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Ab initio quantum transport through armchair graphene nanoribbons: Streamlines
in the current density
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We calculate the local current density in pristine armchair graphene nanoribbons (AGNRs) with varying width,
NC, employing a density-functional-theory-based ab initio transport formalism. We observe very pronounced
current patterns (“streamlines”) with threefold periodicity in NC. They arise as a consequence of quantum
confinement in the transverse flow direction. Neighboring streamlines are separated by stripes of almost vanishing
flow. As a consequence, the response of the current to functionalizing adsorbates is very sensitive to their
placement: adsorbates located within the current filaments lead to strong backscattering, while adsorbates placed
in other regions have almost no impact at all.
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I. INTRODUCTION

The transmission has been investigated intensely in
graphene nanoribbons (GNRs) experimentally [1–8] and also
theoretically using tight-binding calculations [9–15] and first-
principles approaches [16–23]. This strong interest in GNRs
is closely related to their electronic properties: GNRs exhibit
a band gap [24–26] that can be tuned with the ribbon width.
This makes them promising materials for applications, e.g., in
organic optoelectronics.

Quite generally, the design of functional devices will benefit
from chemical modifications of pristine ribbons, for instance,
by placing adsorbates or substituents like boron or nitrogen to
achieve p-type or n-type doping. The electrical conductance
of functionalized armchair GNRs (AGNRs; see Fig. 1) is
typically reduced due to resonant backscattering with localized
states caused by the impurity [10,11,16–19,22,23]. As is well
confirmed by now, the impact of a single impurity on the
conductance is extremely sensitive to its precise placement;
the conductance can drop by an order of magnitude when
shifting the adsorbate from one carbon atom to a neighboring
one. Other defects, such as edge disorder [9,13] or Stone-
Wales defects [12,13], also affect the transmission but with a
dramatically lower sensitivity to the precise defect location.

Motivated by this peculiar situation, we simulate in this
paper the dc-current flow through pristine GNRs. Within
tight-binding models, local (“bond”) currents are frequently
discussed objects in the context of magnetism (e.g., in
Ref. [27]). Concerning experiments, the first measurements
of dc transport properties have already been performed [28].
In contrast, systematic theoretical investigations of local
observables are still rare even for tight-binding models and
are almost absent on the ab initio level [29]. In this context,
it is important to notice that patterns in bond currents are
difficult to interpret quantitatively, particularly with respect to
the intensity of the current modulations. It is easy to see why:
the standard tight-binding model describing the π electrons
of conjugate carbon has only a single parameter that fixes
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the bandwidth. Without additional input, i.e., the explicit
specification of real-space basis functions, a quantitative
relation between bond currents and the physical current density
cannot be established at all, strictly speaking.

For this reason, we set out in this work to investigate
the general pattern of bias-induced current flows through
GNRs quantitatively on the ab initio level. A systematic
dependency of the flow pattern on the ribbon width will be
presented. The results will be interpreted as a manifestation
of (transverse) quantum confinement. The reported sensitivity
of the conductance of AGNRs to the precise placement of
adsorbates will be explained and also why this sensitivity is
absent in zigzag nanotubes.

II. METHOD

In our calculations, we employ the AITRANSS platform,
our density-functional-theory-based transport simulation tool
[30–33]. The local current density is obtained as follows [34]:
We extract the Kohn-Sham (KS) Hamiltonian out of a density
functional theory (DFT) calculation for a structurally non-
relaxed finite-size hydrogen-terminated graphene nanoribbon
with horizontal armchair edges (see Fig. 1) [35]. Subsequently,
we obtain the (retarded) single-particle KS Green’s function Ĝ

of a finite-size strip in the presence of the left and right contacts
by standard recursive Green’s-function techniques [36]:

Ĝ(E) = (
Ĝ−1

0 − �̂L − �̂R

)−1
. (1)

FIG. 1. (Color online) (a) Structure of a hydrogen-terminated
AGNR11 and (b) the corresponding orientation of the Brillouin zone
of the honeycomb lattice with the K points K/K′ = 2π

3a
(
√

3, ± 1).
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FIG. 2. (Color online) Transmission of (a) AGNR11 to (d) AGNR14. The arrows indicate the current patterns’ energies in Fig. 3. The
reference energy EF is the chemical potential of the isolated, charge-neutral species.

