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Valleytronics on the surface of a topological crystalline insulator: Elliptic dichroism
and valley-selective optical pumping
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The low-energy theory of the surface of the topological crystalline insulator (TCI) is characterized by four
Dirac cones anisotropic into the x and y directions. Recent experiments have shown that the band gap can be
introduced in these Dirac cones by crystal distortion by applying strain to the crystal structure. The TCI surface
provides us with a way to valleytronics when gaps are given to Dirac cones. Indeed, the system has the Chern
number and three valley-Chern numbers. We investigate the optical absorption on the TCI surface. It shows
a strong elliptic dichroism though the four Dirac cones have the same chiralities. Namely, it is found that the
absorptions of the right- and left-polarized light are different, depending on the sign of mass and the location of
the Dirac cones, owing to the anisotropy of the Dirac cone. By measuring this elliptic dichroism it is possible to
determine the anisotropy of a Dirac cone experimentally.
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I. INTRODUCTION

Valleytronics is a promising candidate of the next genera-
tion electronics [1–7]. It is a technology of manipulating the
degree of freedom to which inequivalent degenerate state, an
electron, belongs near the Fermi level. The main target of val-
leytronics is the honeycomb lattice system such as graphene.
Indeed, the honeycomb structure is an ideal playground of
valleytronics since it has two inequivalent Dirac cones or
valleys. A key progress in valleytronics is valley-selective
optical pumping [4,5,8–12]. By applying circular polarized
light in a gapped Dirac system, we can selectively excite
electrons in one valley based on the property that two valleys
have opposite chiralities. It is known as circular dichroism.
Valley-selective pumping has been observed [13–18] in the
transition-metal dichalcogenides such as MoS2, where there
exists a direct gap between the conduction and valence bands
for Dirac fermions.

However, the valleytronics is not restricted to the honey-
comb system. Recently, the topological crystalline insulator
(TCI) attracted much attention due to its experimental real-
izations [19–21] in Pb1−x SnxTe. It is a topological insulator
protected by the mirror symmetry [22,23]. The remarkable
properties of the TCI is that there emerge four topolog-
ical protected surface Dirac cones, as has been observed
in the angle-resolved photoelectron spectroscopy (ARPES)
experiment [19–21]. The appearance of several topologically
protected Dirac cones enables us to use the TCI as the basic
material for the valleytronics. Recent experiments [24] show
that the band gap can be introduced in the surface Dirac
cones by crystal distortion by applying strain to the crystal
structure.

In this paper we investigate the optical absorption of the
TCI surface. The key properties of surface Dirac cones are
that all of them have the same chirality but that each of
them has a particular anisotropy. Based on the anisotropy,
we can selectively excite electrons in different valleys by the
elliptically polarized light. This is a type of dichroism different
from the circular dichroism. We call it an elliptic dichroism. We
propose an experimental method to determine the anisotropy
of the velocities and the band gap of Dirac cones with the

use of elliptic dichroism. Our finding will open a way of the
valleytronics based on the TCI.

The present paper is composed as follows. In Sec. II we
introduce the low-energy Hamiltonians HX and HY valid
near the X and Y points for the [001] surface, which are
related by the C4 discrete rotation symmetry. The Hamiltonian
contains the pseudospin degree of freedom representing the
cation and the anion. The X (Y ) point is separated into a
pair of the �X and �′

X (�Y and �′
Y ) points due to the

spin-pseudospin mixing. We then derive the four low-energy
Hamiltonians describing four Dirac cones at the �X,�′

X,�Y ,
and �′

Y points. They have in general Dirac electrons with
different masses mX,m′

X,mY , and m′
Y . In Sec. III we study the

spin and psuedospin structures around the X and Y points. In
Sec. IV we analyze the Chern number for each Dirac cone.
It is simply given by ± 1

