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Using the nonequilibrium Green’s function method, we investigated theoretically the spin-dependent transport
and the current-induced spin transfer torque (CISTT) in a zigzag-graphene-nanoribbon (ZGNR) spin valve in
the presence of an applied uniaxial strain to the ZGNR. It is found that, when a longitudinal or transverse
strain is applied, the conductance versus the Fermi energy remains unchanged around the Dirac point. However,
when the Fermi energy is larger than the molecular field of two ferromagnetic electrodes, the dependence of the
conductance on the uniaxial strain exhibits totally different behaviors for parallel and antiparallel configurations
for the electrodes’ magnetizations, which leads to a transition of magnetoresistance (MR) from a perfect
histogramlike behavior to successive cusplike peaks and to a steplike behavior with sharp peaks for the longitudinal
and transverse strains, respectively. It is further shown that the CISTT per unit of the bias voltage as a function
of the Fermi energy is antisymmetric respective to the Dirac point and exhibits typical successive oscillations
composed of broad peaks closely followed by sharp ones.
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I. INTRODUCTION

Graphene, a single layer of carbon, was first fabricated as a
perfect two-dimensional material in 2004 [1]. Its specific hon-
eycomb structure is expected to be a host of many intriguing
electronic properties such as the anomalous quantized Hall
effect [2,3], the high electron mobility [1,4], as well as the
long spin relaxation length [5], which underlines remarkably
potential applications of graphene in spintronics [6]. Moreover,
much attention has been paid to the investigation on the spin
injection into graphene [7,8], magnetoresistance (MR) [9–12],
current-induced spin transfer torque (CISTT) [13], and spin
filtering effect [14–16] in various graphene-based devices, etc.

A merit of graphene is that its electronic properties can be
tailored by means of a number of methods such as adatoms,
defects, and external strains. Among them, strain is a particular
way in regulating the electronic properties of graphene [17].
A considerable body of research has shown that the strain may
induce a strong pseudomagnetic field in graphene [18–21],
and leads to many fascinating behaviors in optical properties
[22,23], specific heat [24], and plasmon excitations [25].
Moreover, there is still a great interest in exploring whether
the strain is capable of manipulating the transport behavior in
graphene-based nanoelectronic devices.

In this work we investigate theoretically the effect of strain
on the spin-dependent transport and CISTT in a zigzag-edged-
graphene-nanoribbon spin-valve device, where a uniaxial
strain is exerted to the graphene sheet. By utilizing the nonequi-
librium Green’s function approach (e.g., Refs. [26,27]), we
find that the conductance versus the Fermi energy exhibits
successive steplike behavior. When a longitudinal (parallel
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to the x axis) or transverse strain (perpendicular to the x

axis) is applied, the conductance almost remains intact for
the Fermi energy lying around the Dirac point. However,
when the Fermi energy is larger than the molecular field
of the ferromagnetic (FM) electrodes, depending on the
orientation of the applied strain, the width of each plateau of
the conductance may increase or decrease upon increasing the
strain for the antiparallel configuration of magnetization of the
two FM electrodes; in contrast, for the parallel configuration
of magnetization of both electrodes, the even (odd) plateaus
of the conductance shrink, while odd (even) plateaus almost
remain unchanged when the longitudinal (transverse) strain is
applied. This result eventually leads to a transition of MR from
a perfect histogramlike behavior to the successive cusp peaks
for a longitudinal strain, or to the steplike behavior with sharp
peaks for a transverse strain. We also show that the CISTT
per unit of the bias voltage as a function of the Fermi energy
exhibits a successive oscillation structure with a broad peak
closely followed by a sharp one. Especially, an applied strain
may significantly influence the spin-dependent scattering in
the graphene spin-valve device, which will strongly modulate
the variation of the CISTT with the Fermi energy.

