findings thus provide
a potential method to engineer buckled honeycomb structures
into high-temperature QAH insulators.

This paper is organized as follows. In Sec. II, we present the
theoretical model of partially saturated germanene (or silicene)
with electron-electron interactions. Here the saturation of
chemical bonds is modeled as on-site impurity potentials
on A sites with strength VA. We will focus on the infinite
potential limit so that sites with saturated chemical bonds can
be treated as vacancies. Section III is devoted to the case of
semisaturation in which all A sites are vacancies. In Sec. IV,
we investigate the saturation fraction of A sites being 1/2, 1/3,
and 1/4. We summarize our results including those of the 1/5-
and 1/6-vacancy systems and give our discussion in Sec. V.

II. THEORETICAL MODEL

We start by modeling silicene and germanene using the
Kane-Mele model on a honeycomb lattice. The honeycomb
lattice for germanene and silicene is different from that of
graphene due to the buckled structure. Two sublattices, labeled
A and B, are in different planes shifted by some distance. In
the absence of interactions and impurities, the tight-binding
model for both germanene and silicene is given by [9,19]

H = −t
∑
〈i,j〉α

c
†
iαcjα + i

λSO

3
√

3

∑
〈〈i,j〉〉αβ

νij c
†
iα (σ̂z)αβ cjβ

− i
2

3
λR2

∑
〈〈i,j〉〉αβ

μic
†
iαẑ · (σ̂ × d̂ij )αβcjβ. (1)

Here α and β are indices for spin. The first term is the nearest-
neighbor hopping (between A and B sites). The second term is
the intrinsic SOC with νij = (2/

√
3)ẑ · d̂kj × d̂ik = ±1, where

d̂kj and d̂ik are two unit vectors connecting j and i. The
third term is the next-nearest-neighbor Rashba SOC where μi

alternates sign between sublattices due to the buckled structure.
We will set the primitive lattice constant a as unity and adopt
parameters for germanene. Following Liu et al.’s parameters,
[9,19] we shall neglect the nearest-neighbor Rashba SOC due

to its minute value: t = 1.3 eV, λSO = 43 meV, and λR2 =
10.7 meV. In this noninteracting system without external
fields, electrons are characterized by massive Dirac spectra
at K = ( 4π

3 ,0) and −K which give rise to the QSH effect.
To include the electron-electron interaction and character-

ize saturation of chemical bonds on A sites, additional terms
with the on-site potential Vi and the Hubbard U interaction are
included as

�H =
∑

i∈A,α

Vic
†
iαciα + U

∑
i

c
†
i↑ci↑c

†
i↓ci↓. (2)

Here site i is assigned a vacancy by setting Vi to infinity if
the chemical bond of site i is saturated, otherwise Vi is set to
zero. In the mean-field approach, the on-site potential will be
renormalized by adding the following term

�V = U
∑

i

∑
α

(ni/2 − αmi) c
†
iαciα, (3)

where ni = ∑
α〈c†iαciα〉 and mi = 1

2

∑
α α〈c†iαciα〉 is the mag-

netic polarization. In the following except specified, units of
the energies are in terms of eV.

According to the work by Mielke and Tasaki [35,36], for a
system with an isolated flat band or a nearly flat band system, a
finite Coulomb interaction may reach the Stoner criterion and
generally results in ferromagnetism in the flat band. However,
for the p-orbital electronic system, the bandwidth is often too
large so that the Coulomb interaction is not strong enough to
lift up the high degeneracy of ground states. In the following,
we shall show that for a bipartite system, the asymmetry
in the two sublattices introduced by removing points in
one sublattice can generally induce magnetism. For bipartite
lattices without SOC, the induced magnetism results from the
difference in number of lattice points in the two sublattices
and agrees with the expectation from Lieb’s theorem [37]. In
the presence of spin-orbit interaction, removing points in one
sublattice generally results in a flat band due to suppression of
the nearest-neighbor hopping around vacancies. The emer-
gence of an isolated flat band enables the realization of
magnetism in germanene and silicene.

III. FULL SATURATION

We start by considering the case in which a uniform
potential VA is applied at all A sites. We will investigate
finite potential at the beginning and then focus on infinite
potential. In the absence of electron-electron interaction, the
Hamiltonian at momentum k is given by

H = VA

2
(1 + τ̂z) + TSOτ̂zσ̂z + (T τ̂+ + rτ̂zσ̂+ + H.c.) , (4)

where τ̂ and σ̂ are the Pauli matrices in the A-B sublattice
space and the spin space, and

T = −t

[
eiky/

√
3 + 2e−iky/2

√
3 cos

(
1

2
kx

)]
, (5)

TSO = 2λSO

3
√

3

[
sin(kx) − 2 sin

(
1

2
kx

)
cos

(√
3

2
ky

)]
, (6)
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r = −4

3
λR2

{√
3 cos

(
1

2
kx

)
sin

(√
3

2
ky

)

+ i

[
sin(kx) + sin

(
1

2
kx

)
cos

(√
3

2
ky

)]}
. (7)

The combination of different terms in spin results in an easy
axis z′ in k space so that the Hamiltonian can be rewritten as

H = VA

2
+

(
VA

2
+

√
T 2

SO + |r|2σ̂z′

)
τ̂z + T τ̂+ + T ∗τ̂−.

(8)

The four energy eigenvalues can be then explicitly found in
the large VA limit as

E
Up/Lo

σ = VA

2
±

√(
VA

2
+ σ

√
T 2

SO + |r|2
)2

+ |T |2

≈
⎧⎨
⎩

VA + σ

√
T 2

SO + |r|2 + |T |2
VA

,

−σ

√
T 2

SO + |r|2 − |T |2
VA

,
(9)

where Up and Lo denote upper and lower bands which are
separated by a gap of VA and each one has two subbands
labeled by σ = ±. In the limit of large VA, the bandwidths for
the upper (Up) and lower (Lo) bands are determined by SOC
(λSO and λR2) instead of the hopping integral t . The minimum
of

√
T 2

SO + |r|2 is zero at 
 and M = (0, 2π√
3
) points, at which

|T |2/VA are 9t2/VA and t2/VA, respectively. Therefore, it is a
metal or a semimetal when the chemical potential falls inside
the two lower bands. In the FM state with a FM gap �FM, the
ground state is an insulating state when 2�FM > 8t2/VA.