The self-energies �̂R and �̂L reflect the presence of the
reservoirs [37], while Ĝ0 represents the bare KS Green’s
function [see Fig. 1(a)]. The local currents follow from
the nonequilibrium Green’s function (NEGF) formalism. It
features the lesser Green’s function with �̂α = i(�̂α − �̂†

α),

Ĝ<(E) = iĜ(E)�̂L(E)Ĝ†(E), (2)

which relates to the local current density (per spin):

dj(r)

dVbias

∣∣∣∣
E

= 1

2π

�
2

2m
lim
r′→r

(∇r′ − ∇r)G<(r,r′,E). (3)

The factor 1/2π arises from an inverse Fourier transform.

III. RESULTS: TRANSMISSION AND CURRENT DENSITY

Figure 2 displays the transmission function T (E) of
AGNRs of width NC [nomenclature: AGNR(NC)] [38]. Here,
T (E) simply counts the energy bands intersecting with a
given energy E. The band gap characteristic of all AGNRs
with its threefold periodicity is clearly seen: minimum with
AGNRs(3m − 1), m ∈ N (≈0.1 eV). This observation reflects
a well-known behavior [24–27,39].

The corresponding current densities dj(r)/dVbias are shown
in Figs. 3 and 4. As one might expect, the current flows
along chemical bonds following the π orbitals. Due to the
central node of pz orbitals, the current flow splits into upper
and lower sheets (see Fig. 4). Within the horizontal plane the

current density dj(r)/dVbias is strongly textured (see Fig. 3).
For instance, in AGNRs(3m − 1) the current splits into m

streamlines, with a fraction of horizontal bonds exhibiting
zero flow. For these ribbons, the streamlines exist in a wide
energy window whenever there is a single transparent channel,
T (E) = 1. For other ribbons, AGNRs(�=3m − 1), streamlines
survive at the edges but start to mix in the bulk. Concerning
their shape, the current patterns merely reflect the symmetry
of the underlying molecular structure. AGNR11 and AGNR13
exhibit a horizontal symmetry axis in the middle, while the
others exhibit a glide reflection symmetry.

Notice, that on the level of our simulations, we see no
indication that this distinctive threefold periodicity in current
patterns washes out at larger values of NC.

IV. DISCUSSION: SELECTION RULES

In order to explain the current pattern, we invoke a
standard zone-folding argument for graphene, here applied
to AGNRs. Hard-wall boundary conditions in the transverse
current direction y imply a selection rule: ky,n = nπ/L,

n ∈ N. A natural choice is L = (NC + 1)a/2, leading to

ky,n = π

(NC + 1)a/2
n = 2π

3a

3n

NC + 1
, (4)

with a = 2.46 Å being the graphene lattice constant [40].

FIG. 3. (Color online) Absolute value of the current density (per bias) associated with a fully transparent channel in a plane 0.5 Å above
the ribbon plane (exact energy E = EF + 0.5 eV, so T (E) = 1 for all ribbons; see Fig. 2). The current flows in the horizontal direction, as
marked by the arrows. We checked that current patterns are identical for different energies E with T (E) = 1. The calculated transmission T (E)
is depicted in Fig. 2. Along the line in AGNR14, the current will be plotted for AGNRs(3m − 1) in Fig. 7.
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FIG. 4. (Color online) Absolute value of the current density (per
bias) in an AGNR11 at T = 1 perpendicular to the ribbon plane
between the white points in Fig. 3(a) using the color scale of
Fig. 3.

For every ribbon with width NC, there is a unique (see Fig. 5)
integer ñ that minimizes the distance |ky,n − Ky |, Ky = 2π

3a
.

The implications of similar selection rules for the spectrum
were already investigated and discussed by previous authors
[27,41,42]. Here, our interest is in the consequences for spatial
properties, particularly the wave function’s nodal structure and
the node placement with respect to the carbon lattice. For this
reason, we focus on the wavelength λNC = 2π/ky,ñ:

λNC = 3a ×
⎧⎨
⎩

1 for NC = 3m − 1,

1 + 1/NC for NC = 3m,

1 − 1/(NC + 2) for NC = 3m + 1.