II. THEORETICAL MODEL

We consider a zigzag-edged-graphene nanoribbon (ZGNR)
whose two ends are placed under two FM electrodes, forming a
spin-valve device, as shown in Fig. 1(a). Owing to the existence
of FM electrodes, the ZGNR is divided into three regions: a
central normal graphene strip and two FM polarized graphene
ribbons. If the central region has the width N and length L, then
it contains N (2L + 1) carbon atoms. A uniform uniaxial strain
is applied to the ZGNR [see Fig. 1(b)]. The total Hamiltonian
of the spin-valve system is given by

H = HL + HR + HC + HT , (1)
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FIG. 1. (Color online) (a) A schematic depiction of the graphene-
based spin-valve device. The zigzag-edged-graphene nanoribbon
(ZGNR) is connected to two ferromagnetic electrodes (yellow). The
magnetizations of two electrodes (red arrows) are aligned by a relative
angle ϕ. (b) Schematic illustration showing the ZGNR divided into
three regions by the ferromagnetic electrodes. The strain is applied
to the ZGNR in the x ′ direction deviating by an angle θ from the x

axis that defines the zigzag direction of the honeycomb lattice.

where HL (HR) describes the left (right) FM electrode, HC

is the Hamiltonian of the central graphene region, and HT

describes the coupling between the FM electrodes and central
graphene. In the tight binding representation, HL,HR,HC, and
HT can be written as

HL =
∑

i∈L,σ

(EL + σML)a†
iσ aiσ −

∑
i,i+α∈L,σ

(tαa
†
iσ ai+ασ + H.c.),

(2)

HR =
∑

i∈R,σ

[(ER + σMR cos ϕ)a†
iσ aiσ + MR sin ϕa

†
iσ aiσ ]

−
∑

i,i+α∈R,σ

(tαa
†
iσ ai+ασ + H.c.), (3)

HC =
∑

i∈C,σ

ECa
†
iσ aiσ −

∑
i,i+α∈C,σ

(tαa
†
iσ ai+ασ + H.c.), (4)

HT = −
∑

i∈C,i+α∈L,R,σ

(tαa
†
iσ ai+ασ + H.c.), (5)

where EL,ER, and EC are the on-site energies in the left,
right, and central graphene, respectively, which can be tuned
by the gate voltage, a

†
iσ (aiσ ) creates (annihilates) an electron

with spin σ at site i, ML and MR are the magnetizations of
the left and right FM electrodes, and ϕ is the angle between
the orientations of ML and MR . When the strain is exerted to
the graphene layer, the hopping matrix element is modified as
tα = t0e

−3.37(|dα |/a0−1) [28], t0 = 2.7 eV, and dα (α = 1,2,3) is

the strained nearest neighbor vector [28] given by

dα = (1 + ε)δα, (6)

where δ1 = a0(
√

3/2,−1/2), δ2 = a0(0,1), δ3 = a0(−√
3/2,

−1/2), a0 ≈ 1.42 Å being the carbon-carbon distance [17]

ε = ε0

(
cos2 θ − σ sin2 θ (1 + σ ) cos θ sin θ

(1 + σ ) cos θ sin θ sin2 θ − σ cos2 θ

)
, (7)

with ε0 being the strain modulus, and σ being the Poisson’s
ratio.

By using the nonequilibrium Green’s function method
[26,27], the electric current flowing through the system can
be expressed by [29]

I = e

h

∫
dεTLR(ε)[fL(ε) − fR(ε)], (8)

where fλ (λ = L,R) is the Fermi distribution function for the
λ electrode, and the transmission coefficient TLR(ε) =
Tr[�L(ε)Gr (ε)�R(ε)Ga(ε)] with the linewidth function
�λ(ε) = i[	r

λ(ε) − 	a
λ(ε)] and Green’s function Gr (ε) =

[Ga(ε)]† = 1/[ε − Hc − 	r
L(ε) − 	r

R(ε)]. The retarded
(advanced) self-energy 	

r(a)
λ (ε) can be obtained by solving

the surface Green’s function for the λ electrode [30,31].
After obtaining the electric current, the conductance can
be calculated by G = ∂I/∂V . For a small bias voltage, the
conductance at zero temperature becomes

G = e2

h
TLR(EF ), (9)

where EF is the Fermi energy. In terms of the result of
Eq. (9), the MR can be obtained according to the conventional
definition

MR = G(0) − G(π )

G(0)
, (10)

where G(0) = G(ϕ = 0) [G(π ) = G(ϕ = π )] is the conduc-
tance for the parallel (antiparallel) configuration of magneti-
zations of both electrodes.

