
PHYSICAL REVIEW B 89, 195404 (2014)

Influence of Coulomb interaction on the anisotropic Dirac cone in graphene
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Anisotropic Dirac cones can appear in a number of correlated electron systems, such as cuprate superconductors
and deformed graphene. We study the influence of long-range Coulomb interaction on the physical properties of
an anisotropic graphene by using the renormalization group method and 1/N expansion, where N is the flavor
of Dirac fermions. Our explicit calculations reveal that the anisotropic fermion velocities flow monotonously to
an isotropic fixed point in the lowest energy limit in clean graphene. We then incorporate three sorts of disorders,
including random chemical potential, random gauge potential, and random mass, and show that the interplay of
Coulomb interaction and disorders can lead to rich and unusual behaviors. In the presence of strong Coulomb
interaction and a random chemical potential, the fermion velocities are driven to vanish at low energies and the
system turns out to be an exotic anisotropic insulator. In the presence of Coulomb interaction and other two types
of disorders, the system flows to an isotropic low-energy fixed point more rapidly than the clean case, and exhibits
non-Fermi liquid behaviors. We also investigate the nonperturbative effects of Coulomb interaction, focusing on
how the dynamical gap is affected by the velocity anisotropy. It is found that the dynamical gap is enhanced
(suppressed) as the fermion velocities decrease (increase), but is suppressed as the velocity anisotropy increases.
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I. INTRODUCTION

Massless Dirac fermions with a relativistic dispersion are
known to be the low-energy elementary excitations in a variety
of two-dimensional (2D) condensed matter systems, including
d-wave superconductors [1,2], topological insulators [3], and
graphene [4–9]. Different from the conventional Schrodinger
electron systems with a finite Fermi surface, 2D Dirac fermion
systems have discrete Fermi points and a vanishing density of
states (DOS) at the lowest energy. Due to this difference, Dirac
fermion systems exhibit nontrivial properties that cannot be
realized in electron systems with a finite Fermi surface. These
properties become particularly interesting when massless
Dirac fermions couple to some kind of massless bosonic
modes. For instance, Dirac fermions may interact strongly
with a gauge field, a long-range Coulomb potential, or critical
fluctuations of an order parameter, depending on the concrete
materials.

If a Dirac fermion system has an isotropic Dirac cone,
there will be a uniform fermion velocity vF that can be
defined from the kinetic energy ε(k) by the relationship,
vF ∝ ∂ε(k)/∂k|kF

. However, in many cases, the Dirac fermion
systems may be spatially anisotropic for various reasons. A
well-known example is the case of quasi-2D dx2−y2 -wave
cuprate superconductors [1,2], where the massless nodal
quasiparticles have a Fermi velocity vF and a gap velocity
v�, obtained from the derivatives of the Fermi energy and
superconducting gap, respectively. These two velocities are not
equal in magnitude [2], and their ratio vF /v� can be as large
as 10∼20. The velocity ratio is known to strongly affect many
observable quantities [2]. Moreover, it is recently discovered
that the isotropic Dirac cone of graphene can be made
anisotropic once some external force, which might be uniaxial
strain [10–13] or an external periodic potential [14–16], is
applied to the originally ideal honeycomb lattice. When this
happens, Dirac fermions have two different velocities, v1 and
v2, with their ratio δ = v2/v1 measuring the extent of spatial

anisotropy. In addition, it is also possible to realize anisotropic
Dirac cones in other Dirac fermion systems.

An interesting and widely studied problem is how the
velocity anisotropy in Dirac fermion systems is affected by
various interactions. We would like to know whether it is
enhanced, weakened, or entirely suppressed. These problems
deserve serious and systematic investigations for two reasons.
First, the velocity ratio enters into many observable physical
quantities, and hence should have measurable effects. Second,
the interaction-induced nontrivial renormalization of velocity
ratio can lead to a number of unusual behaviors. In the existing
literature, the interactions of Dirac fermions with two sorts of
critical bosonic excitations are broadly studied: gauge fields
and order parameter fluctuations.

Gauge field. It has been proposed that much unusual
physics of underdoped cuprates can be described by an
effective QED3 theory [1,17–21]. Within this effective theory,
massless Dirac fermions couple strongly to an emergent U(1)
gauge field, which may have different physical origins in
different models [1,17–21]. Detailed renormalization group
(RG) calculations have shown that gauge interaction drives the
anisotropic fermion velocities to flow to an isotropic fixed point
[18,21,22], i.e., vF /v� → 1. Therefore the velocity anisotropy
is irrelevant, leading to a restored relativistic invariance [18].

Order parameter fluctuation. In the close vicinity of certain
quantum phase transitions, massless Dirac fermions may
couple to the fluctuation of some order parameters. For
instance, the fermions interact with the fluctuation of a nematic
order parameter at a nematic quantum critical point [23–29],
which is supposed to exist in some d-wave superconductors.
In contrast to the case of a gauge interaction, such interaction
leads to an extreme anisotropy of fermion velocities [23,24],
i.e., v�/vF → 0. Such an extreme anisotropy can give rise
to a series of intriguing properties, such as non-Fermi liquid
behavior [23,25], enhancement of thermal conductivity [26],
and suppression of superconductivity [28]. Furthermore, Dirac
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fermions may couple to an incommensurate antiferromagnetic
order parameter. It was demonstrated [30] that this coupling
is very similar to that between fermions and a nematic
order parameter, so one could expect an analogous extreme
anisotropy in this case.

In this paper, we further investigate the influence of strong
interactions in anisotropic Dirac fermion systems. Here, we
consider the long-range Coulomb interaction in a graphene
that exhibits an anisotropic Dirac cone. RG techniques [31]
will be used to address this issue. We are mainly interested in
how the velocity ratio δ flows in the low-energy regime and
how such flow affects the physical properties of the system.

Recently, the influence of Coulomb interaction on Dirac
fermions with anisotropic dispersion is studied by Sharma
et. al. [32], who have performed RG calculations by making
perturbative expansion in powers of coupling constant α1 =
e2/v1ε, where v1 is supposed to the larger component of the
two velocities. It was argued [32] that Coulomb interaction
can give rise to unusual behaviors. The RG scheme adopted
in Ref. [32] could be improved in two important aspects.
First, in the present problem, the Coulomb interaction strength
is actually determined by both of the two components of
fermion velocities, i.e., v1 and v2, hence the RG calculations
performed by making expansion in powers of α1 may not
be able to capture all the essential features, especially when
the anisotropy becomes strong. Second, the perturbative
expansion in powers of coupling constant α1 is valid only in
the weak coupling regime, i.e., α1 � 1. However, the Coulomb
interaction is known to play a much more significant role in
the strong coupling regime, which cannot be accessed by the
expansion scheme based on small α1.

In order to perform a more general analysis that applies
to both weak and strong couplings, here we will make use of
the 1/N -expansion method, with N being the flavor of Dirac
fermions. This method proves to be powerful in dealing with
field-theoretic models of strongly interacting fermionic sys-
tems. Although the physical fermion flavor is taken to be N =
2, to be explained in Sec. II, we will consider a general large
N . An important advantage of this 1/N -expansion method
is that it can be straightforwardly generalized to include the
nonperturbative effects of strong Coulomb interaction. After
performing explicit RG calculations, we will show that both
v1 and v2 increase monotonously with the decreasing energy
and that the velocity ratio flows to unity, i.e., v2/v1 → 1, in the
lowest energy limit. Apparently, the anisotropic Dirac fermion
system is driven to approach a stable isotropic fixed point at
low energies by the Coulomb interaction.

It is also interesting to study the effects of quenched
disorders, which exist in almost all realistic graphene samples
and are known to govern many low-temperature transport
properties [6,8,9]. The interactions between Dirac fermions
and various disorders have recently stimulated extensive
research works [33–36]. According to their coupling to Dirac
fermions, disorders are usually divided into three classes:
a random chemical potential, a random gauge potential,
and random mass. We investigate the interplay of Coulomb
interaction and fermion-disorder interaction, and demonstrate
that it leads to a series of unusual behaviors, including the
breakdown of Fermi liquid and emergence of non-Fermi liquid
states. Further, it is shown that a random chemical potential

exerts very different influence on the system compared with a
random gauge potential and random mass. To understand these
behaviors in more detail, we calculate the Landau damping
rate, the DOS, and the specific heat after taking into account the
effects of singular velocity renormalization and then discuss
the physical properties of these quantities.

When the Coulomb interaction is sufficiently strong, a
finite fermion gap may be dynamically generated through
the formation of excitonic particle-hole pairs [37–48]. The
dynamical gap generation drives an instability of the original
semimetal ground state of graphene and leads to a semimetal-
insulator quantum phase transition. Since the conventional
perturbative expansion is unable to study this problem, we will
combine the 1/N expansion with the Dyson-Schwinger (DS)
gap equation methods, and then analyze the nonperturbative
effects of strong Coulomb interaction. Our main interest here is
the dependence of the dynamical gap generation on the fermion
velocities and velocity ratio. In the presence of velocity
anisotropy, the DS gap equation is formally very complicated.
To simplify numerical computations, we introduce a number of
approximations and try to extract some common feature from
the numerical results. Our results show that the dynamical gap
gets enhanced (suppressed) as the fermion velocities decrease
(increase), whereas the dynamical gap is suppressed as the
anisotropy increases.

The rest of the paper is organized as follows. In Sec. II,
we write down the Hamiltonian and provide the Feynman
rules that are used in the following calculations. Three sorts of
disorders are introduced explicitly in this section. In Sec. III,
we calculate the corrections to the self-energy function of
fermions and the fermion-disorder vertex due to the interplay
of Coulomb interaction and fermion-disorder interaction. We
then derive the RG flow equations for fermion velocities and
disorder strength parameters. In Sec. IV, we present numerical
solutions of RG equations at four different limits and give a
detailed interpretation of the results. In Sec. V, we compute
a number of physical quantities after taking into account the
velocity renormalization. In Sec. VI, we consider the effects of
anisotropy on the dynamical gap generation after including the
nonperturbative effects of Coulomb interaction. In Sec. VII, we
summarize our results and discuss their physical implications.