We first examine the phase diagram for ferromagnetism
VA-U space for the electron concentration n = nA + nB = 1.
In Fig. 1, it is shown that ferromagnetism happens at large
U and/or VA, resulting from a large ratio of interaction to
bandwidth. Although both U and VA drive the system toward
the strong-coupling limit, there is a difference between them:
infinite VA does not lead to the flat band limit but to a
finite bandwidth limited by SOC (exact value being 2λSO).
Therefore, a finite value of U is required for a FM state. Figure 1
also shows that the moment at B sites (mB ) quickly saturates

FIG. 1. (Color online) FM moments for finite VA at A sites (mA)
and B sites (mB ) when n = nA + nB = 1.
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FIG. 2. (Color online) FM moment when all A sites are saturated
by infinite VA. Here the magnetic moment only survives at B sites
with mB ≡ (nB↑ − nB↓)/2. (a) shows the dependence of magnetic
momentum on nB and U , while mB versus U for nB = 1 is shown in
(b) (blue solid line). The FM gap �FM = UmB is also shown in panel
(b) by the green dashed line.

when entering the FM phase, while the moment at A sites (mA)
gradually decreases as VA increases.

In the following we will focus on the limit VA → ∞. In this
limit, the self-consistent equation for the magnetic moment at
the B site is

mB = 1

N

∑
k

T ′
SO(k)

2Eg(k)
[n−(k) − n+(k)] , (10)

where T ′
SO = TSO + UmB , Eg =

√
(T

′
SO)2 + |r|2, and n± =

[exp((±Eg − μ)/kT ) + 1]−1. At zero temperature and
nB = 1, the critical U is determined by

1

Uc

= 1

N

∑
k

1

2E0
g(k)

, (11)

where E0
g(k) is Eg(k) for mB = 0. TSO in the numerator is

absent because its sign oscillates and cancels exactly. In the
low-energy region, the Rashba term is linear around 
 and
M , r(k) ∼ λR2(ky + ikx), while TSO is quadratic around the

 point and linear around the M point, so a linear dispersion
is displayed. As a result, in two dimensions, the critical U
is Uc = cλR2, where c is a nonuniversal number inversely
proportional to the momentum cutoff. In Fig. 2, we show
numerical solutions to Eq. (10). The left panel shows the
dependence of magnetic moment mB on nB and the interaction
strength U, while the right panel shows mB (solid line) and its
corresponding gap �FM ≡ UmB (dashed line) when nB = 1.

Let us elucidate the symmetry of the FM state: the
“inversion” symmetry (k → −k) is broken, while the threefold
rotational symmetry is preserved. Although the lattice has
C6 symmetry, due to SOC, the presence of ferromagnetism
breaks the C6 symmetry and therefore the inversion symmetry
is broken. Specifically, a π/3 rotation of k results in TSO(k) →
−TSO(k) and r(k) → r(k)ei π

3 . Therefore, a twofold π/3
rotation is a 2π/3 rotation that keeps T ′

SO = TSO − �FM

invariant, while a threefold π/3 rotation is an inversion and
cannot keep T ′

SO = TSO − �FM invariant. As a result, the FM
state breaks time-reversal and inversion symmetries and gives
rise to odd numbers of Fermi surfaces when it is doped.
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FIG. 3. (Color online) Chern number Cn versus the FM gap �FM

at nB = 1 when all chemical bonds on A sites are saturated. A
topological phase transition occurs at �FM = λSO = 43 meV.

In addition, the above symmetry property also requires the
FM moment being perpendicular to the x-y plane; otherwise,
the C3 symmetry will be further lost due to the Rashba
term.

We turn briefly to the case when the Rashba coupling is
turned off. The dominant low-energy dispersion is quadratic
now and hence the integral in Eq. (11) gives a logarithmic
divergence. Instead of being finite, the critical U becomes
zero. Hence the ground state of the system is always FM
for any nonvanishing U . In general, for quadratic band
crossing, other symmetry breaking might happen [38]. How-
ever, for bipartite lattices without SOC, according to Lieb’s
theorem, finite magnetization is induced by the difference
of number of lattice points in the two sublattices. Results
based on Eq. (11) thus agree with the expectation of Lieb’s
theorem.

We now examine the topology of the FM insulating state
found in the above. In the limit VA → ∞, the Hamiltonian
contains only B-site electrons and can be expressed in terms of
Pauli matrices σ̂is, HB

k ≡ Eg(k)d̂(k) · �σ . By defining d̂(k) =
(sin θk cos φk, −sin θk sin φk, cos θk), the Chern number spec-
ifying quantum Hall states can be expressed by

Cn = 1

4π

∫
d2kεij ∂ki

cos θk∂kj
φk, (12)

which counts the number of field space (θk,φk) covering a torus
in the Brillouin zone (BZ). The nontrivial topological phase is
when φk goes through [−π,π ] and θk goes through [0,π ] as k
runs in BZ. Following Fukui and Hatsugai [39], we compute
the Chern number numerically. The computed Chern number
is shown in Fig. 3. It is seen that the Chern number Cn changes
from −1 (QAH insulator) to 0 (a trivial band insulator) as �FM

increases. The topological phase transition is clearly driven by
magnetization. However, unlike the usual transition, nontrivial
topology disappears at larger magnetic moments. The topo-
logical phase exists when max[T ′

SO(k)]× min[T ′
SO(k)] < 0;

that is, �FM < max[TSO(k)] = λSO . At the critical point
�FM = λSO , the band gap closes at the K point. Using Fig. 2,
one can estimate the criterion on U for the emergence of
the QAH insulator. Since larger U implies larger magnetic
moment, the results in Fig. 2 imply that U has to lie in the

range 0.07 eV < U < 0.1 eV in order to observe the phase of
the QAH insulator.