(5)

As can be seen from Fig. 6, the boundary conditions imply
a partial mismatch of the wave-function extrema with the
carbon lattice. The exceptions are AGNRs(3m−1), where
the nodes of the wave function coincide with the carbon
sites as a consequence of the perfect fit of λ0 = 3a into
the box of AGNRs(3m−1). Hence, charge carriers have no
probability amplitude on these carbon sites, and therefore, the
connecting chemical bonds cannot carry current. Since there
are m − 1 disconnecting bonds, the number of streamlines
is m. We recover the salient features of Fig. 3. Moreover,
the simple particle-in-the-box picture predicts (i) that the shape
of the current envelope is the same for each streamline and (ii)
that the shape is independent of the ribbon width NC. Both
predictions are seen to be confirmed in Fig. 7.

The wave function’s nodes of nonmatching ribbons, NC �=
3m − 1, are seen to be displaced from the carbon sites in
Fig. 6, with small displacements near the edges and shifts of

FIG. 5. (Color online) Cone with discrete ky,n points near the
Dirac point K exemplary for an AGNR12. The states of this
nanoribbon near the Fermi level are arranged on the hyperbolas with
ky,4 = 12/13 Ky and ky,5 = 15/13 Ky due to Eq. (4). So ky,4 lies
uniquely closest to the Dirac point, ñ = 4.

FIG. 6. (Color online) Box with transversal density |ψ |2∝
sin2(ky,ñy) of electronic states in a box with a wavelength according
to Eq. (5). Charge carriers near the Fermi level have to jump to states
with such an envelope when crossing an AGNR.

order of the lattice constant a in the bulk. Correspondingly,
the current density shows streamlines near the edges but a less
pronounced valley structure in the bulk, consistent with earlier
observations in Fig. 3.

Further remarks. (i) All electronic states in a given band
(e.g., see Fig. 5) exhibit the same ky component, i. e., share
the same nodal structure. Therefore, they inherit the same
current pattern, which explains the robustness of the observed
patterns, e.g., against shifting the Fermi energy. (ii) If more
than a single band contributes to the current, the total current
will be a superposition of all bands with streamlines that in
general do not necessarily match. In this case, we observe a
more complicated pattern [see the example in Fig. 8]. (iii) The
energy interval �E with single-channel transport [T (E) = 1]
decreases with the ribbon width:

�E = A

NC
, A = 25 eV ; (6)

see Sec. A 1 for more details. (iv) The nodal structure of the
wave functions is also displayed in the local density of states.
Therefore, the nodal pattern may also be observed in scanning
tunnel microscope (STM) experiments as simulations indicate
[43]; see Sec. A 2.

FIG. 7. (Color online) x component of the current density (per
bias) scaled by the number of streamlines m at E = EF + 0.5 eV
along the line sketched in the AGNR14 in Fig. 3(d) and analogously
for AGNRs(3m−1) with NC = 5 (dark blue line), 8 (magenta line),
11 (green line), and 17 (cyan line). Red ticks show node positions;
see Figs. 3 and 6. Negative currents near nodal lines indicate small
current eddies with backflow.
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FIG. 8. (Color online) Absolute value of the current density in
an AGNR11 with two transmission channels, T = 2 (again, in a
plane 0.5 Å above the ribbon, exact energy E = EF + 1.0 eV). The
observed pattern follows from a superposition of the channel at T = 1
in Fig. 3 and an additional channel with a transversal wavelength
λ �= 3a. Similar to AGNRs(�=3m − 1) at T = 1, streamlines survive
at the edges but start to mix in the bulk.

V. APPLICATION: ADSORBATE PLACEMENT
AND TRANSPORT

In the final section, we apply our results in order to explain
earlier findings on the transport properties of functionalized
AGNRs. It is well known [16–19,22] that the impact of an
impurity (adsorbate that promotes a carbon atom from sp2

to sp3 hybridization) on the transmission is very strongly site
dependent. We confirm this observation in Fig. 9, which shows
that the transmission function of an AGNR11 (structurally
relaxed) in the presence of a single OH group is extremely
sensitive to placement of the adsorbate. Shifting by one lattice
site can change the transmission by orders of magnitude in a
wide energy window.