When noncollinear configuration of the magnetizations is
present (the magnetizations of the left and right electrodes
are not parallel or antiparallel, but deviate from each other
by an angle ϕ), a spin torque will be generated to the right
ferromagnet by the spin-polarized current through the system
and is called CISTT [32]. The so-called CISTT can be derived
by calculating the time evolution rate of total spin in the
right ferromagnetic electrode. By means of the nonequilibrium
Green’s function method, one can finally obtain [33,34]

τRx = 1

4π
Tr

∫
dε[Gr (ε)�L(ε)Ga(ε)�R(ε)]

×(σx cos ϕ − σz sin ϕ)[fL(ε) − fR(ε)], (11)

where σx and σz are the Pauli matrices.

III. BAND STRUCTURE OF STRAINED
ZIGZAG-EDGED-GRAPHENE NANORIBBON

In order to analyze the effect of the strain on the spin-
dependent transport through the graphene spin-valve device,
we first calculate the band structure of the ZGNR in the
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FIG. 2. The band structure of the strained graphene ribbons with
zigzag edge. (a) ε0 = 0; (b) ε0 = 0.23, θ = 0; (c) ε0 = 0.23, θ = π/2;
and (d) ε0 = 0.23, θ = π/3, where N = 100, a = √

3a0, and L is
infinite.

presence of a uniaxial strain. Throughout this paper we choose
t0 as a unit of energy.

Figure 2 shows the band structure of the ZGNR, which
consists of two well-separated valleys K and K ′ located at
the corners of the first Brillouin zone [except Fig. 2(b)]. The
localized edge states form a pair of partial flat bands within
the region of 2π/3 � |kxa| � π in the absence of the strain,
which is in agreement with the previous results [35,36]. When
the longitudinal strain is applied, the two valleys approach each
other with increasing the strain [see Fig. 2(b)], and eventually
merge into a broad valley for a sufficiently strong strain. For a
transverse strain case, the interval of the two valleys becomes
wider [see Fig. 2(c)]. These results are reminiscent of the
behaviors of bulk graphene [28]. However, from Figs. 2(b)
and 2(d) one can find a notable difference in the dependence
on the strain strength and direction between the band structures
of the graphene nanoribbon and bulk graphene. For the latter,
the strains along θ = 0 and θ = π/3 are most effective in
overcoming the gap threshold [28]. Whereas for the graphene
ribbon, the influence of the strain reveals different features
due to one-dimensional confinement, i.e., for the longitudinal
strain (θ = 0), a gap is opened between the edge band and
the first subband. The degenerate features of the edge bands
always remain unchanged even for the deformation beyond
20%. When the strain direction is tuned to θ = π/3, the flat
edge band is driven to cross the boundary of the Brillouin
zone under a large strain, and a gap between the edge bands
appears. Thus, θ = π/3 is the optimal direction in opening the
band gap of the graphene ribbon with zigzag edges.

Furthermore, by comparing Figs. 2(b) and 2(c), it is
interesting to note that the interval between the subbands
becomes wider when the longitudinal strain is applied; while
it shrinks for the transverse strain (θ = π/2), as observed in
Fig. 2(c). To understand this behavior, we could view the
graphene ribbon as an effective coupling system consisting
of many carbon chains along the x direction. The longitudinal
(transverse) strain tends to enhance (suppress) the bond t2
between the nearest neighbor carbon chains, thus leading to an

increase (a decrease) of the subband splitting for these carbon
chains.