2 depending on the sign of the Dirac
mass. Since there are four Dirac cones, there arise the Chern
number and three valley-Chern numbers. The Chern number
is a genuine topological number, while valley-Chern numbers
are symmetry-protected topological numbers. When the mass
is induced by the strain, the Chern number is zero because
of the time-reversal symmetry. On the other hand, when the
mass is induced by the exchange effect, the Chern number is
±2 per surface. In Sec. V we investigate optical absorption
and elliptic dichroism by exciting massive Dirac electrons by
the right or left elliptically polarized light. We show that the
optical absorption is determined by the Chern number of each
Dirac cone and that the elliptic dichroism occurs owing to the
anisotropy of a Dirac cone. It is interesting that the elliptic
dichroism is observable on the surface of the TCI with the
Dirac mass being induced by the strain.

II. HAMILTONIAN

Recent ARPES experiments [19–21] show that there are
four Dirac cones at �X,�′

X,�Y , and �′
Y points in the [001]

surface state of the TCI, whose band structure we show in
Fig. 1(a). They may be used as the valley degree of freedom.
Two Dirac cones are present at the �X and �′

X points near
the X point but slightly away from the X point along the x
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FIG. 1. (Color online) (a) Surface Brillouin zone centered at the
� point and bounded by the X and Y points. There are low-energy
Dirac cones at the �X,�′

X,�Y ,�′
Y points, and high-energy Dirac

cones at the X and Y points. (b) Detailed band structure in the vicinity
of the X point. Two low-energy Dirac cones are formed at the �X

and �′
X points. (c) The gaps open when the mass term is present.

axis in the momentum space. The other two Dirac cones are
present at the �Y and �′

Y points near the Y point along the
y axis. It is notable that the Dirac cones reside at the mirror
symmetry invariant points along the �X and �Y lines rather
than at the time-reversal symmetry invariant X and Y points,
implying that the protected symmetry is the mirror symmetry
and not the time-reversal symmetry.

The Hamiltonian for the [001] surface states of the TCI near
the Y point has been given in literature [25–28] as

HY (k) = v2kxσy − v1kyσx + nτx + n′σxτy + mσz. (1)

The Hamiltonian near the X point is given by

HX(k) = v1kxσy − v2kyσx + nτx + n′σyτy + mσz, (2)

as we shall soon see. Here σ and τ are the Pauli matrices
for the spin and the pseudospin representing the cation-
anion degree of freedom, respectively, n and n′ describe
the pseudospin mixing. We have set � = 1 for simplicity.
Typical values are v1 = 1.3 eV, v2 = 2.4 eV, n = 70 meV, and
n′ = 26 meV [23,25]. The term mσz represents the exchange
magnetization with the exchange field m, and acts as the mass
term. It may regarded as the Zeeman term without external
magnetic field. It may arise due to proximity coupling to a
ferromagnet, as it enhances the exchange interaction to align
the spin direction. We show the band structure without and
with this term in Figs. 1(b) and 1(c), respectively.

The crystal structure of the Pb1−xSnxTe is a rocksalt
structure. Accordingly, the [001] surface has the inverse C4

discrete rotation such that

σx �→ σy, σy �→ −σx (3)

together with

kx �→ ky, ky �→ −kx. (4)

Using this transformation, we obtain Eq. (2) valid near the
X point from Eq. (1) valid near the Y point. Note that the
velocities into the x and y directions are different at the Y

point from those at the X point, as is a manifestation of the
fourfold rotation symmetry.