II. MODEL HAMILTONIAN

After monolayer graphene was successfully separated in
laboratories [4,5], a great deal of experimental and theoretical
efforts have been devoted to explore its novel and fascinating
properties [6,8,9]. Compared to the conventional metals, the
most remarkable new feature of graphene is that its low-
energy excitations are massless Dirac fermions having a linear
dispersion. Since the fermion DOS vanishes at the neutral
Dirac points, the Coulomb interaction between Dirac fermions
remains long-ranged after including the dynamical screening
due to particle-hole excitations. It is thus widely expected that
such a long-range Coulomb interaction is responsible for many
unusual behaviors of graphene [6,8,9].

The physical effects of Coulomb interaction have been
extensively investigated, with those on fermion velocity renor-
malization [49–51], thermodynamics [52–54], and electric
conductivity [35,55–62] being particularly intriguing. Here
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we are mainly interested in the singular fermion velocity
renormalization caused by the Coulomb interaction. If the
Dirac cone is isotropic, the uniform velocity vF will be strongly
renormalized by Coulomb interaction, and driven to diverge
in the lowest energy limit [49–51]. It is remarkable that the
predicted singular renormalization of fermion velocity has
already been observed in ultraclean suspended graphene [63],
in graphene placed on a boron nitride (BN) substrate [64], and
in ARPES measurements of quasi-free-standing graphene on
silicon carbide (SiC) [65]. However, when graphene exhibits
an anisotropic Dirac cone, the two components of fermion
velocities should be renormalized separately. In this case, the
velocity ratio may flow to some nontrivial fixed point.

We now write down the total Hamiltonian of the system. The
free Hamiltonian of massless Dirac fermions with anisotropic
dispersion is

H0 = i

N∑
σ=1

∫
d2x	̄σ (x) [v1γ1∇1 + v2γ2∇2] 	σ (x), (1)

where 	̄ = 	†γ0. Here we have defined 4 × 4 matrices
γ0,1,2 = (τ3,−iτ2,iτ1) ⊗ τ3 in terms of Pauli matrices τi

with i = 1,2,3, which satisfy the anticommutation relation
{γμ,γν} = 2diag(1,−1,−1). The spin index is σ , which takes
all integers from 1 to N . The physical value of spin degeneracy
is N = 2. However, to perform 1/N expansion, it is convenient
to generalize the flavor to a large, general N . The two spatial
components of the anisotropic fermion velocities are v1 and
v2, respectively. The massless Dirac fermions couple to each
other through the long-range Coulomb interaction

Hee = 1

4π

N∑
σ,σ ′=1

∫
d2xd2x′ρσ (x)

e2

ε|x − x′|ρσ ′(x′), (2)

where ρσ (x) = 	̄σ (x)γ0	σ (x) and ε is the dielectric constant
whose magnitude is determined by the substrate.

The disorder scattering process can be described by
coupling the Dirac fermions to a random field A(x) in the
following manner [34]:

Hdis = v�

N∑
σ=1

∫
d2x	̄σ (x)�	σ (x)A(x). (3)

The random field A(x) is a quenched Gaussian variable, which
satisfies

〈A(x)〉 = 0, 〈A(x)A(x′)〉 = �δ2(x − x′), (4)

where � is a dimensionless variance. Here, we consider three
types of disorders distinguished by the definitions of the �

matrix [34]. More concretely, � = γ0 for a random chemical
potential, � = (γ1,γ2) and v� = (v�1,v�2) for a random gauge
potential, and � = 14×4 for random mass. Physically, a random
chemical potential may be induced by local defects, neutral
impurity atoms or neutral absorbed atoms in the plane of
graphene [7,66]; a random gauge field can be generated
by ripples of graphene [6,35,36,67]; random mass may be
produced by the random configurations of the substrates
[68,69].

FIG. 1. One-loop Feynman diagram for dynamical screening
of Coulomb interaction, where the solid line represents the free
propagator of Dirac fermions, the thin wavy line represents the bare
Coulomb interaction function, and the thick wavy line represents the
dynamically screened Coulomb interaction function.

Starting from H0, it is easy to obtain the free Dirac fermion
propagator

G0(iω,k) = 1

−iωγ0 + v1k1γ1 + v2k2γ2
. (5)

The bare Coulomb interaction is

D0(q) = 2πe2

ε|q| . (6)

At the one-loop level, the polarization is given by

�(i�,q) = −N

∫
dω

2π

d2k
(2π )2

Tr [γ0G0 (iω,k) γ0

× G0(iω + i�,k + q)]

= N

8v1v2

v2
1q

2
1 + v2

2q
2
2√

�2 + v2
1q

2
1 + v2

2q
2
2

. (7)

It is consistent with the polarization obtained by Sharma et al.
[32]. It is shown perviously [70,71] that the polarization in
strained graphene is related to the polarization in unstrained
graphene by an additional prefactor and a linear transformation
for the momenta. Here, the polarization is calculated by
starting directly from a fermion propagator with an anisotropic
dispersion, namely Eq. (5). The polarization obtained in
Refs. [70,71] is basically equivalent to Eq. (7) at the zero
chemical potential limit.

According to the diagram shown in Fig. 1, the dressed
Coulomb interaction should be written as

D−1(i�,q) = ε|q|
2πe2

+ N

8v1v2

v2
1q

2
1 + v2

2q
2
2√

�2 + v2
1q

2
1 + v2

2q
2
2

. (8)

In the isotropic case, v1 = v2 = v, hence the strength of
Coulomb interaction can be well described by a single parame-
ter α = e2/vε. In the anisotropic case, however, the Coulomb
interaction is actually characterized by two parameters, i.e.,
the coupling α1 = e2/v1ε and the velocity ratio δ = v2/v1.
Therefore, at any given coupling α1, the effective interaction
strength is changing as one tunes the ratio δ.

III. RENORMALIZATION GROUP ANALYSIS
TO THE LEADING ORDER OF 1/N EXPANSION

In this section, we first calculate the self-energy corrections
of Dirac fermions caused by the interplay of Coulomb interac-
tion and disorder scattering, and then calculate the corrections
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FIG. 2. Fermion self-energy correction due to (a) Coulomb
interaction and (b) disorder. The dashed line represents disorder
scattering.

to the fermion-disorder vertex. On the basis of these results,
we will be able to derive the analytical expressions of RG
flow equations for fermion velocities and disorder strength
parameters. Our calculations are done to the leading order of
1/N expansion.

A. Fermion self-energy and vertex correction

The Dirac fermions receive self-energy corrections from
both the Coulomb interaction and the fermion-disorder interac-
tion, described by the diagrams shown in Fig. 2. According to
Fig. 2(a), the fermion self-energy due to Coulomb interaction
is given by

�C(iω,k) = −
∫

d2q
(2π )2

∫
d�

2π
γ0G0(i� + iω,q + k)γ0

×D(i�,q). (9)

After substituting Eqs. (5) and (8) into this expression and
performing tedious analytical calculations, which are detailed
in Appendix A, we obtain

d�C(iω,k)

d ln �
= −iωγ0C0 + v1k1γ1C1 + v2k2γ2C2, (10)

where

C0 = 1

8π3

∫ +∞

−∞
dx

∫ 2π

0
dθ

× −x2 + cos2 θ + (v2/v1)2 sin2 θ

[x2 + cos2 θ + (v2/v1)2 sin2 θ ]2
G(x,θ ), (11)

C1 = 1

8π3

∫ +∞

−∞
dx

∫ 2π

0
dθ

× −x2 + cos2 θ − (v2/v1)2 sin2 θ

[x2 + cos2 θ + (v2/v1)2 sin2 θ ]2
G(x,θ ), (12)

C2 = 1

8π3

∫ +∞

−∞
dx

∫ 2π

0
dθ

× −x2 − cos2 θ + (v2/v1)2 sin2 θ

[x2 + cos2 θ + (v2/v1)2 sin2 θ ]2
G(x,θ ), (13)

and

G−1(x,θ ) = 1

2πα1
+ N

8v2/v1

cos2 θ + (v2/v1)2 sin2 θ√
x2 + cos2 θ + (v2/v1)2 sin2 θ

(14)

with α1 = e2

v1ε
. Here, we point out that Eqs. (11)–(14) can also

be written in the symmetric forms presented in Appendix C. In
order to directly compare our results to those obtained based
on a perturbative expansion in powers of α1 [32,72], we will
use the nonsymmetric expressions of C0,1,2 and G.

According to Fig. 2(b), the fermion self-energy induced by
disorder takes the form

�dis(iω) = �v2
�

∫
d2q

(2π )2
�G0(iω,q)�

= iωv2
��

∫
d2q

(2π )2

�γ0�(
ω2 + v2

1q
2
1 + v2

2q
2
2

) . (15)

Different from the case of the Coulomb interaction, �dis(iω)
is independent of momentum, which reflects the fact that
disorders are static. We now have

d�dis(iω)

d ln �
= Cgiωγ0, (16)

where

Cg = v2
��

2πv1v2
(17)

for a random chemical potential and random mass, and

Cg =
(
v2

�1 + v2
�2

)
�

2πv1v2
(18)

for a random gauge potential.
We next consider the corrections to the fermion-disorder

vertex, which receives contributions from both Coulomb
interaction and fermion-disorder interaction, as described by
the diagrams shown in Fig. 3. According to Fig. 3(a), at zero

FIG. 3. Fermion-disorder vertex correction due to (a) Coulomb
interaction and (b) disorder.
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external momentum and frequency, the vertex correction due
to Coulomb interaction is calculated as follows:

VC = −
∫

d�

2π

∫
d2q

(2π )2
γ0G0(i�,q)v��G0(i�,q)γ0

×D(i�,q). (19)

After analytical calculations detailed in Appendix B, we have

dVC

d ln �
= v�γ0 (−C0) (20)

for a random chemical potential,

dVC

d ln �
= v�1γ1 (−C1) , (21)

dVC

d ln �
= v�2γ2 (−C2) (22)

for the γ1 and γ2 components of a random gauge potential,
respectively, and

dVC

d ln �
= v�1 (C0 − C1 − C2) (23)

for random mass.
According to Fig. 3(b), at zero momentum, the vertex

correction due to averaging over disorders is found to be

Vdis = �v2
�

∫
d2q

(2π )2
�G0(iω,q)v��G0(iω,q)�. (24)

It is shown that

dVdis

d ln �
= v�γ0Cg (25)

for a random chemical potential,

dVdis

d ln �
= 0 (26)

for a random gauge potential, and

dVdis

d ln �
= −v�1Cg (27)

for random mass.