When analyzing this observation in terms of streamlines,
it has a very simple intuitive explanation. If streamlines do
not touch the adsorption site (at positions 1 and 4 in Fig. 3),
the transmission is hardly affected by the OH group [44].
Our observation implies that even a finite concentration of
adsorbates leaves the transmission invariant as long as they
are placed in regions of zero flow (see Fig. 9 for the case
of 2 OH). This allows an impurity concentration up to 1/3
without significant influence on the transmission. By contrast,
when placing an impurity right into a streamline (positions 2,

FIG. 9. (Color online) Transmission of defected AGNR11 and
the pristine case (dashed) for different OH positions from Fig. 3.
OH is positioned (a) outside and (b) inside a streamline.

3, 5, and 6 in Fig. 3), the transmission is strongly perturbed
(see Fig. 9).

Since the current pattern is a quantum confinement effect,
one might wonder about the fate of the placement sensitivity
after changing from hard-wall to periodic boundary conditions,
i.e., from AGNRs to (zigzag) carbon nanotubes. Clearly, due
to the transverse periodicity, all carbon atoms are equivalent,
and therefore, the tube’s transmission cannot depend on the
impurity placement, consistent with findings in the literature
[16,45].

VI. CONCLUSIONS

In conclusion, we studied the local current density per
bias voltage, dj(r)/dVbias, in pristine armchair graphene
nanoribbons with transport density functional theory. Our
most important result is that dj(r)/dVbias shows pronounced
streamlines; the pattern exhibits a threefold periodicity in the
width of the ribbon.

We explain the effect as a consequence of quantum confine-
ment in the transverse current direction. Due to streamlines,
there is a strong sensitivity of the current response to the
local placement of adsorbates. This sensitivity was well known
before, and our results can provide an intuitive understanding
of it. Finally, we mention that our results can also be
understood as a manifestation of strong spatial structure in
the scattering states of mesoscopic devices. We expect that the
structural elements, “current filaments,” that were observed
in this study are a generic feature of transport through meso-
and nanodevices that has hardly been touched upon before
now.
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APPENDIX: ENERGY RANGE OF STREAMLINES
AND STM IMAGES

In Sec. A 1, the energy interval where streamlines appear
is discussed briefly. Section A 2 provides simulation results
for the energy-resolved equilibrium local electron density of
AGNRs, which can, in principle, be detected by a scanning
tunneling microscope.

1. Energy window for observation of streamlines

As already mentioned in the body of the paper, the
current pattern and the density pattern arrange in streamlines
in AGNRs(3m − 1) only at energies E with a single fully
transparent channel. For energies farther away from the Fermi
level, with two or more current channels, the patterns are more
complicated. The energy range �E with T (E) = 1 is equal to
the distance between the second upper and the second lower
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TABLE I. Testing the dependency of �E and NC for
AGNRs(3m − 1). �E is defined as the energy range when only one
band is present. All calculated values of �E are obtained by ab initio
calculations. In this energy interval �E, the streamlines appear. If
the dependency �E(NC) obeys an inverse correlation �E = A/NC,
the product �E NC will be A for all NC. One should not attach
importance to the exact numerical values since they are strongly
functional/method dependent.

Ribbon Energy range �E �ENC

width NC with T = 1 (eV) (eV)

5 2.63a 13.2
8 2.20a 17.6
11 1.75a 19.3
14 1.48a 20.7
17 1.20a 20.4
20 1.30 [16] 26.0
35 0.75 [16] 26.3
41 0.60b 24.6
44 0.60 [18] 26.4

aThe ranges were extracted from transmission curves as in Fig. 2.
bWe applied the FHI-AIMS packages [46] using the Perdew-Burke-
Ernzerhof (PBE) functional for the DFT calculation employing the
tier 1 basis set.

bands minus the band gap (see Figs. 2 and 5). One expects a
1/NC behavior for this energy interval �E since the discrete
ky,n scale with 1/NC. This behavior is checked in Table I for
AGNRs(3m − 1).