It follows from (2) that the energy spectrum is given by

E(k) = ±
√

f ± 2
√

g (5)

in the vicinity of the X point with

f = n2 + n′2 + v2
1k

2
x + v2

2k
2
y + m2, (6a)

g = (n2 + n′2)v2
1k

2
x + n2v2

2k
2
y + n2m2. (6b)

The band structure is shown in Fig. 1. The gap closes at the
two points (kx,ky) = (±�,0) with � = √

n2 + n′2/v1 without
the mass term (m = 0). They are the �X and �′

X points.
An intriguing feature of the TCI surface is the mass

acquisition [23,29] by crystal distortion, as has been observed
in recent experiments [24]. They are ±�mX and ±�mY at the
�X (�′

X) and �Y (�′
Y ) points, respectively. Combining the

mass m due to the exchange effect, the mass reads [29]

mX = m + �mX, m′
X = m − �mX,

mY = m + �mY , m′
Y = m − �mY (7)

at each Dirac point. There might be other mechanisms to
generate the mass. The mass term is necessary for the valley-
selective optical absorption to occur. However, the following
analysis is independent of detailed origins of the mass term.

By linearizing the band structure around the �X point,
we obtain the two-component low-energy Hamiltonian for
massive Dirac fermions [25,27],

H�X
(̃k) = ṽ1k̃xσy − ṽ2k̃yσx + m̃Xσz, (8)

which describes physics near the Fermi level, where k̃x =
kx−� and k̃y = ky , with the renormalized velocity,

ṽ1 = v1

√√√√1 − m2
Xn2(n2 + n′2)[

(n2 + n′2)2 + m2
Xn2

]3/2 � v1, (9a)

ṽ2 = v2

√√√√1 − n2√
(n2 + n′2)2 + m2

Xn2

� v2n
′/

√
n2 + n′2 = 0.84 eV, (9b)

and the renormalized mass,

m̃X = sgn(mX)

√
m2

X + 2n2 + 2n′2 − 2
√

(n2 + n′2)2 + m2
Xn2.

(10)
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The energy spectrum reads

E�X
= ±

√
ṽ2

1 k̃
2
x + ṽ2

2 k̃
2
y + m̃2

X. (11)

The linearized Hamiltonian around the �′
X point has precisely

the same expression as (8) except that m̃X is replaced by m̃′
X.

In the same way we have the low-energy Hamiltonian around
the �Y point,

H�Y
(̃k) = ṽ2k̃xσy − ṽ1k̃yσx + m̃Y σz, (12)

where k̃x = kx and k̃y = ky−�, and the similar one around
the �′

Y point.

III. SPIN DIRECTION

We illustrate the expectation value of the spin 〈s〉 =
〈ψ |s|ψ〉 in the vicinity of the X point in Fig. 2(a). There
is one up-pointing vortex with anticlockwise vorticity at the X

point, and there are two down-pointing vortices with clockwise
vorticity at the �X and �′

X points [28,30,31]. They describe
the spin directions of electrons in one Dirac cone at the X

point, and two Dirac cones at the �X and �′
X points in Fig. 1.

FIG. 2. (Color online) (a) Spin direction of the TCI surface in
the vicinity of the X point. The red oval indicates the region
where the magnitude of spin is quite small. The spin directions are
opposite inside and outside the oval. The spin rotation is clockwise
(anticlockwise) in the low-energy (high-energy) Dirac cones at the
�X and �′

X points (the X point). (b) Pseudospin direction of the
TCI surface in the vicinity of the X point. The red oval indicates
the region where the magnitude of pseudospin is quite small. The
pseudospin directions are opposite inside and outside the oval.
(c) Berry curvature of the highest occupied band. It has a sharp peak
(red) at the X point and sharp peaks (blue) at the �X and �′

X points.
The Chern number contribution from the Berry curvature at the X

point is exactly canceled out by the one (green) from the Dirac cone
in the lowest occupied band at the X point.