B. Derivation of the RG equations

The fermion self-energy corrections and fermion-disorder
corrections obtained in the last section will be used to derive
the relevant RG equations. According to the renormalization
group theory [24,27,31], after integrating out the fields in the
momentum shell �/b < k < � with b > 1, where b can be
written as b = el with a running scale l > 0, we can get the
following action for the fermion:

S	 =
N∑

σ=1

∫
dω

2π

d2k
(2π )2

	̄σ (iω,k)
[
G−1

0 (iω,k) − �C(iω,k)

−�dis(iω,k)
]
	σ (iω,k),

≈
N∑

σ=1

∫
dω

2π

d2k
(2π )2

	̄σ (iω,k)
[−iωγ0e

∫ l

0 dl(−C0+Cg)

+ v1k1e
∫ l

0 dl(−C1) + v2k2e
∫ l

0 dl(−C2)]	σ (iω,k). (28)

In the spirit of RG theory [24,27,31], one can perform the
following rescaling transformation:

ki = k′
ie

−l , (29)

ω = ω′e−l , (30)

	σ (iω,k) = 	 ′
σ (iω′,k′)e

1
2

∫ l

0 dl(4+C0−Cg ), (31)

v1 = v′
1e

∫ l

0 dl(−C0+C1+Cg), (32)

v2 = v′
2e

∫ l

0 dl(−C0+C2+Cg), (33)

which should keep the kinetic term of fermions invariant,
namely

S	 ′ =
N∑

σ=1

∫
dω′

2π

d2k′

(2π )2
	̄ ′

σ (iω′,k′)[−iω′γ0 + v′
1k

′
1

+ v′
2k

′
2]	 ′

σ (iω′,k′). (34)

After including the influence of interaction, the action for
the disorder scattering to the fermion becomes

Sdis =
N∑

σ=1

∫
dω

2π

d2k
(2π )2

∫
d2k1

(2π )2
	̄σ (iω,k) (� + VC

+Vdis) 	σ (iω,k1)A(k − k1). (35)

Specifically,

Sdis ≈
N∑

σ=1

∫
dω

2π

d2k
(2π )2

∫
d2k1

(2π )2
	̄σ (iω,k)v�γ0

× e
∫ l

0 dl(−C0+Cg)	σ (iω,k1)A(k − k1) (36)

for a random chemical potential,

Sdis ≈
N∑

σ=1

∫
dω

2π

d2k
(2π )2

∫
d2k1

(2π )2
	̄σ (iω,k)v�γ1

× e
∫ l

0 dl(−C1)	σ (iω,k1)A(k − k1), (37)

Sdis ≈
N∑

σ=1

∫
dω

2π

d2k
(2π )2

∫
d2k1

(2π )2
	̄σ (iω,k)v�γ2

× e
∫ l

0 dl(−C2)	σ (iω,k1)A(k − k1) (38)

for the γ1 and γ2 components of a random gauge potential,
respectively, and

Sdis =
N∑

σ=1

∫
dω

2π

d2k
(2π )2

∫
d2k1

(2π )2
	̄σ (iω,k)v�1

× e
∫ l

0 dl(C0−C1−C2−Cg )	σ (iω,k1)A(k − k1) (39)

for the random mass. Carry out the scaling (29)–(31) along
with

A(k) = A′(k′)el, (40)

and

v� = v′
� (41)
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for a random chemical potential,

v�1 = v′
�1e

∫ l

0 dl(−C0+C1+Cg ), (42)

v�2 = v′
�2e

∫ l

0 dl(−C0+C2+Cg) (43)

for the γ1 and γ2 components of a random gauge potential,
respectively, and

v� = v′
�e

∫ l

0 dl(−2C0+C1+C2+2Cg ) (44)

for random mass. Then the corresponding action can keep the
invariant form as

Sdis =
N∑

σ=1

∫
dω′

2π

d2k′

(2π )2

∫
d2k′

1

(2π )2
	̄ ′

σ (iω′,k′)v′
��

×	 ′
σ (iω′,k′

1)A′(k′ − k′
1). (45)

From Eqs. (32), (33), (41)–(44), we can get the renormalization
group equations:

dv1

dl
= (C0 − C1 − Cg)v1, (46)

dv2

dl
= (C0 − C2 − Cg)v2, (47)

d (v2/v1)

dl
= (C1 − C2)

v2

v1
, (48)

and

dv�

dl
= 0 (49)

for a random chemical potential,

dv�1

dl
= (C0 − C1 − Cg)v�1, (50)

dv�2

dl
= (C0 − C2 − Cg)v�2 (51)

for the γ1 and γ2 components of a random gauge potential,
respectively,

dv�

dl
= (2C0 − C1 − C2 − 2Cg)v� (52)

for random mass.

IV. NUMERICAL RESULTS

In this section, we present numerical solutions of RG
equations obtained in Sec. III and discuss their physical
implications. In order to examine the effects of various physical
mechanisms and parameters, it is helpful to analyze the results
at different limits. First, we consider the case of an isotropic
Dirac cone in the absence of disorders. Second, we consider the
case of an anisotropic Dirac cone in the absence of disorders.
Third, we consider an isotropic Dirac cone in the presence of
disorders. Finally, we turn to the anisotropic Dirac cone in the
presence of disorders.

A. Clean isotropic case

We first consider graphene with isotropic Dirac cones and
uniform velocity, v1 = v2 = v, and assume the sample is clean.
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FIG. 4. (Color online) Renormalized fermion velocity for
isotropic Dirac cone and without disorder.

In this case, the velocity flows as

dv

dl
= Cv, (53)

where

C = 4

Nπ2

⎡
⎢⎢⎣1 − 1

λ

π

2
+ 1

λ

⎧⎪⎪⎨
⎪⎪⎩

1√
1−λ2 arccos (λ) λ < 1

1√
λ2−1

arccosh (λ) λ > 1

1 λ = 1

⎤
⎥⎥⎦

with λ = Nπα
4 . This result has previously been obtained

by Son [51]. The renormalized fermion velocity, shown in
Fig. 4, increases monotonically in the low-energy regime.
It is interesting that this behavior is recently observed in
experiments [63–65].

B. Clean anisotropic case

We then consider clean graphene with an anisotropic Dirac
cone. We obtain the following flow equations of fermion
velocities v1,2 and their ratio:

dv1

dl
= (C0 − C1) v1, (54)

dv2

dl
= (C0 − C2) v2, (55)

d (v2/v1)

dl
= (C1 − C2)

v2

v1
, (56)

where C0,1,2 are given in Sec. III. From Fig. 5, it is easy to see
that both v1 and v2 increase monotonically with the decreasing
energy scale, and that the velocities flow to the isotropic limit
at the lowest energy, i.e., v2/v1 → 1 as l → ∞. Apparently,
the velocity anisotropy is irrelevant, analogous to the case of
QED3 [18,21,22]. Notice this conclusion is different from the
nonmonotonic flow of velocity ratio claimed in Ref. [32].

It is now necessary to make a comparison between our
results and those of Ref. [32]. Sharma et. al. investigated the
influence of Coulomb interaction on Dirac fermion systems
with an anisotropic dispersion by performing a perturbative
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FIG. 5. (Color online) Renormalized v1, v2, and v2/v1 at fixed
coupling α10 = e2/εv10 = 1 in the absence of disorders.

expansion in powers of α1 = e2/v1ε [32]. They found that the
system will flow to three different fixed points, depending
on the initial values of α1 and δ = v2/v1 − 1 (notice that
the meaning of δ in our paper is different from Ref. [32]),
where it is assumed that v2 < v1 with δ = −1 representing an
infinite anisotropic limit. When α1 is small and |δ| is smaller

than a certain critical value, the flow of δ is not monotonic.
In particular, the anisotropy of fermion dispersion initially
increases with decreasing energy in a range of energy scale,
but finally goes to an isotopic limit at the lowest energy. If α1 is
strong enough, the system can become an anisotropic insulator.
If α1 is small and |δ| is larger than a certain critical value,
the system will become a quasi-one-dimensional non-Fermi
liquid. It is obvious that these results differ significantly from
ours.

We would point out that the perturbative expansion
presented in Ref. [32] is valid if the Coulomb interaction
is weak. This expansion scheme is no longer valid when
the Coulomb interaction becomes strong. In addition, the
Coulomb interaction strength actually depends on both α1 and
δ. Since δ itself also flows strongly with the varying energy,
it seems questionable to make a perturbative expansion in
powers of α1 alone. In order to avoid these problems and make
the RG analysis reliable for both weak and strong couplings,
we have chosen to study the influence of Coulomb interaction
on velocity anisotropy by means of the 1/N expansion. As
demonstrated in our results, the anisotropic system flows to
an isotropic fixed point. An earlier calculation of Aleiner
et al. has showed that the long-range Coulomb interaction
tends to suppress the strength of a trigonal wrapping term,
which otherwise can make the system anisotropic [73]. Our
conclusion, though based on a different approach, agrees with
that of Ref. [73].

When the Coulomb interaction becomes sufficiently strong,
the perturbative 1/N expansion is also invalid since the
interaction may lead to an excitonic instability. We do agree
with Ref. [32] on the opinion that the excitonic insulating
transition should be investigated by means of a nonperturbative
method. This issue will be addressed in Sec. VI by constructing
and solving the self-consistent DS gap equation.