IV. FINITE SATURATION FRACTION

To explore other possible phases, we investigate situations
when finite fractions of A sites are saturated. To saturate
chemical bonds on part of the A sites, we set VA to infinity at
those A sites. Effectively, vacancies are introduced at those A

sites whose chemical bonds are saturated.
In order to systematically investigate finite saturation frac-

tions, we shall consider situations with vacancies arranged in
periodic patterns. As a result of including vacancies in periodic
patterns, the unit cell changes and becomes a supercell. In
the limit of VA → ∞, one needs to consider lattice points
in a supercell that are not vacancies. Therefore, we shall
consider a supercell in which the number of lattice points that
excludes vacancies is Nc. After the Fourier transformation, the
Hamiltonian in Eq. (1) becomes

H =
∑

k

�
†
kHk�k, (13)

where �k = (�↑(k) �↓(k))t with �σ=↑,↓(k) being
an Nc-component electronic operator, (c1σ (k),c2σ (k), . . . ,
cNcσ (k))t . Hk is the Hamiltonian matrix and can be expressed
in the following block form:

Hk =
(

Kk + Mk �k

�
†
k Kk − Mk

)
. (14)

Here Kk, Mk, and �k are Nc × Nc matrices. Furthermore,
Kk includes the hopping terms, Mk includes both the intrinsic
SOC and the FM field, and �k is the Rashba term.

We first note that there is a chiral symmetry in the matrix
Kk . Since there is no on-site energy and hopping only
occurs between nearest neighbors (A and B sites), the main
diagonal block of Kk vanishes. Therefore, the unitary matrix
Ul that changes cA → cA and cB → −cB transforms Kk into
U

†
l KkUl = −Kk. However, since both Mk and �k only couple

A sites to A sites or B sites to B sites, the transformation Ul

leaves Mk and �k unchanged.
The chiral symmetry of Kk implies that given an eigenstate

of Kk, |n〉 with energy εn, there must be another state |n〉 ≡
|−n〉 = Ul|n〉 with negative energy −εn. Because Kk has Nc

eigenvalues, if Nc is odd, there will be at least one zero mode
for each Kk block (σ = ↑,↓). Therefore, without including
effects due to intrinsic SOC (Mk) and the Rashba interaction
(�k), there are two energy bands which are degenerate at zero
energy. We shall denote states of the zero mode by |0,k,σ =
↑,↓〉, if they are the only eigenstates of Kk, and term these
two bands as midgap bands. As shown for typical density of
states for odd Nc in Fig. 5, the midgap bands persist even if
Mk and �k are included.

The emergence of midgap bands is similar to the arising
of the impurity bands due to random vacancies in graphene
[40]. Without including effects due to intrinsic SOC (Mk) and
the Rashba interaction (�k), two energy bands are degenerate
and are composed only by wave functions at B sites. Using
|0,k,σ = ↑,↓〉, the effective Hamiltonian for midgap bands
that include Mk and �k can be expressed by a simple 2 × 2
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FIG. 4. (Color online) Vacancy arrangements for different va-
cancy fractions: (a) 1/2 vacancy, (b) 1/3 vacancy, and (c) 1/4 vacancy.
Here black circles denote A sites, empty circles denote B sites,
and larger green circles denote vacancies. A unit cell (supercell) is
enclosed by dashed lines. The horizontal (vertical) direction is taken
as the x (y) axis.

matrix

Hmid(k) =
(

mk δk
δ∗

k −mk

)
, (15)

where mk = 〈0,k,↑|Mk|0,k,↑〉 and δk = 〈0,k,↑|Mk|0,k,↓〉.
The energy eigenvalues E±

mid(k) and eigenstates |±,k〉 for
midgap bands can be estimated by diagonalizing Hmid and
are given by E±

mid(k) = ±E(k) with E(k) =
√

m2
k + |δk|2 and(|+,k〉

|−,k〉
)

=
(

uk vke
−iφk

−vke
iφk uk

) (|0,k,↑〉
|0,k,↓〉

)
, (16)

where uk =
√

1
2 (1 + mk/Ek),vk =

√
1
2 (1 − mk/Ek), and

φk = tan−1(Im δk/Re δk). The magnetic moments in the
following cases are found by solving Eq. (10) with Eg being
replaced by E(k) and T ′

SO by −mk.
The vacancy configurations that we shall be focusing on are

vacancies arranged in periodic patterns. In general, there are
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FIG. 5. (Color online) Density of states N(E) for the full saturated
system (a), the 1/2-vacancy system (b), the 1/3-vacancy system (c),
and the 1/4-vacancy system (d) at U = 0 and half filling. The energy
E is in units of eV. In addition to midgap bands at center, there are
extra side bands: two side bands in (b), four in (c), and six in (d) (here
the counting of bands does not include spin degeneracy).

p vacancies in a supercell with the original number of A sites
being q. Such configurations are dubbed as a p/q-vacancy
system with p, q being mutually prime and p < q. In this
configuration, a supercell contains q − p A-site and q B-site
atoms and hence we have Nc = 2q − p and 2Nc bands. For
each band in the 2Nc bands, the maximal filling is one electron
per supercell. Hence there will be maximally one electron in
a unit cell belonging to a particular band. However, for the
midgap bands, since the wave function is nonvanishing only at
B sites, the midgap bands are capable of holding 2/q electrons
per B site. Hence at half filling, the midgap bands contain 1/q

electrons per B site. We note that the above argument is based
on the assumption that |0,k,σ = ↑,↓〉 are the only eigenstates
of Kk; if not, the midgap states will contain A-site electrons
as the 1/3-vacancy case in Sec. IV B.

In this section, we will demonstrate three vacancy fractions:
1/2-, 1/3-, and 1/4-vacancy fractions. The vacancy patterns
are illustrated in Fig. 4: (a) for 1/2 vacancy, (b) for 1/3 vacancy,
and (c) for 1/4 vacancy. We also calculate 1/5- and 1/6-
vacancy cases but to shorten the context we only show their
relevant results in the summary, Sec. V.
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FIG. 6. (Color online) Band structures of the midgap bands in
the 1/2-vacancy system: black solid lines for U = 0 and dashed lines
for U = 0.18 eV (�FM = 38 meV). Since the inversion symmetry is
broken by ferromagnetism, band energies at k and −k are different.
Here k is plotted from 
 to Y ′ = −(0, π

a
) or M ′ = −( π√

3a
, π

a
) to exhibit

the trend of band touching with increasing �FM. The midgap bands
touch right at k = −(0, 2π

3a
) when �FM = λSO .