This structure is understood as follows. Let us assume
n = 0 and n′ = 0 in Eq. (2). Then the two Dirac cones in the
conduction and valence bands touch each other at the Fermi
level. The effect of the term nτx is to shift these Dirac cones
to intersect one another, forming an intersection oval. (It is
an oval and not a circle since v1 	= v2 .) These two Dirac
cones have opposite chiralities, which leads to the opposite
spin rotations inside and outside the oval. We now switch on
n′. Then the level crossing turns into the level anticrossing
with the resulting band structure as in Fig. 1(a), where Dirac
cones emerge at the �X and �′

X points. The spin rotates around
each Dirac cone. The magnitude of spin, s2 = s2

x + s2
y + s2

z , is
found to be quite small around the oval [Fig. 2(a)]. We clearly
see the directions of the spin rotation are identical in the four
valleys at �X, �′

X, �Y , and �′
Y , which manifests the identical

chirality of the four low-energy Dirac cones. On the other
hand, the spin rotation in the two high-energy Dirac cones at
the X and Y points is opposite to the one in the low-energy
Dirac cones. The spin direction has been observed by means
of spin-resolved ARPES [20,30].

We have also illustrated the expectation value of the
pseudospin in the vicinity of the X point in Fig. 2(b). The pseu-
dospin vector points the x direction when n′ = 0 in Eq. (2),
since then τx is a good quantum number. The pseudospin
direction is inverted at the oval, which is the interception
of the two Dirac cones. When n′ 	= 0, the magnitude of the
pseudospin t2 = t2

x + t2
y + t2

z becomes quite small also around
the oval.

The fact that the magnitudes of the pure spin and pseudospin
are quite small around the oval leads to a strong entanglement
of the spin and pseudospin there, as we now argue. The
Hamiltonian is described by the 4 × 4 matrix, which results
in the SU(4) group structure of the system. The SU(4) group
is decomposed into the pure spin and pseudospin parts and
the spin-pseudospin entangled part. The generators of the pure
spin (pseudospin) part are given by σi (τi) with i = x,y,z.
On the other hand, those of the spin-pseudospin entangled
part are given by σiτj with i,j = x,y,z, which compose the
SU(2)⊗SU(2) group. The magnitude of the SU(4) spin is a
constant and takes the same value everywhere. Hence, the fact
that the pure spin and pseudospin components become quite
small means that the spin-pseudospin entangled components
such as σzτy and σyτz become large. The results implies a rich
topological structure in the SU(4) space.

IV. CHERN NUMBER AND VALLEY-CHERN NUMBER

The Chern number is obtained by the integration over the
whole Brillouin zone. We illustrate the Berry curvature F (k) of
the highest unoccupied state in Fig. 2(c). The Berry curvature
is found to exhibit sharp peaks at the vortex centers of the spin
rotation, which correspond to the tips of the Dirac cones, and
become zero away from them. Hence, the Chern number is
given by the sum of the contributions from individual Dirac
cones. Note that the Berry curvature at the X point is exactly
canceled out by the one from the other occupied band, and
does not contribute to the Chern number.

In the vicinity of the �X point we obtain an analytic
form for the Berry curvature FX(k) by using the low-energy
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Hamiltonian (8),

FX(k) = m̃Xṽ1ṽ2(
ṽ2

1k
2
x + ṽ2

2k
2
y + m̃2

X

)3/2 . (13)

The Chern number is explicitly calculated as

CX = 1

2π

∫
F (k)dk = 1

2
sgn(m̃X) = 1

2
sgn(mX), (14)

which is associated with the Dirac cone at the �X point. The
similar formulas are derived for C ′

X, CY , and C ′
Y with the use of

m′
X, mY , and m′

Y for the Dirac cones at the �′
X, �Y , and �′

Y

points, respectively.
At low energy there are four Dirac Hamiltonians such as (8)

and (12), each of which describes a Dirac cone possessing
a definite Chern number depending on the sign of the Dirac
mass. Hence there are four Chern numbers. The genuine Chern
number is their sum,

C = CX + C ′
X + CY + C ′

Y . (15)

This is a genuine topological number.
In addition, there are three valley-Chern numbers [32],

which we may take as

C1 = CX + C ′
X − CY − C ′

Y , (16a)

C2 = CX − C ′
X + CY − C ′

Y , (16b)

C3 = CX − C ′
X − CY + C ′

Y . (16c)

They are symmetry-protected topological numbers. The rele-
vant symmetry is the valley symmetry, which is the permu-
tation symmetry of Dirac valleys. This is a good symmetry
near the Fermi level, since the system is described by four
Dirac Hamiltonians independent of each other. However, at
higher energy, the system is described by the tight-binding
Hamiltonian, containing intervalley hoppings, where there is
no valley symmetry.