C. Disordered and isotropic case

Now we come to the case of an isotropic Dirac cone in
the presence of disorders. After assuming v1 = v2 = v and
introducing disordered potentials, we find that

dv

dl
= (C − Cg)v, (57)

and that

dv�

dl
= 0 (58)

for a random chemical potential,

dv�

dl
= (C − Cg)v� (59)

for a random gauge potential, and

dv�

dl
= 2(C − Cg)v� (60)

for random mass. Apparently, the flows of v� in a random
gauge potential and random mass are very similar, but are
quite different from a random chemical potential.

The fixed point α∗ for a random chemical potential, a
random gauge potential, and random mass can be obtained
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by setting

C(α∗) − Cg(α∗) = 0. (61)

The expression of C as a function of α is presented in
Sec. IV A. As will be shown in Eqs. (63), (65), and (67),
Cg can also be written as a function of α, in different forms
for different kinds of disorders. This issue has been studied
earlier by Stauber et al. [34], who have made perturbative
expansions in powers of interaction strength. It was discovered
in Ref. [34] that α∗ ∝ �−1 for a random chemical potential,
α∗ ∝ � for a random gauge potential, and α∗ ∝ �3 for random
mass. Our calculations are performed by means of a 1/N

expansion approach and have reached quantitatively different
results, depicted in Fig. 6. However, in agreement with the
qualitative results of Stauber et al. [34], we find that the fixed
points for both a random gauge potential and random mass are
stable, whereas there is no stable fixed point for a random
chemical potential. We now present our results for a ran-
dom chemical potential, a random gauge potential, and random
mass, respectively, in order.

For a random chemical potential, Eq. (58) implies that

v� = v�0, (62)

then Cg can be written as the function of α:

Cg = v2
��

2πv2
= v2

�0�

2πv2
=

(
v2

�0�ε2

2πe4

)
α2. (63)

The lines of fixed points are shown in Fig. 6(a). Apparently,
the fixed points are unstable in this case. Figure 7(a) shows
the velocity flow at different values of α0. If α0 is smaller than
some critical value α∗(�), the velocity increases continuously
as the energy scale is decreasing, and the effective strength
of Coulomb interaction flows to the infinitely weak coupling
limit. In this case, the weak Coulomb interaction is obviously
irrelevant. However, when α0 > α∗(�), the fermion velocity
decreases with decreasing energy scale, and finally vanishes at
certain finite energy scale, which means the effective strength
of Coulomb interaction is greatly enhanced and flows to an
infinitely strong coupling limit before l approaches infinity.
Such unusual behaviors may be interpreted as a signature for
the emergence of an interaction-driven insulating phase [34].

For a random gauge potential, Eqs. (57) and (59) combine
to yield

v�

v
= v�0

v0
, (64)

now Cg can be written as

Cg = v2
��

πv2
= v2

�0�

πv2
0

, (65)

which is a constant. The lines of fixed points are shown in
Fig. 6(b). The fixed points are stable in this case. We see from
Fig. 7(b) that the fermion velocity either increases or decreases
with the decreasing energy scale, depending on the concrete
value of α0, but finally are saturated to certain finite values.
This behavior is consistent with previous results obtained in
Refs. [34] and [35]. It is argued in Ref. [35] that such disorder
dependent fixed point can give rise to a number of interesting
properties, such as nonuniversal minimum dc conductivity.

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

(a)

α∗

b 1
Δ

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

α∗

b 2
Δ

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

(c)

α∗

b 3
Δ

FIG. 6. (Color online) Fixed points for (a) a random chemical

potential with b1 = ε2v2
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e4 , (b) a random gauge potential with b2 = v2
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and (c) random mass with b3 = v2
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.

For random mass, Eqs. (57) and (60) lead to

v�

v2
= v�0

v2
0

, (66)
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so Cg becomes a function of α,

Cg = v2
��

2πv2
= v2

�0�v2

2πv4
0

=
(

v2
�0�e4

2πε2

)
α−2. (67)

As shown in Fig. 6(c), the fixed points are stable. According
to Fig. 7(c), the fermion velocity is also saturated to finite
values at the low-energy limit, similar to the case of a random
gauge potential. An apparent conclusion is that a random
chemical potential leads to very different behaviors compared
with a random gauge potential and random mass.

It is necessary to remark on the insulating behavior
happening in the presence of a random chemical potential.
This presumed insulating state is formed by the interplay of
strong Coulomb interaction and a random chemical potential,
and is signalled by the absence of a stable fixed point and the
divergence of interaction strength. At this stage, it is premature
to judge whether this insulator is associated with an excitonic
pairing instability [37–48] or a disorder-driven localizationlike
state. We feel that the present RG scheme alone is unable
to uncover the fundamental nature and detailed properties of
such an insulating state. Further research effort is called for to
investigate this problem.

D. Disordered and anisotropic case

We finally come to the general and most interesting case
in which both anisotropy and disorder are present. We will
show that Coulomb interaction and fermion-disorder coupling
can result in rich behaviors. The physical properties are very
complicated and determined by several parameters, including
Coulomb coupling α10 and bare velocity ratio δ10 = v20/v10.
To simplify our analysis, we fix the coupling at α10 = 1 and
examine how the two velocities and their ratio flow as δ0 is
varying.

For a random chemical potential, we remember that v�

remains a constant, i.e., v� = v�0. At a fixed Coulomb
coupling α10 = 1, the renormalized velocities v1,2 and the
ratio v2/v1 for different bare values of ratio δ0 are presented
in Fig. 8. In the current case, there is a critical value δ0c

lying in the range 0.6 < δ0c < 0.7. When δ0c < δ0 � 0.9,
the corresponding Coulomb interaction is relatively weak.
Both v1 and v2 increase monotonically as the energy scale
is decreasing, whereas the velocity ratio v2/v1 → 1 at the
lowest energy, which corresponds to an isotropic fixed point.
On the other hand, if 0.5 � δ0 < δ0c, the Coulomb interaction
becomes sufficiently strong. In this case, both v1 and v2

decrease rapidly as the energy is lowering, and are driven
to vanish at certain finite energy scale. The latter behavior
suggests the disappearance of well-defined quasiparticles, and
probably indicate the appearance of an anisotropic insulating
phase.

In the presence of a random gauge potential, we know from
Eqs. (46), (47), (50), and (51) that

v�1

v1
= v�10

v10
and

v�2

v2
= v�20

v20
. (68)

The RG flows of velocities v1,2 and ratio v2/v1 are presented in
Fig. 9. It is easy to observe that, both v1 and v2 increase initially
but finally approach certain finite values. In addition, the ratio
v2/v1 eventually flows to an isotropic limit, i.e., v2/v1 → 1,
at the lowest energy. Comparing to the clean and anisotropic
case, v2/v1 flows to unity more rapidly.

For random mass, the flows of v1, v2, v2/v1 and v� are
depicted in Fig. 10. v1,2 and v� are all saturated to finite values
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FIG. 8. (Color online) Renormalized v1, v2, and v2/v1 at fixed
coupling α10 = 1 in the presence of a random chemical potential
with v2

�0�/v2
10 = 0.05.

and v2/v1 → 1 in the lowest energy limit. These properties
are qualitatively very similar to those in the case of a random
gauge potential, but is apparently distinct from those in the
case of a random chemical potential.
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FIG. 9. (Color online) Renormalized v1, v2, and v2/v1 at fixed
coupling α10 = 1 in the presence of a random gauge potential with
v2

�0�/v2
10 = 0.05. Here, we take v�10 = v�20 = v�0.

V. INFLUENCE OF FERMION VELOCITY
RENORMALIZATION

In the last section, we have already shown that the long-
range Coulomb interaction, sometimes in collaboration with
disorders, can have remarkable effects on the low-energy
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FIG. 10. (Color online) Renormalized v1, v2, and v2/v1 with α10 = 1, where α10 = e2/εv10 if there is random mass with v2
�0�/v2

10 = 0.05.

properties of fermion velocities and velocity ratio. These
effects should manifest themselves in various physical quanti-
ties. In order to make these effects more transparent, here we
calculate several physical quantities, including quasiparticle
damping rate, DOS, and specific heat, and discuss the physical
implications of the results.

A. Landau damping rate

Landau damping rate is an important quantity that is
frequently used to characterize the effects of inter-particle
interactions and to judge whether an interacting many-body
system is a Fermi liquid or not. This quantity is intimately
related to the wave renormalization function, which can be
calculated as follows:

Zf (ω) = 1∣∣1 − ∂
∂ω

Re�R(ω)
∣∣ , (69)

where Re�R(ω) is the real part of the retarded fermion self-
energy function. However, taking advantage of the RG scheme
used in this paper, it is more convenient to write it in the
following form:

Zf = e
∫ l

0 (C0−Cg)dl . (70)

Using the results obtained in Sec. III, it is easy to get

dZf

dl
= (C0 − Cg)Zf , (71)

where C0 and Cg , given in Sec. III A, represent effects of
Coulomb interaction and disorders, respectively.

In the clean limit, Cg = 0, we have

dZf

dl
= C0Zf . (72)

As shown in Fig. 11, Zf initially decreases with growing l,
but is saturated to a finite value as l → ∞, independent of the
values of bare velocity ratio. The finiteness of Zf indicates
that the Dirac quasiparticles are well-defined. These results
are well consistent with previous RG analysis presented in
Ref. [50].

In the presence of disorders, the initial value of Cg becomes
finite. We show the flowing behaviors of Zf with growing l

in the presence of a random chemical potential in Fig. 12.
At fixed coupling α10 = 1, there is a critical value δ0c in the
range 0.6 < δ0 < 0.7. In the range δ0c < δ0 � 0.9 where the
Coulomb interaction is relatively weak, Zf approaches certain
finite value as l → ∞ and the system is a stable Fermi liquid. In
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FIG. 11. (Color online) Wave renormalization factor for different
v20/v10 at fixed coupling α10 = 1 in the absence of disorders.

such a case, the fermion velocities and Zf all flow in the same
way as that in the clean limit, so the observable quantities (such
as DOS and specific heat) are also very similar to those in clean
graphene. However, in the range 0.5 < δ0 � δ0c where the
Coulomb interaction becomes sufficiently strong, Zf vanishes
even when l is still finite. In addition, the fermion velocities
decrease rapidly to zero at certain finite energy scale. These
unusual behaviors indicate the instability of Fermi liquid and
may, as aforementioned, correspond to the formation of an
insulating state, where observable quantities (including DOS
and specific heat) should all vanish in the low-energy regime.