A. 1/2 vacancy

The vacancy arrangement for 1/2 vacancy is illustrated in
Fig. 4(a), in which a unit cell contains three atoms, A, B1, and
B2. Detailed band structures are presented in Appendix 1. In
Fig. 5(b), we show the density of states when U = 0. There
are three bands (with twofold degeneracy for each band): a
narrow band and two wide bands, separated by gaps about the
order of t . As explained before, the midgap bands and their
bandwidths are solely determined by the SOC strength. Since
λSO is small, the midgap bands are almost flat and support
ferromagnetism. The band structures of the midgap bands are
shown in Fig. 6 by the solid lines for U = 0 and the dashed
lines for U �= 0.

We now examine the FM state in Figs. 7(a) and 7(b).
Figure 7(a) shows the density plot of the average moment at B

sites mB = (mB1 + mB2)/2 versus U and the average particle
density n = (nA + nB1 + nB2)/3. It is seen that for moderate
magnitude of U , ferromagnetism is always induced. At half
filling, the lowest band is completely filled and the chemical
potential is right at the center of the midgap band. As a result,
the midgap bands make a large contribution to magnetization.
This is shown by the solid line in Fig. 7(b). According to the
previous elaboration, there is 1/2 electron per B site from
each midgap band. Hence the maximal mB is 1/4, which is
in consistent with results shown in Fig. 7(b). Note that in our
calculations, a tiny mA is present due to small deviation of
nA and nB from one. In Fig. 7(b), we also examine the FM
gap �FM (the green dashed line) defined by �FM = UmB .
Compared with the full-vacancy case in Fig. 2, although mB

saturates quickly also for 1/2 vacancy, both the magnetization
and �FM are weaker in all doping regimes.

Finally, the topology of the 1/2-vacancy system at half
filling is examined by computing the Chern number. We find
the same result as in Fig. 3 that the topologically nontrivial state
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FIG. 7. (Color online) FM moment for the 1/2-vacancy [(a), (b)],
1/3-vacancy [(c), (d)], and 1/4-vacancy [(e), (f)] systems. Left panels
(a), (c), and (e) are for average magnetic moment mB on B sites mB in
the n-U plane. Right panels (b), (d), and (f) show mB (blue solid lines)
and �FM (green dashed lines) versus U at n = 1. Here �FM = UmB .

(Cn = −1) exists for �FM < λSO . The value of U for �FM =
λSO is about 0.195 eV. At the transition point, the midgap bands
touch at k = (0, − 2π

3a
), as one can see the tendency from the

dashed lines shown in Fig. 6, which is for �FM = 38 meV
before the transition.

B. 1/3 vacancy

As shown in Fig. 4(b), the unit cell for a 1/3-vacancy lattice
contains five atoms, A1, A2, B1, B2, and B3. The detail of the
bulk band structure is summarized in Appendix 2. The density
of states for U = 0 is shown in Fig. 5(c). There are five bands
with twofold degeneracy for each band. Apparently, there is
no large gap opened and the gaps between the midgap bands
and its neighbors is λSO . The band touches in Fig. 5(c) are a
numerical artifact. The fact that gaps are of order λSO instead
of t is because there are three zero-energy states of Kk=
 . One
of three is a state of A-site electrons. As a result, the midgap
states when SOC turns on will not contain B-site electrons
only. However, we check numerically that the portion of A-site
electrons is still tiny. The band structures of the midgap bands
are shown in Fig. 8 by the solid lines.

Characterization of the FM states is shown in Figs. 7(c)
and 7(d). Due to particular symmetry in the lattice, the spin
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FIG. 8. (Color online) Band structures of midgap bands in the
1/3-vacancy system: black solid lines for U = 0 and blue dashed lines
for U = 0.2 eV (�FM = 33 meV). Band edges of two higher-energy
bands for U = 0.2 eV are also shown by red dashed lines, which
move down to zero energy at 
 point when the topological transition
occurs.

(and charge) densities at the A sites and B sites are the same
individually. Furthermore, for the same reason as that for the
1/2-vacancy system, there is 1/3 electron per B site from
each midgap band. Hence the maximal mB is 1/6, which is
weaker than that of the 1/2-vacancy system. In addition, from
the phase diagram in Figs. 7(c) and 7(d), we find that the
critical U for emergence of the FM state is smaller than that
of the 1/2-vacancy system. This can be understood by the
narrow bandwidth in Fig. 8. We show the energy dispersions
for �FM = 33 meV by the dashed lines in Fig. 8: from the thick
dashed lines there is a tiny gap at 
 due to the FM gap from
A-site electrons and high-energy bands will move toward zero
energy and touch at 
 as indicated by the thin dashed lines.

The topology of the 1/3-vacancy system is examined
at half filling. We find the same result as in the cases
before that the topologically nontrivial state (Cn = −1) exists
for �FM < λSO . The value of U for �FM = λSO is about
0.255 eV.

C. 1/4 vacancy

Our last example is the 1/4-vacancy system. As shown in
Fig. 4(c), the unit cell for the lattice of the 1/4-vacancy system
contains three A sites (A1, A2, and A3) and four B sites (B1,
B2, B3, and B4). The detailed band structures are summarized
in Appendix 3. In Fig. 5(d), we show the density of states for
U = 0. It is clear that seven bands with twofold degeneracy for
each band can be recognized. The feature of the 1/4-vacancy
system is similar to that of the 1/2-vacancy system: there is
a large energy gap of order t . Band structures of the midgap
bands can be seen in Fig. 9 by the solid lines.

The FM phase diagram is shown in Figs. 7(e) and 7(f). The
average moment at the B sites is defined by mB = 1

4

∑4
i=1 mBi .