If we treat the four masses independently there are 16
topological states indexed by (C,C1,C2,C3). However, when
there are constraints on them, they read as follows:

(1) When we apply only the exchange field (�mX =
�mY = 0), we find ±(2,0,0,0) with CX = CY = C ′

X = C ′
Y .

(2) When we apply only the strain (m = 0), we find
±(0,0,2,0) with CX = CY = −C ′

X = −C ′
Y for �mX�mY >

0, and ±(0,0,0,2) with CX = −CY = −C ′
X = C ′

Y for
�mX�mY < 0.

(3) When we apply both the exchange field and the strain
to the crystal, we find ±(1,−1,1,1) for �mX > m > 0 and
m > �mY > 0.

There are some other cases depending on m, �mX, and
�mY . We have found that the Chern number may take values
2,1,0,−1,−2. Even if it is zero, the state is topological with
respect to the valley-Chern numbers.

V. OPTICAL ABSORPTION AND ELLIPTIC DICHROISM

An interesting experiment to probe and manipulate the
valley degree of freedom is to employ the optical absorp-
tion [4,5,8–10,12]. It is possible to excite massive Dirac
electrons by the right or left circularly polarized light, known as
circular dichroism. Originally, circular dichroism is proposed
in honeycomb systems, where the velocities of the Dirac cones

are isotropic. On the other hand, they are anisotropic in the TCI
surface. This leads to the elliptic dichroism, where the optical
absorptions are different between the right and left elliptically
polarized lights. Furthermore, the optical absorptions depend
crucially on the sign of the Dirac mass.

A. Kubo formula

We explore optical interband transitions from the state
|uv(̃k)〉 in the valence band to the state |uc(̃k)〉 in the
conduction band. The fundamental transition is a transition
from the highest occupied band to the lowest unoccupied band
(Fig. 1). We inject a beam of elliptical polarized light onto the
TCI surface. The corresponding electromagnetic potential is
given by A(t) = (Ax sin ωt,Ay cos ωt). The electromagnetic
potential is introduced into the Hamiltonian by way of the
minimal substitution, that is, by replacing the momentum k̃i

with the covariant momentum Pi ≡ k̃i + eAi . The resultant
Hamiltonian simply reads H (A) = H + PxAx + PyAy , with

Px = ∂H

∂k̃x

, Py = ∂H

∂k̃y

, (17)

in the linear response theory.
The optical absorption is governed by the Fermi golden rule.

Namely, the imaginary part of the dielectric function arises due
to interband absorption, and is given by the Kubo formula. In
the case of elliptical polarized light it reads [4]

εθ (ω) = πe2

ε0m2
eω

2

∑
i

∫
BZ

dk̃
(2π )2

f (̃k)|Pθ (̃k)|2

× δ[Ec(̃k) − Ev(̃k) − ω], (18)

with the use of the optical matrix element Pθ (̃k), where Ec(̃k)
and Ev(̃k) are the energies of the conduction and valence
bands, while f (̃k) is the Fermi distribution function. The
coupling strength with optical fields is given by the optical
matrix element between the initial and final states in the
photoemission process [4,5,8,9],

Pi (̃k) ≡ m0〈uc(̃k)|∂H

∂k̃i

|uv(̃k)〉, (19)

which is the interband matrix element of the canonical mo-
mentum operator. The optical matrix element for elliptically
polarized light is

Pθ (̃k) = Px (̃k) cos θ + iPy (̃k) sin θ, (20)

where θ is the ellipticity of the injected beam. We call it
the right-polarized light for 0 < θ < π and the left one for
−π < θ < 0.