The l dependence of Zf in the presence of a random gauge
potential and random mass are shown in Figs. 13 and 14,
respectively. The most noticeable common feature of these
figures is that Zf vanishes as l → ∞, which is independent
of the concrete values of bare velocity ratio δ0. This property
is a signature of the emergence of non-Fermi liquid behaviors.
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FIG. 12. (Color online) Wave renormalization factor for different
v20/v10 at fixed coupling α10 = 1 in the presence of a random chemical
potential with v2

�0�/v2
10 = 0.5.
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FIG. 13. (Color online) Wave renormalization factor for different
v20/v10 at fixed coupling α10 = 1 in the presence of a random gauge
potential with v2

�0�/v2
10 = 0.05.

More concretely, Zf behaves as

lim
l→∞

ln(1/Zf )/l = η (0 < η < 1) (73)

in the low-energy limit. Here, the magnitude of constant η is
determined by the parameters α10, v20/v10 and v2

�0�/v2
10. We

can further write

Zf ∝ (e−l)η. (74)

Rewriting the energy as ω = ω0e
−l , it is then easy to obtain

the real part of retarded self-energy:

Re�R(ω) ∝ ω1−η. (75)

Using the Kramers-Kronig relation, we obtain the imaginary
part of retarded self-energy

Im�R(ω) ∝ ω1−η, (76)

which is typical non-Fermi liquid behavior since 0 < η < 1.
Therefore both a random gauge potential and random mass can
lead to breakdown of Fermi liquid and emergence of non-Fermi
liquid ground state.
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FIG. 14. (Color online) Wave renormalization factor for different
v20/v10 at fixed coupling α10 = 1 in the presence of random mass with
v2

�0�/v2
10 = 0.05.

We have seen in this subsection that the interplay of
Coulomb interaction and fermion-disorder interaction can lead
to a series of interesting behaviors in graphene samples with
an anisotropic Dirac cone. The system may be a normal Fermi
liquid, a non-Fermi liquid, or an exotic insulator, depending
on the concrete values of bare velocity ratio and the sorts of
disorders. In particular, a random chemical potential behaves
quite differently from a random gauge potential and random
mass.

B. Density of states

We now study the influence of Coulomb interaction on DOS
using the method employed by Xu et al. [25]. The DOS ρ(ω)
is defined as

ρ(ω) = N

∫
dk1dk2

(2π )2
Tr{Im[GR(ω,v1k1,v2k2)]}

= N

v1v2

∫
dk′

1dk′
2

(2π )2
Tr{Im[GR(ω,k′

1,k
′
2)]}, (77)

where GR(ω,k1,k2) is the retarded two-point Green’s function
(propagator) of Dirac fermions. In the absence of Coulomb

interaction, GR(ω,k1,k2) is simply the retarded free fermion
propagator, and it is well-known that DOS exhibits a linear
energy dependence, i.e., ρ(ω) ∝ ω. This behavior can be
significantly affected by Coulomb interaction and a random
gauge potential (random mass). In the present problem, the
interaction effects are manifested in the RG flows of v1,2

and the anomalous dimension of fermion propagator. After
straightforward calculations shown in Appendix D, we find
that

d ln ρ

d ln ω
= 1 + 3C0 − C1 − C2 − 3Cg

1 − C0 + C1 + Cg

(78)

for v1 > v2, and that

d ln ρ

d ln ω
= 1 + 3C0 − C1 − C2 − 3Cg

1 − C0 + C2 + Cg

(79)

for v2 > v1.
In the clean limit with Cg = 0, the ω-dependence of ρ(ω)

for different bare ratios are presented in Fig. 15(a). In the
low-energy regime, ω → 0, we have

ρ(ω)

ω
∼ 1

ln(ω)
. (80)

When there is a random gauge potential or random mass,
the corresponding ρ(ω) for different bare ratios are shown in
Figs. 15(b) and 15(c). It can be found that ρ(ω) behaves as

ρ(ω) ∼ ω1−η (0 < η < 1) (81)

in the limit ω → 0. Comparing this expression to the linear
ω dependence of DOS obtained in the noninteracting case,
we know that η reflects the corrections arising from Coulomb
interaction and disorder scattering.

The dynamical exponent describes how the energy should
be rescaled relative to the momenta [74–76]. In our notations,
z is encoded in velocities of the Dirac fermions. For a free
anisotropic Dirac fermion system, the fermion velocities are
constants, so the dynamical exponent z = 1. Including the
interaction effects, we have two dynamic exponents defined as

z1 = 1 − d ln v1(l)

dl
, (82)

z2 = 1 − d ln v2(l)

dl
. (83)

Due to interplay of Coulomb interaction and a random gauge
field (random mass), v1(l)/v2(l) → 1 in the lowest energy limit
l → ∞, which corresponds to an isotropic fixed point. At the
same time, v1(l) and v2(l) approach a finite constant. Therefore
z satisfies

z = z1,2(l → ∞) = 1. (84)

Our result of ρ(ω) is different from that obtained in
Ref. [35], where it is shown that the fermion velocity is
saturated to a finite value in the presence of a random gauge
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FIG. 15. (Color online) DOS for different v20/v10 at fixed cou-
pling α10 = 1 (a) in the absence of disorders and (b) in the presence
of a random gauge potential with v2

�0�/v2
10 = 0.05. (c) Wave

renormalization factor for different v20/v10 at fixed coupling α10 = 1
in the presence of random mass with v2

�0�/v2
10 = 0.05.

potential and that ρ(ω) ∼ ω since z = 1 in the low-energy
regime. However, we notice that the nontrivial corrections to
DOS actually come from both the change of dynamic exponent

and the nontrivial wave function renormalization. Although the
dynamical exponent z = 1, the wave renormalization function
receives a nontrivial correction given in Eq. (74) and lead
to non-Fermi liquid like damping rate of Dirac fermions.
Consequently, the behaviors of low-energy DOS are disorder
dependent, as can be seen from Eq. (81).

C. Specific heat

To calculate specific heat, we also follow the method used
in Ref. [25]. The free energy F = T lnZ/V contains the
following singular part:

F = (ξτ ξxξy)−1, (85)

where ξτ ∼ 1/T , ξx ∼ v1ξτ , and ξy ∼ v2ξτ . In an interacting
anisotropic graphene, the free energy is found to depend on T

as

F ∼ 1

v1v2
T 3. (86)

The corresponding specific heat is given by

CV = −T
∂2F
∂T 2

∼ 1

v1v2
T 2. (87)

Here, the interaction effects are reflected in the nontrivial
flows of v1 and v2. After performing calculations shown in
Appendix D, we find that CV varies with T as

d ln CV

d ln T
∼ 2 + 2C0 − C1 − C2 − 2Cg

1 − C0 + C1 + Cg

(88)

for v1 > v2, and

d ln CV

d ln T
∼ 2 + 2C0 − C1 − C2 − 2Cg

1 − C0 + C2 + Cg

(89)

for v2 > v1.
In clean graphene, the specific heat CV (T ) for differ-

ent parameters is shown in Fig. 16(a). We can see that
CV (T )/T 2 → 0 in the limit of ω → 0. More concretely, we
find that

CV (T )

T 2
∼ 1

ln(T )
, (90)

which is consistent with the results obtained in Ref. [52].
In the presence of a random gauge potential or random

mass, the corresponding specific heat CV (T ) for different
parameters are shown in Figs. 16(b) and 16(c). CV (T ) behaves
as

CV (T ) ∼ T 2 (91)

in the limit T → 0. General scaling analysis shows that the
specific heat should satisfy CV (T ) ∝ T d/z [75,77], where d

is the spatial dimension and z is the dynamical exponent. In
the present case, the fermion velocities are saturated to finite
values and the dynamical exponent z → 1 in the low-energy
regime, so CV (T ) ∝ T 2. It might seem strange that, the DOS
is not linear in ω as shown in Eq. (81) but the specific heat
still exhibits quadratic T -dependence. This can be understood
as follows. When the Dirac fermion propagator acquires a
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FIG. 16. (Color online) Specific heat for different v20/v10 at
fixed coupling α10 = 1 (a) in the absence of disorders, and (b) in
the presence of a random gauge potential with v2

�0�/v2
10 = 0.05.

(c) Specific heat for different v20/v10 at fixed coupling α10 = 1 in the
presence of a random mass with v2

�0�/v2
10 = 0.05.

finite positive anomalous dimension η, the Landau damping
rate of the fermion takes non-Fermi liquid behavior and the
DOS is no longer linear in energy. However, the anomalous

dimension does not change the T -dependence of specific heat.
To better understand this problem, we make a brief discussion
in Appendix E.

VI. DYNAMICAL GAP GENERATION IN
ANISOTROPIC GRAPHENE

Recently, a number of theoretical and numerical works
[37–48] have predicted that the long-range Coulomb inter-
action between massless Dirac fermions in graphene may
generate a dynamical gap by forming excitonic pairs and
consequently lead to semimetal-insulator transition. This
gap-generating mechanism is of great interest to theorists
because it can be considered as a concrete condensed-matter
realization of the nonperturbative phenomenon of dynamical
chiral symmetry breaking, which was first proposed by Nambu
and Jona-Lasinio [78] and has played a significant role in
the development of modern particle physics [79,80]. From
a technological point of view, a gapped graphene is more
promising than a gapless one as a candidate for manipulating
novel electronic devices [45,81]. For these reasons, the
mechanism of dynamical gap generation and the resultant
semimetal-insulator transition have stimulated considerable
effort in recent years.