Due to lattice symmetry, moments at all A sites are the same
and moments on B1, B2, and B3 are equal. Figure 7(f) shows

M’ K’ M’
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0.05

Γ

FIG. 9. (Color online) Band structures of the midgap bands in the
1/4-vacancy system: black solid lines for U = 0, blue dashed lines
for U = 0.19 eV (�FM = 11 meV), red dotted lines for U = 0.32 eV
(�FM = 38 meV). Note that k is plotted from 
 to K ′ = −(0, 4π

3c
) or

M ′ = −( π√
3c

, π

c
) (c = 2a) in order to see the trend of band touching

with increasing �FM.

that the critical U at half filling is about 0.1 eV, which is
larger than that of the full-vacancy system and is close to that
of the 1/2-vacancy system. However, the ferromagnetism is
the weakest compared to previous cases: the growth rate of
mB versus U is much slower and the moment is suppressed
seriously by doping. The maximal moment will be 1/8 as
indicated in Fig. 7(f).

In spite of having weaker ferromagnetism, the 1/4-vacancy
system has a nontrivial topology at half filling and may become
a QAH insulator in appropriate conditions. Figure 10 shows

0 0.01 0.02 0.03 0.04 0.05

−1

0

1

2

Δ
FM

C
n

FIG. 10. (Color online) Chern number Cn versus the FM gap
�FM at n = 1 in the 1/4-vacancy system. Two discontinuous
transitions are at 13 meV and 43 meV, respectively. Here VA is set to
be ∞. For realistic realization with a finite VA, the phase boundary
of �FM = 0 moves to the location of the dashed line so that the
region between �FM = 0 and the dashed line becomes metallic. Here
VA = 3t . See the text, Sec. V, for details.
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the computed Chern number at half filling. It is clearly shown
that at half filling, the 1/4-vacancy system is a QAH state
with Cn = 2 when �FM � 1

3λSO , a QAH state with Cn = −1
when 1

3λSO � �FM < λSO , and makes the transition to a trivial
insulator when �FM > λSO . The transition occurs at the point
when two midgap bands touch and the energy gap closes. The
band touch occurs when the FM gap exceeds the original gap
due to the intrinsic SOC. Hence the criterion of the existence
of nontrivial topological phase is �FM < λSO . By solving the
above condition of band-gap closing for all midgap bands, one
finds that the transition occurs when �FM ≈ 1

3λSO and �FM =
λSO . The band-touching trends are manifested in Fig. 9: dashed
lines for �FM = 11 meV and dotted ones for �FM = 38 meV.
With increasing �FM, two bands first touch at the center of

K ′ when �FM ≈ 1

3λSO and then touch at K ′ when �FM =
λSO . Detailed demonstrations of the topological transitions are
given in Appendix 3.

The topological phases in the 1/4-vacancy system are more
feasible than those in the full-vacancy system, in which the
QAH state is unrealistic to be implemented due to its narrow
phase space. Here, in spite of the same criterion �FM < λSO

that has to be satisfied, as shown in Fig. 7(f), the required value
of the Hubbard U for �FM to reach λSO is much increased to
0.34 eV as compared to 0.1 eV for the full-vacancy system. The
transitions shown in Fig. 10 imply that the QAH phase exists
for smaller FM gaps. As the FM gap increases, two midgap
bands touch and the topology of the FM states become trivial.
Since the FM gap is proportional to the average magnetic
moment which decreases in higher temperatures, the results
shown in Fig. 10 indicate that the associated QAH effect tends
to survive at high temperatures.

V. SUMMARY AND DISCUSSION

In summary, we have investigated ferromagnetism induced
by breaking sublattice symmetry through saturating chemical
bonds on one side of the buckled honeycomb lattice. The
buckled geometry of germanene makes it possible to saturate
chemical bonds on one sublattice. It is shown that when
fractions of chemical bonds on one side are saturated, two
narrow midgap bands always exist at half filling. Furthermore,
the midgap bands generally support flat band ferromagnetism
in the presence of the Hubbard U interaction. We have shown
that given appropriate conditions, midgap bands consist of
only B-site electrons (except zero-energy degeneracy in Kk)
and can be expressed by a spin-1/2 model.

We have considered different concentrations of chemical
bonds being saturated by setting the potential to infinity at sites
with saturated chemical bonds. Specifically, by considering
periodic 1/q-vacancy configurations, the critical interaction
for ferromagnetism is highly related to the value of q. In
Fig. 11, we summarize the critical U for ferromagnetism for
different 1/q-vacancy cases, q = 1, 2, . . . , 6. Two color bars
for a given 1/q in Fig. 11 stand for the magnetization reaching
10% (dark one) and 90% (light one) of 1/2q, respectively.
As the height difference of two is short, it means a quick
magnetic saturation and vice versa. We can see in Fig. 11
that although the critical U for 10% magnetic saturation
is nonuniform, the value of U for 90% saturation tends to
increase as vacancy concentration decreases (q increases),

FIG. 11. (Color online) Magnitudes of U (in units of eV) to reach
required magnetization in different 1/q-vacancy systems, q from one
to six. q = 1 is for the full-vacancy system. Green bars are for the U
when mB reaches 10% (dark) and 90% (light) of 1/2 q, respectively.
The filled circles (connected by a solid line) are the values of U
making topological phase transitions; i.e., �FM = λSO .

except for the 1/3-vacancy system which has a dissimilar band
structure.

With ferromagnetism, we find that QAH states can be
realized in these six 1/q-vacancy systems and the condition
for the QAH phase is �FM < λSO . The nontrivial Chern
number in these six systems is Cn = −1 except that the
1/4-vacancy system has an additional Cn = 2 phase for weaker
ferromagnetism. The reason why the 1/4-vacancy system can
have a larger Chern number is that it doubles the unit length
of the vacancy-free system and preserves the C3 symmetry.
Values of U to reach �FM = λSO are also shown by filled
circles in Fig. 11. Hence the QAH phase lies in the region below
filled circles or the solid line, in which �FM < λSO is satisfied.
A linear increase of the critical U for QAH phase is evident.
Although a strong interaction leads to large ferromagnetism
that tends to break the QAH phase, ferromagnetism becomes
weak by decreasing the vacancy ratio and the QAH phase
survives in these regimes. In the cases we studied, the critical
U increases from 0.1 eV in full-vacancy systems to 0.5 eV
in 1/6-vacancy systems. The physical reason why strong
ferromagnetism breaks the QAH phase is that in a fully
polarized band, the Berry phase due to spins is suppressed.
Therefore, in the phase when the Chern number vanishes, the
corresponding spin Chern number also vanishes. The QSH
phase [19] is thus excluded in our FM models.