IV. STRAIN DEPENDENCE OF CONDUCTANCE

Next, we study how the spin-dependent transport through
the graphene spin-valve device is affected by the strain. For
simplicity we assume that the two electrodes are made of the
same material, i.e., ML = MR = M , and take the temperature
to be zero and the on-site energies EL = ER = EC = 0.

Figures 3(b) and 3(e) show the dependence of the con-
ductance on the Fermi energy for parallel and antiparallel
configurations of magnetizations in the absence of the strain.
For |EF | < M , the conductance versus EF exhibits an oscil-
lation behavior for the parallel configuration [see Fig. 3(b)].
This oscillation stems from scattering in a spin-down channel
due to a mismatch between the parity of the transverse wave
function in the central region and that of the left and right
electrodes [11]. This is quite different from the case of the
antiparallel configuration, in which the conductance displays
a zero value plateau [see Fig. 3(e)]. This discrepancy can
be understood by the combined effect of the spin-dependent
scattering and band selective filter in a ZGNR [11]. When
|EF | > M , the conductance versus EF in the parallel and

FIG. 3. (Color online) The conductance as a function of Fermi
energy in (b) parallel and (e) antiparallel configurations of magne-
tization of two ferromagnetic electrodes in the absence of a strain.
The corresponding band structures of the left and right spin-polarized
ZGNR electrodes are also presented in (a) and (c) for parallel and (d)
and (f) for antiparallel configuration, respectively. The arrows indicate
the spin directions of electrons in the ferromagnetic electrodes. The
parameters are taken as N = 100,L = 20,M = 0.01.
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antiparallel configurations exhibits a steplike structure [37].
In order to understand this feature, we plot the band structures
of the left and right ferromagnetic electrodes in Figs. 3(a),
3(d), 3(c), and 3(f). For the ZGNR, a reflection through a
mirror plane (perpendicular to the graphene layer) located at
the middle of the ribbon along the x direction gives rise to
symmetric (π ) and antisymmetric (π∗) characters of parity. If
an electron coming from a state with the symmetric parity of
the left electrode travels into a state with antisymmetric parity
of the right electrode, it cannot be accommodated by this state
of the right electrode. Therefore, the conductance in this case
will be zero. This is the so-called parity selective transport
[37,38]. When the ferromagnetic electrodes are introduced,
the spin selective transport will be involved as well. Evidently,
owing to the existence of the magnetization, the energy band n

of the left and right electrodes is split due to the Zeeman effect
as the spin subbands n↑ and n↓ [39]. The spin-up subbands
n↑ shift relative to the spin-down ones n↓ by 2M . For the
parallel configuration, when the Fermi energy sweeps each
spin subband nσ (σ =↑ , ↓), a plateau in the conductance
appears whose width P equals to P

n↑ = En↑ − En−1↓ or
P

n↓ = En↓ − En↑ = 2M , where Enσ is the energy of the spin
subbands nσ [see Fig. 3(b)].

FIG. 4. (Color online) The conductance as a function of Fermi
energy in (b) parallel and (e) antiparallel configurations of magneti-
zation of two ferromagnetic electrodes in the presence of transverse
strain (θ = π/2) with ε0 = 0.18. The corresponding band structures
of the left and right spin-polarized ZGNR electrodes are also
presented in (a) and (c) for parallel and (d) and (f) for antiparallel
configuration, respectively. The arrows indicate the spin directions of
electrons in the ferromagnetic electrodes. The other parameters are
taken as the same as those of Fig. 3.

To analyze the selective transport we use [L(R), n, ↑ (↓),
π (π∗)] to indicate the states of the left (right) electrode, nth
subband, up (down) spin, and parity π (π∗), respectively.
For the zero conductance plateau, the states of the left
electrode are (L,0, ↑ ,π∗) and (L,−1, ↓ ,π ), and the states
of the right electrode are (R,−1, ↑ ,π ) and (L,0, ↓ ,π∗).
Therefore, there is no an opening channel between the left
and the right electrodes because the spin and parity are
not compatible. For the first conductance plateau (2e2/h at
the positive energy side), the channels of (L,0, ↑ ,π∗) →
(R,0, ↑ ,π∗) and (L,0, ↓ ,π∗) → (R,0, ↓ ,π∗) can open. The
width of plateau for the antiparallel configuration is given by
A

n = En↓ − En−1↓ = 2M + P
n↑ [Fig. 3(e)].