Earlier calculations carried out using the DS equation ap-
proach have reached an optimistic conclusion that a dynamical
gap is generated by Coulomb interaction in suspended clean
graphene [37–42]. However, a number of approximations
are adopted in these works, which more or less lowers the
reliability of this conclusion (see Ref. [48] for a brief review
of these approximations). More recently, we have revisited
this problem by improving most of these approximations and
found that the Coulomb interaction in suspended graphene is
indeed not strong enough to open a dynamical gap [48]. At
the same time, experimentalists have measured the energy
spectrum of suspended graphene at ultralow temperatures
and observed no evidence of insulating behavior [63,82]. A
key factor that weakens the effective Coulomb interaction is
the unusual renormalization of fermion velocity. It is known
that the Coulomb interaction coupling α ∝ e2/v with v being
the universal fermion velocity in isotropic graphene. As v

diverges at the lowest energy, α tends to vanish, which means
the effective interaction strength is significantly reduced.
Apparently, fermion velocity renormalization plays a crucial
role in this problem, and needs to be carefully treated.

As shown in the last sections, the renormalization of
fermion velocities in anisotropic graphene can be different
from that in the case of isotropic graphene. Such an
important difference may lead to remarkable change of the
effective strength of Coulomb interaction. It is therefore very
interesting to investigate how dynamical gap generation is
affected by the velocity anisotropy. In this section, we are
particularly interested in whether the velocity anisotropy
enhances or suppresses dynamical gap generation in clean
graphene. The nonperturbative DS equation approach
[37–42,46,47,78–80,83] will be used to address this issue
since the conventional perturbative expansion is unable to
tackle the nonperturbative phenomenon of dynamical gap
generation. Moreover, in this section, we will not consider
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FIG. 17. Diagrams for the fermion self-energy in the DS equation
approach. The thick solid line denotes a dressed fermion propagator.

the effects of disorders, which are technically difficult to be
incorporated in the self-consistent DS equation [40,47].

After including the interaction induced self-energy correc-
tions, the free fermion propagator, given in Eq. (5), will be
renormalized to the following full propagator:

G(iω,k) = 1

−iωA0γ0 + v1k1A1γ1 + v2k2A2γ2 + m
, (92)

where m represents a finite dynamical gap and A0,1,2 are
the three components of wave function renormalization.
According to the Feynman diagram shown in Fig. 17, the
dressed fermion propagator is related to the free one via the
following DS equation:

G−1(iε,p) = G−1
0 (iε,p) +

∫
dω

2π

d2k
(2π )2

γ0G(iω,k)γ0

×D(i(ε − ω),p − k). (93)

To the lowest order of 1/N expansion, we take A0 = A1 =
A2 = 1 for simplicity and substitute Eq. (92) into Eq. (93).
After straightforward calculations, we obtain an integral
equation for the dynamical gap m,

m(iε,p1,p2) =
∫

dω

2π

∫
dkx

2π

∫
dky

2π

× m(iω,k1,k2)

ω2 + v2
1k

2
1 + v2

2k
2
2 + m2(iω,k1,k2)

× 1
|q|

2πe2
ε

+ N
8v1v2

v2
1q2

1 +v2
2q2

2√
�2+v2

1q2
1 +v2

2q2
2

, (94)

where � = ε − ω, q1 = p1 − k1, and q2 = p2 − k2. This
nonlinear equation is very complicated and needs to be
numerically solved. A finite fermion gap is generated by the
Coulomb interaction once this equation develops a nontrivial
solution. In the anisotropic case, the equation of m depends on
energy and two components of momentum separately, which
makes it difficult to solve the integral equation numerically.
In order to simplify the numerical computations, we adopt
several frequently used approximations, and then compare the
results obtained under these approximations. If some common
features can be extracted from all the results, then we can
qualitatively judge whether spatial anisotropy is in favor of
dynamical gap generation or not.

We will consider six different approximations. First, we
consider the instantaneous approximation, which drops the
energy dependence of polarization function [37–39] as fol-
lows:

1
|q|

2πe2
ε

+ N
8v1v2

v2
1q2

1 +v2
2q2

2√
�2+v2

1q2
1 +v2

2q2
2

→ 1

|q|
2πe2

ε

+ N
8v1v2

√
v2

1q
2
1 + v2

2q
2
2

.

(95)

Now the gap equation is simplified to

m(p1,p2) = 1

2

∫
dk1

2π

∫
dk2

2π

m(k1,k2)√
k2

1 + δ2k2
2 + m2(k1,k2)

× 1√
q2

1 +q2
2

2πα1
+ N

8δ

√
q2

1 + δ2q2
2

, (96)

where δ = v2/v1. In the derivation of this gap equation, we
have performed the re-scaling transformations

v1p1,2 → p1,2, v1k1,2 → k1,2. (97)

Such transformation will also be used in the calculations to be
performed below.

Second, we utilize the following approximation [41]:

1
|q|

2πe2
ε

+ N
8v1v2

v2
1q2

1 +v2
2q2

2√
�2+v2

1q2
1 +v2

2q2
2

→ 1

|q|
2πe2

ε

+ N

8
√

2v1v2

√
v2

1q
2
1 + v2

2q
2
2

.

(98)

The corresponding gap equation has the form

m(p1,p2) = 1

2

∫
dk1

2π

∫
dk2

2π

m(k1,k2)√
k2

1 + δ2k2
2 + m2(k1,k2)

× 1√
q2

1 +q2
2

2πα1
+ N

8
√

2δ

√
q2

1 + δ2q2
2

. (99)

Third, we consider the approximation used in Ref. [42],
which assumes that m(iε,p) is energy-independent, i.e.,

m(iε,p1,p2) → m(p1,p2). (100)

Applying this approximation leads to

m(p1,p2) = α1

∫
dk1

2π

∫
dk2

2π

1√
q2

1 + q2
2

× m(k1,k2)J (d,g)√
k2

1 + δ2k2
2 + m2(k1,k2)

, (101)

where

J (d,g) = (d2 − 1) [π − gc(d)] + dg2c(g)

d2 + g2 − 1
, (102)

with

c(x) =

⎧⎪⎨
⎪⎩

2√
1−x2 cos−1 (x) x < 1
2√

x2−1
cosh−1 (x) x > 1

2 x = 1

, (103)

d =
√

k2
1 + δ2k2

2 + m2(k1,k2)

q2
1 + δ2q2

2

, (104)

g =
Nπα1

√
q2

1 + δ2q2
2

4δ

√
q2

1 + q2
2

. (105)

In these approximations, the fermion velocities v1 and v2

are assumed to take bare values. However, both v1 and v2
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are indeed strongly renormalized by the Coulomb interaction.
To incorporate the feedback effects of strong velocity
renormalization on the DS generation, we can replace the bare
fermion velocities by the renormalized, momentum-dependent
velocities [41], v1,2 → v1,2(k), which are determined by the

solutions of Eqs. (54) and (55), and then solve the new gap
equations.

We present the numerical results for the dependence of
dynamical gap m(0) on δ and α1 obtained by applying the
first three approximations in (a), (b), and (c) of Fig. 18,
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FIG. 18. (Color online) Dependence of the dynamical gap m(0) on the bare velocity ratio δ obtained under a series of approximations:
(a) approximation (95); (b) approximation (98); and (c) approximation (100). In (d), (e), and (f), the bare fermion velocities used to obtain the
results of (a), (b), and (c) are replaced by the renormalized velocities obtained from the solutions of (54) and (55).
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respectively. We then replace the bare velocities appearing in
Eqs. (96), (99), and (101) by the corresponding renormalized
velocities, and show the results in (d), (e), and (f) of
Fig. 18, respectively. From these six figures, we see that the
quantitative results of dynamical gap are very sensitive to the
concrete approximations and significantly differ from each
other.

Strictly speaking, all the results of m(0) presented in Fig. 18
may not correspond to the precise values of the dynamical
gap. Nevertheless, one can extract a common feature from the
results obtained in all these six cases: at some fixed coupling
α1 = e2/v1ε, the dependence of m(0) on bare velocity ratio δ

is not monotonic. As δ is growing from zero, the dynamical
gap m(0) first increases, then reaches its maximal value at
certain critical ratio δc, and finally decreases rapidly. This
common feature is independent of the concrete magnitudes
of the coupling constant α1, provided that α1 is sufficiently
large. Certainly, the precise positions of the peaks of m(0) are
strongly case dependent.

We first look at the results presented in Figs. 18(a)–18(c).
At certain fixed ratio δ, we see that the dynamical gap is always
enhanced as the coupling α1 increases, which in turn drives
both v1 and v2 to decrease for a given ε. If we fix the value of α1

and increase the ratio δ, the dynamical gap is initially enhanced
but then gets suppressed once δ exceeds some critical value.
For fixed α1, the deceasing of δ from 1 results in two effects:
reduction of v2 and enhancement of velocity anisotropy. The
nonmonotonic dependence of the dynamic gap on δ implies
that these two effects are competing with each other. Since the
first effect always enhances dynamical gap, the second effect
should always suppress dynamical gap. At fixed coupling α1,
increasing δ from 1 also leads to two effects: growth of v2

and enhancement of velocity anisotropy. Both of these two
effects are capable of suppressing the dynamical gap. Indeed,
Figs. 18(a)–18(c) clearly shows that the dynamical gap is
always suppressed as δ increases from δ = 1.

It is also interesting to make a comparison between
Figs. 18(a) and 18(d). For smaller values of bare ratio δ0, the
velocity renormalization promotes the happening of dynamical
gap generation. However, for relatively larger values of δ0, the
velocity renormalization suppresses the dynamical gap. The
same conclusion can be drawn if we compare Fig. 18(b) with
Fig. 18(e), and compare Fig. 18(c) with Fig. 18(f).

In conclusion, our calculations have shown that the dynam-
ical gap is enhanced (suppressed) as the fermion velocities
decrease (increase), but is always suppressed as the velocity
anisotropy increases. Apparently, the velocity anisotropy turns
out to be a negative factor for the occurrence of dynamical gap
generation.