B. Optical absorption at the Dirac point

We first investigate optical interband transitions from the
valence-band tops to the conduction band bottoms, i.e., at the
Dirac point. By adjusting the energy of light to the band edge,
namely, at k̃ = 0,

ω = Ec(0) − Ev(0) = 2|m̃|, (21)
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we find

εθ (2|m̃|) = πe2

4ε0m2
em̃

2
|Pθ (0)|2 (22)

at each Dirac point, where m̃ can be any of m̃X, m̃′
X, m̃Y , m̃′

Y .
It follows that |Pθ (0)|2 can be directly observed by optical
absorption.

The wave functions |uv(̃k)〉 and |uc(̃k)〉 are obtained
explicitly by diagonalizing Eq. (2), and we have

Px(0) = ṽ1, Py(0) = −iṽ2sgn[mX]. (23)

It is possible to derive an explicit form of |P ±
θ (0)|2�X

at the �X

point for arbitrary ellipticity θ as

|Pθ (0)|2�X
= m2

0(ṽ1 cos θ + sgn[mX]ṽ2 sin θ )2. (24)

Similar formulas follow at the other Dirac points. By
introducing

tan φX = ṽ1/ṽ2, tan φY = ṽ2/ṽ1, (25)

we rewrite them as

|Pθ (0)|2�X
= m2

0

(
ṽ2

1 + ṽ2
2

)
sin2(φX + sgn[mX]θ ), (26a)

|Pθ (0)|2�′
X

= m2
0

(
ṽ2

1 + ṽ2
2

)
sin2(φX + sgn[m′

X]θ ), (26b)

and

|Pθ (0)|2�Y
= m2

0

(
ṽ2

1 + ṽ2
2

)
sin2(φY + sgn[mY ]θ ), (26c)

|Pθ (0)|2�′
Y

= m2
0

(
ṽ2

1 + ṽ2
2

)
sin2(φY + sgn[m′

Y ]θ ). (26d)

We note that

φX = 0.317π, φY = 0.183π (27)

for v1 = 1.3 eV, v2 = 2.4 eV, and that

φX + φY = π

2
(modπ ). (28)

There are four functions with the same amplitude in general:
See Fig. 3(a). The function (red solid curve) involving
| sin(φX + θ )|2 is the main one. The function (blue solid curve)
involving | sin(φY + θ )|2 is constructed by sifting it so that (28)
holds. The other two functions (dotted curves) are constructed
by changing θ → −θ .

For instance, when all masses are positive such as in the case
of the exchange effect, it follows that |Pθ (0)|2�X

= |Pθ (0)|2
�′

X
,

as is shown in the red solid lines in Fig. 3(a). It also follows
that |Pθ (0)|2�Y

= |Pθ (0)|2
�′

Y
, as is shown in blue solid curves in

Fig. 3(a).
For instance, when mXm′

X < 0 and mY m′
Y < 0 such as

in the case of the strain effect, it follows that |Pθ (0)|2�X
=

|P−θ (0)|2
�′

X
and |Pθ (0)|2�Y

= |P−θ (0)|2
�′

Y
. Thus, if mX > 0 and

mY > 0, they are described by the same solid curves at the
�X and �Y points but by the dotted curves at the �′

X and �′
Y

points in Fig. 3(a).
A perfect elliptic dichroism is a phenomenon that only

one-handed elliptically polarized light is absorbed. It occurs at
θ = −φX for the function | sin(φX + θ )|2. At the same point
the function | sin(φY + θ )|2 takes the maximum value. More
explicitly they occur as θ = θX at the �X point and so on, with

θX = −sgn[mX]φX, θ ′
X = −sgn[m′

X]φX,

θY = −sgn[mY ]φY , θ ′
X = −sgn[m′

Y ]φY . (29)

FIG. 3. (Color online) (a) Optical matrix element |P±θ |2 at the
�X and �Y points with various ellipticity θ [Eq. (26)]. Red (blue)
solid curves are optical absorption |Pθ |2 at the X (Y ) point, and dotted
curves are for |P−θ |2. (b) Illustration of optical absorption |Pθ |2 at
(b1) θ = θX , (b2) θ = −θX , (b3) θ = θY , and (b4) θ = −θY . The
magnitude of arrows indicates the magnitude of optical absorption.
We have assumed that all four masses have positive values.