In real implementation of saturating chemical bonds,
vacancies may not be arranged in a perfect ordered pattern.
When vacancies are randomly distributed, the system becomes
disordered. Empirically, it is known that disorders generally
reduce the coherence of quasiparticles. Hence bandwidths of
the midgap bands get broaden. As a result, the density of states
drops and ferromagnetism is suppressed [41]. In addition to
the broadening of bandwidths, random vacancies generally
introduce additional impurity states inside the ferromagnetic
gap, which tends to deplete the spectral weight of midgap
bands that is responsible for nontrivial Berry phases [42]. As
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a result, as the concentration of random vacancies increases,
two midgap bands get broadened enough that they eventually
merge together with the impurity states. The ferromagnetic
gap is destroyed and the QAH effect disappears. Hence a
large number of random vacancies is expected to kill the
QAH effect in a similar way as disorder kills the QSH
effects [42]. Therefore, as long as concentration of random
vacancies is kept low (�5%) [42], the QAH phase can be
realized.

While in our theoretical model the saturation of chemical
bonds is modeled by an infinity potential at a given site, in
experimental realization such as realization by hydrogenation,
the potential at the site with the hydrogen bond is not infinite.
Hence for realistic realizations, the saturation of a chemical
bond should be modeled by a finite VA with relevant hopping
amplitudes (t ′) to the saturated site being reduced. For finite
potential VA, an effective hopping of t ′2/VA between B sites
will be induced so that the bandwidth of the impurity band
would be larger. This would increase the critical interaction
Uc for ferromagnetism to occur. A larger Uc implies a larger
FM gap, which is confirmed by the first-principles calculation
[32]. However, due to topological robustness of QAH states,
we expect that the Berry curvature of the midgap bands and
the corresponding Chern number would remain the same. The
effects due to finite VA are examined in Fig. 10. Here we
find that for realistic realization with a finite VA, the phase
boundary of �FM = 0 moves to the location of the dashed
line so that the region between �FM = 0 and the dashed line
becomes metallic. Here VA = 3t and t ′ = 0.1t . For smaller
t ′ = 0.05t , the metallic phase vanishes. For general finite VA,
in order for the system to be an insulator, the FM gap needs
be larger than the bandwidth due to the effective hopping.
Hence one requires �FM > 4t ′2/VA. Since the QAH phase
requires �FM < λSO , it leads to the condition that preserves the
QAH phases: λSO > 4t ′2/VA. For typical magnitudes of VA,
we find that when VA = 5t , t ′ < 0.2t and when VA = 3t , t ′ <

0.16t , which is consistent with results found in Fig. 10. Since
conditions on hopping amplitudes found for typical VA are in
the typical range of hopping amplitudes, the above analysis
indicates that it is feasible to realize the proposed QAH states
by saturating chemical bonds.

In addition to the above-mentioned issue of magnitude
of the potential, in real situations, there are also potential
complications due to local distortion of the honeycomb lattice.
For instance, the appearance of vacancy may modify electronic
parameters locally. The perturbation may also lift up the
σ bands at 
 [32,43–45], which may change the topology.
However, a recent finding shows that hydrogenated graphene
actually enhances SOC [46], which can further stabilize the
proposed QAH states. It is also shown that by using an
appropriate substrate [47], the π bands can be preserved
above the σ bands. Although our work does not include
all these detailed complications, our results indicate that
spontaneous QAH states tend to occur in low concentration
limits of vacancies. In low concentrations of vacancies, effects
due to local distortions are diluted and one expects that the
low-energy physics at half filling is dominated by midgap
bands induced by vacancies. Our results thus provide a
potential way to engineer buckled honeycomb structures into
high-temperature QAH insulators.
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APPENDIX: BAND STRUCTURES FOR THE 1/2-, 1/3-,
AND 1/4-VACANCY SYSTEMS

1. 1/2 vacancy

According to the lattice shown in Fig. 4(a), the bulk
Hamiltonian for the 1/2-vacancy system can be written as
H = Ht + HSO + HR2 + HFM with

Ht =
∑
k,σ

�†
σ (k)

⎛
⎝ 0 γ0(k) −t

γ ∗
0 (k) 0 0
−t 0 0

⎞
⎠ �σ (k), (A1)

HSO =
∑
k,σ

σ�†
σ (k)

×
⎛
⎝γ1(k) 0 0

0 −γ1(k) f ∗(k)γ2(k)
0 f (k)γ2(k) −γ1(k)

⎞
⎠ �σ (k), (A2)

HR2 =
∑

k

�
†
↑(k)

⎛
⎝−iγ3(k) 0 0

0 iγ3(k) f ∗(k)γ4(k)
0 f (k)γ4(k) iγ3(k)

⎞
⎠

×�↓(k) + H.c., (A3)

HFM = −
∑
k,σ

σ�†
σ (k)

⎛
⎝�A 0 0

0 �B1 0
0 0 �B2

⎞
⎠ �σ (k), (A4)

where �†
σ (k) = (c†A,σ (k),c†B1,σ (k),c†B2,σ (k)), γ0(k) = −2t cos

( 1
2kya)eikya/2, γ1(k) = 2λSO

3
√

3
sin(kya), γ2(k) = 4λSO

3
√

3
cos( 1

2kxb)

sin( 1
2kya), γ3(k) = 4

3λR2 sin(kya), γ4(k) = − 4
3λR2[

√
3 sin

( 1
2kxb) cos( 1

2kya) − i cos( 1
2kxb) sin( 1

2kya)], and f (k) =
eikxb/2eikya/2. The unit length in the x direction is b = √

3a.
FM gaps are defined by �A = UmA and �Bi = UmBi

for i = 1,2.
The midgap bands can be constructed explicitly. For the

hopping Hamiltonian Ht in Eq. (A1), the eigenstate with
eigenvalue zero is given by

|0〉 =
(

u1

u2

)
= 1

D

(
e−ikya/2

−2 cos
(

1
2kya

)) ,

where D is a normalization factor and is given by D =√
1 + 4 cos2( 1

2kya). Following Eq. (15), using this basis, the
effective Hamiltonian for midgap bands of the 1/2-vacancy
system is characterized by expectation values of SOC and the
FM field, which are

mk = −�B1|u1|2 − �B2|u2|2 − γ1 + (W + W ∗)γ2,

δk = iγ3 + (W + W ∗)γ4,

where W = f ∗u∗
1u2.