In this section, we have acquired only the δ-dependence
of dynamical gap for several fixed values of coupling α1.
Unfortunately, it is difficult to obtain a quantitatively reliable
δ dependence of critical coupling α1c that separates the
semimetal and insulating phases, primarily because of the
complexity of anisotropic DS equation. However, the unusual
δ-dependence of dynamical gap presented in Fig. 18 suggests
that it is both interesting and necessary to solve the anisotropic
DS equation more precisely. We expect a large scale Monte
Carlo simulation [43,44] can be performed to investigate this
issue and clarify some crucial problems.

VII. SUMMARY AND DISCUSSIONS

In this paper, we have investigated the influence of long-
range Coulomb interaction on various properties of Dirac
fermions in the context of graphene with a spatial anisotropy by
performing detailed RG calculations based on 1/N expansion.
We find that the renormalized fermion velocities increase
monotonously as the energy scale decreases and the system
approaches a stable isotropic fixed point in the low-energy
regime.

The effects of three types of static disorders, including
a random chemical potential, a random gauge potential,
and random mass, are also examined using RG techniques.
We have shown that the interplay of Coulomb interaction
and fermion-disorder coupling leads to a series of unusual
behaviors. In the case of random chemical potential, the
anisotropic system approaches an isotropic fixed point for
weak Coulomb interaction. However, when the Coulomb
interaction is sufficiently strong, the fermion velocities are
driven to vanish in finite energy scale and the system is very
likely an anisotropic insulator. On the other hand, both random
gauge potential and random mass turn the anisotropic system
to a stable isotropic fixed point in the low-energy regime, at
an efficiency higher than that in the case of clean anisotropic
graphene. An apparent conclusion is that random chemical
potential leads to very different behaviors compared with
random gauge potential and random mass.

In order to understand the unusual behaviors produced by
Coulomb interaction and disorders more explicitly, we have
calculated several physical quantities, including wave renor-
malization factor, Landau damping rate, DOS, and specific
heat, after taking into account singular renormalization of
fermion velocities. These quantities exhibit non-Fermi liquid
behaviors in many cases. Once again, the random chemical
potential is found to result in qualitatively different behaviors
of these quantities compared to the other two disorders.

We have further studied the nonperturbative effects of
Coulomb interaction and included the velocity anisotropy into
the DS gap equation. We have acquired the dependence of
dynamical gap on the coupling α1 and the velocity ratio δ,
at several different approximations of the DS equation. Our
results demonstrate that the decreasing (increasing) fermion
velocities can enhance (suppress) the dynamic gap. In addition,
increasing velocity anisotropy tends to weaken the effective
strength of Coulomb interaction and therefore suppressed the
dynamical gap.

Recently, with the help of symmetry considerations, Herbut
et al. have studied semimetal-insulator transition [84,85] and
semimetal-superconductor transition [86,87] in honeycomb
lattices, and systematically considered the corresponding
quantum critical behaviors. It would be interesting to gen-
eralize these studies to the case of anisotropic graphene.
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APPENDIX A: FERMION SELF-ENERGY CORRECTION
DUE TO COULOMB INTERACTION

In this Appendix, we provide the details for the calculations
of fermion self-energy due to Coulomb interaction. The self-
energy is given by

�C(iω,k) = −
∫

d2q
(2π )2

∫
d�

2π
γ0G0(i(� + ω),q + k)γ0

×V (i�,q). (A1)

An ultraviolet cutoff is introduced by multiplying both fermion
propagator and boson propagator by a smooth cutoff function
K(k2/�2). Here, K(y) is an arbitrary function with K(0) = 1.
It falls off rapidly with y at y ∼ 1, e.g., K(y) = e−y . However,
the results will be independent of the particular choices of
K(y). Now the self-energy becomes

�C(iω,k) = −
∫

d2q
(2π )2

∫
d�

2π
γ0G0(i(� + ω),q + k)γ0

×V (i�,q)K
(

(q + k)2

�2

)
K

(
q2

�2

)
. (A2)

Namely,

�C(K) = −
∫

d3Q

(2π )3
F (Q + K)V (Q)K

(
(q + k)2

�2

)

×K
(

q2

�2

)
, (A3)

where

F (� + ω,q + k)

= i (� + ω) γ0 + v1(q1 + k1)γ1 + v2(q2 + k2)γ2

(� + ω)2 + v2
1 (q1 + k1)2 + v2

2 (q2 + k2)2 (A4)

and K ≡ (ω,k) and Q ≡ (�,q) are 3-momenta. One can make
the following expansion to the first order of Kμ:

F (Q + K)K
(

(q + k)2

�2

)

≈ Kμ

[
∂F (Q)

∂Qμ

K
(

q2

�2

)
+ F (Q)

2qμ

�2
K′

(
q2

�2

)]
, (A5)

where Kμ = (ω,k), kμ = (0,k). Therefore the self-energy is
rewritten as

�C(K) = −Kμ

∫
d3Q

(2π )3

[
∂F (Q)

∂Qμ

V (Q)K2

(
q2

�2

)

+F (Q)V (Q)
2qμ

�2
K

(
q2

�2

)
K′

(
q2

�2

)]
, (A6)

which yields

d�C(K)

d ln �
= Kμ

∫
d3Q

(2π )3

{[
∂F (Q)

∂Qμ

4q2

�2
+ F (Q)

4qμ

�2

]

×V (Q)K
(

q2

�2

)
K′

(
q2

�2

)

+F (Q)V (Q)
4q2qμ

�4

[
K′2

(
q2

�2

)

+K
(

q2

�2

)
K′′

(
q2

�2

)]}
. (A7)

Converting to cylindrical coordinates by defining

Qμ = y�(v1x, cos θ, sin θ ), (A8)

Q̂μ = (v1x, cos θ, sin θ ), (A9)

qμ = y�(0, cos θ, sin θ ), (A10)

q̂μ = (0, cos θ, sin θ ), (A11)

d3Q = y2�3v1dxdydθ, (A12)

we have

d�C(K)

d ln �

= Kμ

v1

2π3

∫ +∞

−∞
dx

∫ 2π

0
dθ

{[
∂F (Q̂)

∂Q̂μ

+ F (Q̂)q̂μ

]

×V (Q̂)
∫ +∞

0
dyyK(y2)K′(y2) + F (Q̂)V (Q̂)q̂μ

×
∫ +∞

0
dyy3[K′2(y2) + K(y2)K′′(y2)]

}
. (A13)

Since ∫ +∞

0
dyyK(y2)K′(y2) = −1

4
, (A14)

∫ +∞

0
dyy3[K′2(y2) + K(y2)K′′(y2)] = 1

4
, (A15)

one can further obtain

d�C(K)

d ln �
= −v1Kμ

8π3

∫ +∞

−∞
dx

∫ 2π

0
dθ

∂F (Q̂)

∂Q̂μ

V (Q̂),

(A16)

where

F (Q̂) = 1

v1

ixγ0 + cos θγ1 + (v2/v1) sin θγ2

x2 + cos2 θ + (v2/v1)2 sin2 θ
, (A17)

V (Q̂) = v1G(x,θ ), (A18)

with

G−1(x,θ ) = 1
2πe2

εv1

+ N

8(v2/v1)

× cos2 θ + (v2/v1)2 sin2 θ√
x2 + cos2 θ + (v2/v1)2 sin2 θ

. (A19)

Using these expressions, we can finally obtain the self-energy
correction given by the Eqs. (10)–(13).
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APPENDIX B: FERMION-DISORDER VERTEX
CORRECTION DUE TO COULOMB INTERACTION

The correction to fermion-disorder vertex due to Coulomb
interaction is given by

VC = −
∫

d�

2π

∫
d2q

(2π )2
γ0G0(i�,q)v��G0(i�,q)γ0

×V (�,q). (B1)

One can impose a momentum cutoff by multiplying both
fermion and boson propagators by a smooth function
K(k2/�2), and then obtain

VC = −v�

∫
d3Q

(2π )2
γ0G0(Q)�G0(Q)γ0V (Q)K3

(
q2

�2

)
.

(B2)

Therefore we have

dVC

d ln �
= 6v�

∫
d3Q

(2π )3
γ0G0(Q)�G0(Q)γ0V (Q)

×K2

(
q2

�2

)
K′

(
q2

�2

) (
q2

�2

)
. (B3)

After converting to cylindrical coordinates defined by
Eqs. (A8)–(A12), it is easy to get

dVC

d�
= v�

3v1

4π3�

∫ +∞

−∞
dx

∫ 2π

0
dθγ0G(Q̂)�G(Q̂)γ0V (Q̂)

×
∫ +∞

0
dyyK2(y2)K′(y2), (B4)

where ∫ +∞

0
dyyK2(y2)K′(y2) = −1

6
. (B5)

Finally, we obtain

dVC

d ln �
= −v�

v1

8π3

∫ +∞

−∞
dx

∫ 2π

0
dθH (Q̂), (B6)

where

H (Q̂) = γ0G0(Q̂)�G0(Q̂)γ0V (Q̂). (B7)

APPENDIX C: SYMMETRIC FORM OF C0,1,2 AND G

The parameters C0,1,2 and G appearing in RG equations can
also be written in the following symmetric form:

C0 = 1

8π3

∫ 2π

0
dθ

∫ +∞

−∞
dx

× x2 − (v1/v2) cos2 θ − (v2/v1) sin2 θ

[x2 + (v1/v2) cos2 θ + (v2/v1) sin2 θ ]2
G(x,θ ),

(C1)

C1 = 1

8π3

∫ 2π

0
dθ

∫ +∞

−∞
dx

× x2 − (v1/v2) cos2 θ + (v2/v1) sin2 θ

[x2 + (v1/v2) cos2 θ + (v2/v1) sin2 θ ]2
G(x,θ ),

(C2)

C2 = 1

8π3

∫ 2π

0
dθ

∫ +∞

−∞
dx

× x2 + (v1/v2) cos2 θ − (v2/v1) sin2 θ

[x2 + (v1/v2) cos2 θ + (v2/v1) sin2 θ ]2
G(x,θ ),

(C3)

with

G−1(x,θ ) = ε
√

v1v2

2πe2
+ N

8

× (v1/v2) cos2 θ + (v2/v1) sin2 θ√
x2 + (v1/v2) cos2 θ + (v2/v1) sin2 θ

. (C4)

The expressions for C0,1,2 and G shown in Eqs. (C1)–(C4) are
indeed equivalent to those in Eqs. (11)–(14).