We see a 1/NC behavior: The product of �E and NC is
approximately constant for bigger ribbons, while it deviates
strongly for smaller ribbons, possibly as a result of additional
finite-size effects. Summarizing,

�E = A
1

NC
, A ≈ 25 eV, (A1)

for AGNRs(3m − 1) with m � 4. In this energy interval, the
streamlines with their characteristic nodes are expected to be

detectable by STM. In particular, the energy window vanishes
for the bulk limit NC→∞.

2. STM images

a. Results: Local equilibrium density of states

The energy-resolved local equilibrium density of states
(LDOS) in the presence of the leads is calculated as [34,36]

ρ(r,E) = − 1

π
Im G(r,r,E), (A2)

where G(r,r,E) = 〈r|Ĝ(E)|r〉 [see Eq. (1)]. The simulation
results are shown in Fig. 10: The LDOS at 0.5 eV above the
Fermi level shows strong texturing not only in the direction
transverse to the current flow but also in the longitudinal
direction parallel to the streamlines (compare to Fig. 3). As
one would expect, also the LDOS inherits the nodal structure
of transverse wave functions near the Fermi level. For instance,
for AGNR11 and AGNR14, the density on every third carbon
atom (in the transverse direction) vanishes, consistent with
Fig. 6.

Notice that in contrast to the density the current obeys
the continuity equation, ∇ · j = 0. Hence, texturing in the
longitudinal direction is suppressed for the current, resulting
in streamlines that cannot be observed in the LDOS.

b. Pseudostreamlines in STM images at zero (in-plane)
current flow

In the simplest picture (Tersoff-Hamann theory [47]), a
STM detects the energy-resolved LDOS. Hence, the STM
would detect patterns similar to Fig. 10 if it operated in
a constant-height mode with a tip distance z very close
to the substrate: z = 0.5 Å. With increasing the ribbon-tip
distance, the STM resolves fewer and fewer features of the
π system, so that the longitudinal texturing washes out (see
Fig. 11). In contrast, the transverse nodal structure survives
since even at large distances the sign change of the wave
function can be detected. Therefore, one could expect that

FIG. 10. (Color online) LDOS in a plane 0.5 Å above the ribbon plane [exact energy E = EF + 0.5 eV, so T (E) = 1 for all ribbons; see
Fig. 2]. We checked that the LDOS patterns are identical for energies E with T (E) = 1 except for their amplitude being dependent on the exact
energy. Due to the close AGNR13 van Hove singularity (at ≈EF + 0.4eV), the LDOS at E = EF + 0.5 eV is enhanced in AGNR13 compared
to the other AGNRs.
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FIG. 11. (Color online) LDOS of an AGNR11 in a plane 2 Å
above the ribbon plane at E = EF + 0.5 eV.

STM images taken at larger distances show an LDOS patterned
in a streamline-type manner (“pseudostreamlines”).

The simulated STM image out of Fig. 11 shows this feature.
It is in perfect agreement with results of earlier authors [43],
who have explained this pattern in a much more complicated
way, however. They apply Clar’s theory, a rule originating from
organic chemistry [48,49] that relies on proper placement of
(many) double bonds.

c. Experiments

We are not aware of experimental STM images of
AGNRs(3m − 1) that would show streamlines or pseu-
dostreamlines, probably because the control over the edge ge-
ometry is still an experimental challenge. Edges irregularities
lead to electronic states with node structures strongly deviating
from those of clean AGNRs(3m − 1).

There are indications of the existing of standing wave
patterns in other carbon-based conjugate matter, namely, in
the fullerenes. Since those may also be thought of as graphene
derivates, one would expect a similar wavelength, λ = 3a =
7.4 Å, to appear there as well.

Indeed, consider recent STM experiments on fullerenes
C58 and C60 [50,51]. For a single fullerene, (low-bias) STM
images show a structureless circular spot, roughly consis-
tent with the absence of the analog of hard-wall boundary
conditions, which is roughly similar to (zigzag) carbon
nanotubes discussed above. Boundary conditions removing
the rotational symmetry are realized with the formation of a
chemical bond between two different fullerene cages. Then,
STM images show a stripe pattern with a characteristic
wavelength ≈λ. Given the discussion above, it is not sur-
prising, perhaps, that this wavelength transfers from AGNR to
fullerene electronic states near the Fermi level since fullerenes
and nanoribbons are both a certain kind of derivate of
graphene.
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