When a transverse strain is applied, the conductance in the
region |EF | < M almost remains intact, as shown in Figs. 4(b)
and 4(e). However, the width of each plateau in the conduc-
tance at |EF | > M decreases for the antiparallel configuration
when the transverse strain is applied [Fig. 4(e)]. This behavior
is very different from the case of parallel configuration,
where one can find that the odd plateaus of the conductance
shrink, but the even ones almost remain unchanged for the
transverse strain [Fig. 4(b)]. The reason is that when the
transverse strain is taken into account, the interval between
the subbands En↑ and En−1↓ becomes narrower [Fig. 2(c)
or 4(d)], leading to the attenuation of the plateau width A

n in
the conductance for antiparallel configuration. For the parallel
configuration, the conductance contains two types of width
of P

n↑ and P
n↓ plateaus, which correspond, respectively, to

the odd and even plateaus of the conductance. Though the
interval between the subbands n↑ and (n − 1)↓ decreases with
increasing the transverse strain strength ε0, the separation
between the pair of the spin-split subbands n↑ and n↓ is fixed
for a given magnetization M . Furthermore, the spin-up and
spin-down electrons contribute equally to the conductance,
which, therefore, brings about a different dependence of the
odd and even plateaus of the conductance on the strain strength
for the parallel configuration.

When the longitudinal strain is applied, the conductance
exhibits a completely different behavior from the case of
the transverse strain. Close to the zero energy point, the
spin-up (down) subbands of the two electrodes at the low
energy are pushed down (up) across the E = 0 level in the
parallel configuration. In this case, the combinations of the
spin-dependent scattering and band selective filter lead to
successive oscillations in the conductance versus Fermi energy
in low energy region |EF | < M [11]. The oscillation persists
even in the presence of the strain. However, the amplitudes of
the oscillation peaks are suppressed and the positions of peaks
are slightly moved due to the weakened bonds t1 and t3 by this
longitudinal strain. It is further observed that the width of each
plateau in the conductance for the antiparallel configuration
at |EF | > M increases with increasing ε0 [Fig. 5(b)]. In
contrast, for the parallel configuration, one can find that the
even plateaus of the conductance shrink, while the odd ones
almost remain unchanged [Fig. 5(a)]. These characteristic
phenomena also stem from the combined effect of the spin-
selective scattering, the Zeeman splitting of the subbands in
the two FM electrodes, and the increase of the separation
between the subbands with increasing the strain strength
[see Fig. 2(b)].
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FIG. 5. (Color online) The conductance as a function of Fermi
energy at ε0 and θ = 0 for (a) parallel and (b) antiparallel configura-
tions of magnetization of two ferromagnetic electrodes. The inset in
(a) shows the low energy region more clearly. The other parameters
are taken the same as the those of Fig. 3.

V. STRAIN INDUCED TRANSITION
OF MAGNETORESISTANCE

Under the uniaxial strain, the MR is found to reveal a transi-
tion behavior. Figure 6 shows the Fermi energy dependence of
the MR for different strain strength ε0. No strain, the MR versus
the Fermi energy exhibits a perfect histogramlike structure,
which is symmetric with respect to the zero energy. When the
strain plays a role, the plateau of the MR around the origin
is not changed at all. However, the other histogramlike peaks
of the MR start to shrink upon the application of the parallel
strain, and finally develop into successive cusplike peaks for
a sufficiently large strain, as seen in Fig. 6(a). Owing to the
combined effect of the spin-dependent scattering and the strain,
the width of each plateau in the conductance becomes larger for
a stronger parallel strain in the antiparallel configuration. As a
comparison, for parallel configuration, the even (odd) plateaus
diminish (remain unchanged) with increasing the longitudinal
strain strength [see Figs. 5(a) and 5(b)].