The topological phase transition occurs at band touching
when the corresponding gap closes. At half filling, band
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touching occurs between two midgap bands. Therefore, we
shall need to find the k point(s) at which the gap between
two midgap bands closes. In Eq. (15), the gap closes when
both mk and δk vanish. It can be identified that the k
point will be k = (0,− 2π

3a
) at which δk = 0 and at the same

time mk = − 1
2 (�B1 + �B2) + λSO = −�FM + λSO (refer to

Fig. 6 ). As the result, the topological phase transition happens
at �FM = λSO .

2. 1/3 vacancy

According to the lattice in Fig. 4(b), the bulk Hamiltonian
for the 1/3-vacancy system is H = Ht + HSO + HR2 + HFM

with

Ht = −t
∑
k,σ

�†
σ (k)

⎛
⎜⎜⎜⎝

0 0 1 1 1
0 0 1 f1(k) f2(k)
1 1 0 0 0
1 f ∗

1 (k) 0 0 0
1 f ∗

2 (k) 0 0 0

⎞
⎟⎟⎟⎠ �σ (k),

(A5)

HSO =
∑
k,σ

σ�†
σ (k)

(
MA(k) 02×3

03×2 MB(k)

)
�σ (k), (A6)

HR2 =
∑

k

�
†
↑(k)

(
�′

A(k) 02×3

03×2 �′
B(k)

)
�↓(k) + H.c., (A7)

HFM = −
∑
k,σ

σ�†
σ (k)diag

⎛
⎜⎜⎜⎝

�A

�A

�B

�B

�B

⎞
⎟⎟⎟⎠ �σ (k), (A8)

with

MA(k) = λSO

3
√

3

(
0 g∗

0 (k)

g0(k) 0

)
,

MB(k) = − λSO

3
√

3

⎛
⎜⎝

0 f1(k)g∗
0 (k) g0(k)

f ∗
1 (k)g0(k) 0 f2(k)g∗

0 (k)

g∗
0 (k) f ∗

2 (k)g0(k) 0

⎞
⎟⎠ ,

�A(k) = 2

3
λR2

(
0 g2(k)

g1(k) 0

)
,

�B(k) = −2

3
λR2

⎛
⎜⎝

0 f1(k)g2(k) g1(k)

f ∗
1 (k)g1(k) 0 f2(k)g2(k)

g2(k) f ∗
2 (k)g1(k) 0

⎞
⎟⎠,

where �†
σ (k) = (�†

Aσ (k),�†
Bσ (k)) with �

†
Aσ (k) = (c†A1,σ (k),

c
†
A2,σ (k)) and �

†
Bσ (k) = (c†B1,σ (k),c†B2,σ (k),c†B3,σ (k)). Here

the relevant functions are given by g0(k) = i[1 + f1(k) +
f2(k)], g1(k) = [1 − ei π

3 f1(k) − e−i π
3 f2(k)], g2(k) = −[1 −

ei π
3 f ∗

1 (k) − e−i π
3 f ∗

2 (k)], and fi(k) = eik·�bi (i = 1,2) for �b1 =
bx̂, �b2 = b( 1

2 x̂ +
√

3
2 ŷ), �b3 = b( 1

2 x̂ −
√

3
2 ŷ) with b = √

3a.
Due to symmetry, FM gaps on two A sites and those on B

sites are respectively the same.

For the midgap band, the zero-energy eigenstate |0〉 of the
hopping Hamiltonian Ht in Eq. (A5) is

|0〉 =
⎛
⎝u1

u2

u3

⎞
⎠ = 1

D

⎛
⎜⎝

f1 − f2

f2 − 1

1 − f1

⎞
⎟⎠

with the normalization factor D =
√

6 − 2
∑3

i=1 cos k·�bi .
By using this wave function, mk and δk for the effective
Hamiltonian of midgap bands are given by

mk = −�FM − [γSOW ′ + H.c.],

δk = γ1W
′ + γ2W

′∗,

where W ′ = f ∗
1 u∗

2u1 + f ∗
2 u∗

3u2 + u∗
1u3, γSO = 1

3
√

3
λSOg0,

γ1 = − 2
3λR2g1, and γ2 = 2

3λR2g2. However, the choice of |0〉
at 
 is singular, so we have to choose another gauge. This
is due to nonuniqueness of the zero-energy eigenstate. At

 there is degeneracy of three and three wave functions are
ψ1 = 1√

2
(1,−1,0,0,0)t , ψ2 = 1√

6
(0,0,2, −1, −1)t , and ψ3 =

1√
2
(0,0,0,1, −1)t , respectively. The first one is constructed by

A-site electrons while the last two are by B-site electrons.
Now the midgap band will contain A-site electrons though
a small proportion. This degeneracy explains small gaps (of
λSO) opened between the midgap band and its neighbors in
Fig. 5(c).

Finally, we identify the transition point. The band touching
occurs at k = 
, where �A(k) = �B(k) = 0 so that spins are
decoupled. The effective Hamiltonian of a given spin σ for
these three states ψ1,2,3 is

H
,σ = −σ

⎛
⎝�A 0 0

0 �B iλSO

0 −iλSO �B

⎞
⎠ .

We find that energy eigenvalues are −σ�A, −σ (�B ± λSO)
and hence the condition for band touching is �B = λSO (λSO ,
�B > 0) as we expect. Here there is a finite (but tiny) �A so
that the system is insulating. Note that this tiny �A is present
though it is difficult to be identified in Fig. 8.