We give an example in Fig. 3(a) when all the masses are
positive, where θ ′

X = θX and θ ′
X = θX.

We have studied analytically the optical matrix element
|Pθ (̃k)| at the Dirac point. Next we investigate it away from the
Dirac point. An analytic solution of the optical matrix element
of right and left elliptically polarized light |Pθ (̃k)|2 is obtained
from Eq. (2). However, the expression is very complicated.
We show the result in Fig. 4 at θ = θX, which shows the
low-energy Dirac theory captures the essential features. There
are sharp peaks in optical absorption near the �X (�′

X) points.
Figure 4(a) shows the optical matrix element |PθX

(̃k)|2 and
|P−θX

(̃k)|2 along the k̃x axis. We clearly see the difference
between the right- and left-polarized lights at the �X (�′

X)
point. There is large optical absorption in right-polarized light,
while no optical absorption in left-polarized light. This is a

FIG. 4. (Color online) (a) Optical matrix element |PθX
(̃k)|2

(red curve) and |P−θX
(̃k)|2 (blue curve) along the k̃x axis. (b)

k̃-resolved optical polarization η(̃k). It has two sharp peaks at the
�X and �′

X points. We have taken m̃X = m̃Y = 2 meV.
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dichroism caused by elliptically polarized light, and the key
feature of the elliptic dichroism.

C. Optical absorption away from the Dirac point

We proceed to drive the analytic expression of |Pθ (̃k)|
away from the �X point with the use of the low-energy
Hamiltonian (8) in (19). It is straightforward to find that

Px (̃k) = ṽ1

ṽ1k̃xm̃X + iṽ2k̃y

√
m̃2

X + ṽ2
1 k̃

2
x + ṽ2

2 k̃
2
y√

ṽ2
1 k̃

2
x + ṽ2

2 k̃
2
y

√
m̃2

X + ṽ2
1 k̃

2
x + ṽ2

2 k̃
2
y

, (30a)

Py (̃k) = ṽ2

ṽ2k̃ym̃X − iṽ1k̃x

√
m̃2

X + ṽ2
1 k̃

2
x + ṽ2

2 k̃
2
y√

ṽ2
1 k̃

2
x + ṽ2

2 k̃
2
y

√
m̃2

X + ṽ2
1 k̃

2
x + ṽ2

2 k̃
2
y

, (30b)

since Px = ṽ1σx and Py = ṽ2σy . At θ = θX, it yields a simple
form,

|PθX
(̃k)|2 = m2

0ṽ1ṽ2

(±m̃X +
√

m̃2
X + ṽ2

1 k̃
2
x + ṽ2

2 k̃
2
y

)2

m̃2
X + ṽ2

1 k̃
2
x + ṽ2

2 k̃
2
y

. (31)

We derive the same formula away from the �′
X point just

replacing m̃X with m̃′
X. Similar formulas are derived also with

respect to the �Y and �′
Y points.