In contrast, when the transverse strain (θ = π/2) is applied,
the concavity between the MR histogramlike peaks promptly
shrinks, and rises with larger strain, as shown in Fig. 6(b).
In particular, as the strain strength grows to an appropriate
value, the concavities arrive at the values of the corresponding
plateaus so that the MR as a function of the Fermi energy
exhibits a successive steplike structure. Furthermore, a larger
strain even causes the concavity to go into a sharp peak located
at the edge of the plateau. This behavior is also related to the
fact that the plateau width of the conductance versus the strain
strength are quite different for the parallel and antiparallel
configurations.

FIG. 6. (Color online) The magnetoresistance as a function of
Fermi energy for different ε0 at (a) θ = 0 and (b) θ = π/2. The other
parameters are taken the same as those of Fig. 3.

VI. CURRENT-INDUCED SPIN TRANSFER TORQUE

In this section we investigate the CISTT in the strained
graphene spin-valve device. According to Eq. (11), for a small
bias voltage V , the CISTT per unit of the bias voltage at zero
temperature is expressed as

τRx

V
= e

4π
Tr{[Gr (EF )�L(EF )Ga(EF )�R(EF )]

× (σx cos ϕ − σz sin ϕ)}.

FIG. 7. (Color online) The CISTT per unit of the bias voltage
V in unit of e/4π (b) and the conductance of each spin direction
(c) as a function of Fermi energy in the absence of a strain. The
corresponding band structures of the left and right spin-polarized
ZGNR electrodes are also presented in (a) for ϕ = 0 and (d) for
ϕ = 2π/3, respectively. The arrows indicate the spin directions of
electrons in the ferromagnetic electrodes. The other parameters are
taken the same as those of Fig. 3.
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Figure 7(b) shows the CISTT per unit of the bias voltage as a
function of Fermi energy in the absence of strain. In order to
elucidate the dependence of the CISTT on the Fermi energy,
we also plot the conductance of each spin component versus
the Fermi energy in Fig. 7(c) as well as the corresponding
band structures of two electrodes in Figs. 7(a) and 7(d). The
CISTT in the magnetic tunneling junctions is proportional to
SR×(SL×SR) [33], where SL and SR are the spin moments in
the left and right ferromagnetic electrodes. For the graphene
spin-valve device, when replacing EF by −EF , SL,R = −SL,R

due to the electron-hole symmetry, thus, one can observe that
τRx/V versus the Fermi energy is inversion symmetrical to
the axis of EF = 0 [see Fig. 7(b)]. Here we only discuss
the case of EF > 0, for which the curve of τRx/V versus
EF can be partitioned into several regions: (0,M), (M,E

p

1↑),
and (Ep

n−1↑,E
p

n↑), where n � 2. In the region EF ∈ (0,M),
τRx/V exhibits an oscillation behavior, which is related to
the combined effect of the band filter and spin-dependent
scattering. When continuously increasing EF to the interval
(M,E

p

1↑), the τRx/V forms a zero value plateau whose width
is equal to E

p

1↑ − M . In this region, the spin-up and spin-down
currents are equal to each other, leading to zero CISTT
[see Figs. 7(a), 7(c), and 7(d)]. When EF ∈ (Ep

n−1↑,E
p

n↑),
τRx/V develops a broad peak closely followed by a sharp
one. This behavior can be accounted for by considering the
dependence of the conductance Gσ for each spin direction
on the Fermi energy. In the interval EF ∈ (Ep

n↑,E
p

n↓), the
spin-up conductance starts to rise followed by a decrease,

FIG. 8. (Color online) (a) The conductance of each spin direction
and (b) the CISTT per unit of the bias voltage V in unit of e/4π

as a function of Fermi energy for different ε0. The solid and dash
lines in (a) correspond to the spin-down and spin-up conductances,
respectively. The angle between the magnetizations of the left and
right ferromagnetic leads is ϕ = π/3. The other parameters are taken
the same as those of Fig. 3.

forming a broad peak; however the spin-down conductance
still remains intact [see Fig. 7(c)]. When EF approaches E

p

n↓,
the spin-up and spin-down conductances dramatically increase
to a new plateau. The subtle difference between the spin-up
and spin-down conductances in the region (Ep

n↑,E
p

n↓) reflects
the observed characteristic features in τRx/V versus EF .