3. 1/4 vacancy

According to the lattice given by Fig. 4(c), the bulk
Hamiltonian for the 1/4-vacancy system is written by H =
Ht + HSO + HR2 + HFM , where

Ht =
∑
k,σ

�†
σ (k)

(
03×3 T (k)

T †(k) 04×4

)
T (k)�σ (k), (A9)

HSO =
∑
k,σ

σ�†
σ (k)

(
M ′

A(k) 03×4

04×3 M ′
B(k)

)
�σ (k), (A10)

HR2 =
∑
k,σ

�
†
↑(k)

(
�′

A(k) 03×4

04×3 �′
B(k)

)
�↓(k) + H.c., (A11)
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HFM = −
∑
k,σ

σ�†
σ (k)diag

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�A1

�A2

�A3

�B1

�B2

�B3

�B4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

�σ (k), (A12)

with

T (k) = −t

⎛
⎜⎝

0 1 1 1

f ′∗
1 (k) f ′∗

1 (k) 0 1

f ′∗
2 (k) 0 f ∗

2 (k) 1

⎞
⎟⎠ ,

M ′
A(k) = 1

3
√

3
λSO

⎛
⎜⎝

0 −s1(k) s2(k)

−s∗
1 (k) 0 s∗

3 (k)

s∗
2 (k) s3(k) 0

⎞
⎟⎠ ,

�′
A(k) = 2

3
λR2

⎛
⎜⎝

0 e−i π
6 s1(k) −is2(k)

e−i π
6 s∗

1 (k) 0 ei π
6 s∗

3 (k)

−is∗
2 (k) ei π

6 s3(k) 0

⎞
⎟⎠ ,

and

M ′
B(k) = − 1

3
√

3
λSO

⎛
⎜⎜⎜⎜⎝

0 s2(k) −s1(k) f ′
1(k)s∗

3 (k)

s∗
2 (k) 0 s3(k) −s1(k)

−s∗
1 (k) s∗

3 (k) 0 s2(k)

f ′∗
1 (k)s3(k) −s∗

1 (k) s∗
2 (k) 0

⎞
⎟⎟⎟⎟⎠ ,

�′
B(k) = −2

3
λR2

⎛
⎜⎜⎜⎜⎝

0 −is2(k) e−i π
6 s1(k) ei π

6 f ′
1(k)s∗

3 (k)

−is∗
2 (k) 0 ei π

6 s3(k) e−i π
6 s1(k)

e−i π
6 s∗

1 (k) ei π
6 s∗

3 (k) 0 −is2(k)

ei π
6 f ′∗

1 (k)s3(k) e−i π
6 s∗

1 (k) −is∗
2 (k) 0

⎞
⎟⎟⎟⎟⎠ .

Here the basis is �†
σ (k) = (�†

Aσ (k),�†
Bσ (k)) with �

†
Aσ (k) = (c†A1,σ (k),c†A2,σ (k),c†A3,σ (k)) and �

†
Bσ (k) =

(c†B1,σ (k),c†B2,σ (k),c†B3,σ (k),c†B4,σ (k)). Relevant functions are given by f ′
i (k) = eik·�ci and si(k) = 2eik·�ci/2 sin( 1

2 k·�ci) for

i = 1,2,3. Here �c1 = c(
√

3
2 x̂ + 1

2 ŷ), �c2 = ŷc, and �c3 = c(
√

3
2 x̂ − 1

2 ŷ) with c = 2a. The FM gaps are defined by �Ai = UmAi

(i = 1,2,3) and �Bi = UmBi (i = 1,2,3,4).
The zero-energy eigenstate |0〉 of Ht in Eq. (A9) is given by

|0〉 =

⎛
⎜⎝

u1

u2

u3

u4

⎞
⎟⎠ = 1

D

⎛
⎜⎜⎜⎝

1 − f ′
1 − f ′

2

−1 − f ′
1 + f ′

2

−1 + f ′
1 − f ′

2

2

⎞
⎟⎟⎟⎠

with a normalization D =
√

13 − 2
∑3

i=1 cos k·�ci . Using the wave function as basis, the effective Hamiltonian for the midgap
bands are characterized by mk and δk, which are given by

mk = −
4∑

i=1

�Bi |ui |2 − 2

3
√

3
λSORe (W1 + W2 + W3) , δk = −4

3
e−i π

6 λR2
(
Re W1 + ei 2π

3 Re W2 + ei 4π
3 Re W3

)
,

where W1 = −s1(u∗
1u3 + u∗

2u4), W2 = s2(u∗
1u2 + u∗

3u4),
W3 = s3(u∗

2u3 + f ′∗
1 u∗

4u1).
Finally, we examine the topological phase transitions. The

gap closes when both mk and δk vanish. There are twelve points
at which δk = 0. These points are 
, three Ms, ±K , and stars

of k = ±(0, 2π
3c

) ≡ ±K
2 , respectively [48]. When �FM = 0, 


and Ms are Dirac points. Since at these points Re Wi = 0
(i = 1,2,3), one gets mk = 0 when �FM = 0. For finite �FM,
however, gaps are determined by ±K = ±(0, 4π

3c
) and ±K

2 .
Hence vanishing of gaps at these points determines the two
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topological phase transitions as shown in Fig. 10. Since at k =
1
2K one finds that mk = − 1

3 (�B1 + �B2 + �B4) ∓ 1
3λSO ≈

−�FM ∓ 1
3λSO , the first band touch will happen at the star

of −K
2 when �FM ≈ 1

3λSO . Moreover, since at k = ±K one

obtains mk = −�FM ∓ λSO (�FM = 1
4

∑4
i=1 �Bi), the second

band touching will happen at −K when �FM = λSO . (Readers
can refer to Fig. 9 for the band evolution with �FM.) These two
bands touch at �FM ≈ 1

3λSO and �FM = λSO , which explains
the results shown in Fig. 10. In addition, for the first transition
because of band touching at three points, the Chern number
changes by three, going from Cn = 2 to Cn = −1.
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