Representing (31) in terms of the energy (11), we obtain

|Pθ (̃k)|2 = m2
0ṽ1ṽ2

[±m̃ + Ev(̃k)]2

[Ev(̃k)]2
, (32)

at θ = θX(Y ) with the use of m̃ = m̃X(Y ), and θ = θ ′
X(Y ) with the

use of m̃ = m̃′
X(Y ), where we have used the relation εv(̃k) =

−εc(̃k) required by the electron-hole symmetry of the energy
spectrum.
We substitute (32) to (18) and use the density of state

ρ(E) = |E|
2πṽ1ṽ2

�(E − 2|m̃|), (33)

with the step function �(x) = 1 for x > 0 and �(x) = 0 for
x < 0, to find

ε±(ω) = e2m2
0

2ε0m2
eω

(±m̃ + ω/2)2

(�ω/2)2
�(ω − 2|m̃|). (34)

Hence there is no optical absorption for

ω = ∓2m̃ > 0. (35)

We show the optical absorption (34) in Fig. 5. A clear
difference is observed between the right- and left-polarized
lights. There is almost no optical absorption for left-polarized
light for ω > 2|m̃|. Here m̃ stands for any of m̃X, m̃′

X, and m̃′
Y .

A perfect elliptic dichroism follows that |PθX
(0)|2 = 0 if

mX > 0, while |P−θX
(0)|2 = 0 if mX < 0. The anisotropy

of the Dirac cone is determined by measuring the ellipticity
angle θX of the injected beam: See Fig. 3. We would expect
θX = 0.317π as in (27). We can also determine the band
gap by measuring the energy where the optical absorption
becomes nonzero (34): See Fig. 5. The role of the right- and
left-polarized light is inverted when the sign of the mass term
is negative. Thus we can determine the sign of the mass term

FIG. 5. (Color online) Imaginary part of dielectric function
ε±(ω) due to interband absorptions at θ = θX: See Eq. (34 ). A
clear difference is observed between the right- and left-polarized
lights. There is almost no optical absorption for left-polarized light
for ω > 2m̃. We have taken m̃ > 0 for definateness.

by the elliptic dichroism even when the magnitude of the
mass term is very small.

D. Optical polarization

We next investigate the k-resolved optical polarization
ηθ (̃k), which is given by [4,5,8,9]

ηθ (̃k) = |Pθ (̃k)|2 − |P−θ (̃k)|2
|Pθ (̃k)|2 + |P−θ (̃k)|2 , (36)

which we show in Fig. 4(b). This quantity is the difference
between the absorption of the left- and right-handed lights
(±θ ), normalized by the total absorption, around the �X point.
Optical polarizations are perfectly polarized at the �X and �′

X

points (̃k = 0). Namely, the selection rule holds exactly at the
�X and �′

X points. Then, |ηθ (̃k)| rapidly decreases to 0 as |̃k|
increases.

E. Valley-selective optical pumping

An interesting valleytronics application of the elliptic
dichroism would read as follows. Let us adjust the ellipticity
of light at θ = θX so that the optical absorption near the �X

point does not occur [Fig. 3(b1)]. Then the optical absorption
is not zero at the �Y point. Namely, we can selectively
excite electrons at the �Y point by left-polarized light. It is a
valley-selective optical pumping. In the same way, by adjusting
θ = θY , we can selectively excite electrons at the �X point by
left-polarized light [Fig. 3(b3)]. The valley-selective optical
pumping is possible since the anisotropy of Dirac cones at �X

and �Y points are different. If the Dirac cones were isotropic,
we could not differentiate the Dirac cones at �X and �Y

points since they have the same chirality. This will pave a way
to valleytronics in the TCI.

VI. CONCLUSIONS

We have investigated the optical absorption on the TCI
surface when gaps are given to surface Dirac cones. First,
the chiralities of all four Dirac cones are identical, which
can be verified by studying the spin direction. Nevertheless,
it is possible to make a selective excitation between the
�X (�′

X) point and the �Y (�′
Y ) point, because the Dirac

cones are anisotropic, where ṽ2/ṽ1 = 0.65. Furthermore, it
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is also possible to make a selective excitation between the
�X and �′

X points when the Dirac masses m̃X and m̃′
X

have the opposite signs. Namely, by tuning the ellipticity
of the polarized light, we can realize a perfect elliptic
dichroism, where only electrons at one valley are excited.
Our results will pave a road toward valleytronics based on
the TCI.
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