When the longitudinal stain is applied, Fig. 8(b) shows the
dependence of τRx/V on the Fermi energy for different strain
strength ε0. With increasing the ε0, the positions of the broad
peaks and the sharp peaks are moved to higher energy. And,
it is interesting to note that the amplitude and width of each
broad peak of the τRx/V versus EF shrink monotonously.
However, there exists a threshold strain strength εc for the
sharp peaks. When ε0 < εc, the sharp peaks increase with
increasing ε0; while for ε0 > εc they are suppressed by the
strain. Moreover, εc becomes larger for the sharp peaks at
higher energies. We assign these behaviors to the result of a
nontrivial combined effect of the strain and the spin-dependent
scattering in the graphene spin-valve device, which will
become clear when taking into account the dependence of the
spin conductance on the Fermi energy for different ε0. In the
presence of such a longitudinal strain, the bonds t1,t3 between
the nearest neighbor carbons are suppressed, and the scattering
experienced by the transported electrons strongly depends on
the spin orientation. One can observe that for the spin-up
electrons, the amplitudes and width of the broad peaks of the
conductance always decay with the applied strain. While for
the spin-down electrons the plateau values of the conductance
remains unchanged, as shown Fig. 8(a). In particular, the
edges of the second plateaus of the spin-up and spin-down

FIG. 9. (Color online) The CISTT per unit of the bias voltage V

in unit of e/4π as a function of Fermi energy (a) for different ε0 at
θ = π/2,M = 0.01, and (b) for different M at ε0 = 0. ϕ = π/3 is
set for the curves in both (a) and (b). The other parameters are taken
the same as those of Fig. 3.
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conductances do not coincide with each other. Furthermore,
this disparity is further enhanced for the plateau located at
higher energy, which is the origin of the observed features.

Figure 9 shows τRx/V as a function of EF for different
transverse strain strength in (a) and magnetization in (b),
respectively. It is found that more (less) peaks appear in a
same Fermi energy region with enhancing the strain strength
(magnetization). This is apparently the consequence of the
variation of the subbands’ distance affected by varying the
strain and the magnetization. Another observation is that
the sharp peaks become more prominent and sharpened with a
stronger strain and larger magnetization. Since the sharp peaks
are induced by a difference between spin-up and spin-down
conductances at the edge of the conductance plateau, this
indicates a larger spin splitting at the edge consistent with
the results of the previous section.

VII. SUMMARY

In summary, based on the nonequilibrium Green’s function
method, we investigated theoretically the spin-dependent
transport through a zigzag-edged-graphene-nanoribbon-based
spin-valve device in the presence of a uniaxial strain acting to
the graphene sheet. Our results show that the shapes and the
separation of subbands of the ZGNR are strongly governed by
the strain strength and the tensile direction. When the longitu-
dinal or transverse strain is applied, the conductance around the
Dirac point (EF = 0) remains intact. However, for the Fermi
energy larger than the magnetization of the electrodes, the

width of each plateau of the conductance increases (decreases)
with increasing the longitudinal (transverse) strain strength
for the antiparallel configuration. In contrast, for the parallel
configuration, the even (odd) plateaus of the conductance
shrink, while the odd (even) ones almost remain unchanged for
the longitudinal (transverse) strain. Correspondingly, this may
lead to a transition of the MR from a perfect histogramlike
behavior to a successive cusplike-peak behavior when the
longitudinal strain is applied, or to a steplike behavior with
sharp peaks when the transverse strain is applied. It is also
shown that the CISTT per unit of the bias voltage as a function
of the Fermi energy exhibits successive oscillations of broad
peaks closely followed by sharp ones, which results from the
cooperated effect of the strain and spin-dependent scattering.
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