APPENDIX D: DERIVATION FOR THE DIFFERENTIAL
EQUATIONS OF DOS AND SPECIFIC HEAT

We now study the influence of Coulomb interaction on DOS
using the method employed by Xu et al. [25]. The DOS ρ(ω)
is defined as

ρ(ω) = N

∫
dk1dk2

(2π )2
Tr{Im[GR(ω,v1k1,v2k2)]}

= N

v1v2

∫
dk′

1dk′
2

(2π )2
Tr{Im[GR(ω,k′

1,k
′
2)]}, (D1)

where GR(ω,k1,k2) is the retarded propagator of Dirac
fermions. According to the method in Xu et al. [25], DOS
ρ(ω) and specific heat CV (T ) can be calculated through
the differential equations d ln ρ

d ln ω
and d ln CV

d ln T
, respectively. The

qualitative behavior of ρ(ω) is related to both the fermion
anomalous dimension, ηf = −C0 + Cg , and the dynamical
exponents z1,2, which are encoded in the flow of fermion
velocities v1,2. However, the qualitative behavior of CV (T )
is only related to the dynamical exponents z1,2. Therefore
one should represent d ln ρ

d ln ω
in terms of the fermion anomalous

dimension ηf and the RG equations of v1,2, but express d ln CV

d ln T

only through the RG equations of v1,2. In Sec. III B, we have
obtained the l dependence of the RG equations of v1,2, as well
as C0,g . In order to get d ln ρ

d ln ω
and d ln CV

d ln T
, we need to replace

d
d ln ω

or d
d ln T

with d
dl

.
At a certain given energy ω, the corresponding momentum

scale should be determined by the larger component of the
fermion velocities [25], namely,

p̃ = ω

max (v1,v2)
, (D2)

which leads to

d ln ω

d ln p̃
= 1 + d ln max (v1,v2)

d ln p̃
. (D3)

Now the scaling equation for ρ(ω) takes the form

d ln ρ

d ln ω
= d ln ρ

d ln p̃ d ln ω
d ln p̃

= d ln ρ

d ln p̃
[
1 + d ln max(v1,v2)

d ln p̃

] . (D4)
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Since p̃ ∼ �e−l , which leads to d ln p̃ ∼ −dl, we can get

d ln ρ

d ln ω
= − d ln ρ

dl
[
1 − d ln max(v1,v2)

dl

] , (D5)

namely

d ln ρ

d ln ω
= −−(1 + C0 − Cg) + d ln

(
1

v1v2

)
dl[

1 − d ln max(v1,v2)
dl

] . (D6)

The first term −(1 + C0 − Cg) in the numerator comes form
the scaling exponent of the fermion propagator in Eq. (D1).
The second term d ln( 1

v1v2
)/dl is induced by the prefactor 1

v1v2
in Eq. (D1). Equation (D6) can be further written as

d ln ρ

d ln ω
= 1 + C0 − Cg + d ln v1

dl
+ d ln v2

dl[
1 − d ln max(v1,v2)

dl

] . (D7)

Using the RG equations of v1 and v2, i.e., Eqs. (46) and (47),
the above equation can be simplified to

d ln ρ

d ln ω
= 1 + 3C0 − C1 − C2 − 3Cg

1 − C0 + C1 + Cg

(D8)

for v1 > v2, and

d ln ρ

d ln ω
= 1 + 3C0 − C1 − C2 − 3Cg

1 − C0 + C2 + Cg

(D9)

for v2 > v1.
To calculate the specific heat, we also follow the method

used in Ref. [25]. The free energy F = T lnZ/V contains the
following singular part:

F = (ξτ ξxξy)−1, (D10)

where ξτ ∼ 1/T , ξx ∼ v1ξτ , and ξy ∼ v2ξτ . In an interacting
anisotropic graphene, the free energy if found to behave like

F ∼ 1

v1v2
T 3. (D11)

The corresponding specific heat is given by

CV = −T
∂2F
∂T 2

∼ 1

v1v2
T 2. (D12)

After taking differentiation with respect to T , we get

d ln CV

d ln T
= 2 + d ln

(
1

v1v2

)
d ln T

. (D13)

At certain given temperature T , the corresponding momentum
scale should be determined by the larger component of the
fermion velocities as [25]

p̃ = T

max(v1,v2)
, (D14)

which leads to

d ln T

d ln p̃
= 1 + d ln max (v1,v2)

d ln p̃
. (D15)

Now the scaling equation for CV becomes

d ln CV

d ln T
= 2 + d ln

(
1

v1v2

)
d ln p̃ d ln T

d ln p̃

= 2 + d ln
(

1
v1v2

)
d ln p̃

[
1 + d ln max(v1,v2)

d ln p̃

] . (D16)

Using the expression d ln p̃ ∼ −dl, it is easy to get

d ln CV

d ln T
= 2 − d ln

(
1

v1v2

)
dl

[
1 − d ln max(v1,v2)

dl

]
= 2 +

d ln v1
dl

+ d ln v2
dl[

1 − d ln max(v1,v2)
dl

] . (D17)

After substituting Eqs. (46) and (47) into (D17), we finally
obtain

d ln CV

d ln T
= 2 + 2C0 − C1 − C2 − 2Cg

1 − C0 + C1 + Cg

(D18)

for v1 > v2, and

d ln CV

d ln T
= 2 + 2C0 − C1 − C2 − 2Cg

1 − C0 + C2 + Cg

(D19)

for v2 > v1.

APPENDIX E: DIFFERENT DEPENDENCE OF DOS
AND SPECIFIC HEAT ON A POSITIVE

ANOMALOUS DIMENSION

In this Appendix, we would like to demonstrate the different
influence of a finite positive anomalous dimension on DOS
and specific heat. This may help us to understand the results
obtained in Secs. V B and V C. For this purpose, it is convenient
to consider a generic model of interacting Dirac fermions.

Let us start from a free Dirac fermion propagator with an
isotropic dispersion,

G0(iωn,k) = 1

iωnγ0 − vF γ · k
= −iωnγ0 + vF γ · k

ω2
n + v2

F k2
,

(E1)

where ωn = (2n + 1)πT is the Matsubara frequency. Carrying
out analytic continuation iωn → ω + iδ, we can get the
retarded propagator

GR
0 (ω,k) =

[
P 1

ω2 − v2
F k2

− iπsgn(ω)δ
(
ω2 − v2

F k2
)]

× (ωγ0 − vF γ · k) . (E2)

From this propagator, it is easy to get a spectral function

A0(ω,k) = − 1

π
Tr

[
γ0ImGR

0 (ω,k)
]

= 2 [δ (vF k − |ω|) + δ (vF k + |ω|)] . (E3)

The fermion DOS can be computed directly, i.e.,

ρ0(ω) = N

∫
d2k

(2π )2
A0(ω,k) = N

πv2
F

|ω|. (E4)
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The free energy for free fermions is therefore

F0(T ) = 4NT
∑
ωn

∫
d2k

(2π )2
ln

[(
ω2

n + v2
F k2

) 1
2
]

= 2N

∫
d2k

(2π )2
T

∑
ωn

ln
[
ω2

n + v2
F k2

]
. (E5)

The summation over frequency ωn can be easily performed,
leading to

F0(T ) = 2N

∫
d2k

(2π )2

[
vF k − 2T ln

(
1 + e− vF k

T

)]
, (E6)

which is clearly divergent. In order to get a finite free energy,
we redefine F0(T ) − F0(0) as F0(T ) and get

F0(T ) = −4NT

∫
d2k

(2π )2
ln

[
1 + e− vF k

T

]= −3Nζ (3)

2πv2
F

T 3.

(E7)

The corresponding specific heat is

CV 0 = −T
∂2F0(T )

∂T 2
= 9Nζ (3)

πv2
F

T 2. (E8)

Now suppose the fermion propagator acquires a finite
positive anomalous dimension η due to some interaction
[19,85,88,89], yielding

G(iωn,k) = 1

(iωnγ0 − vF γ · k)
(√

ω2
n+v2

F k2

vF �

)−η

= −(iωnγ0 − vF γ · k)

(vF �)η
(
ω2

n + v2
F k2

)1− η

2

. (E9)

The retarded propagator is therefore given by

GR(ω,k) = θ (vF k − |ω|)
[
P 1

ω2 − v2
F k2

− iπsgn(ω)δ
(
ω2 − v2

F k2)] (ωγ0 − vF γ · k)

(vF �)η
(√

v2
F k2 − ω2

)−η

+ θ (|ω| − vF k)

[
P 1

ω2 − v2
F k2

− iπsgn(ω)δ
(
ω2 − v2

F k2)] (ωγ0 − vF γ · k)

(vF �)η
(√

ω2 − v2
F k2

)−η

×
[

cos

(
πη

2

)
− sgn(ω)i sin

(
πη

2

)]
, (E10)

which results in the following spectral function:

A(ω,k) = − 1

π
Tr[γ0ImGR(ω,k)] = 4

π

θ (|ω| − vF k)|ω| sin
(

πη

2

)
(vF �)η

(√
ω2 − v2

F k2
)2−η

. (E11)

Now the fermion DOS depends on η as

ρ(ω) = N

∫
d2k

(2π )2
A(ω,k) = 2N

π2

1

η
sin

(
πη

2

) |ω|1+η

v2
F (vF �)η

, (E12)

where η modifies the ω dependence of ρ(ω). However, the free energy of interacting fermions is

F (T ) = 4NT
∑
ωn

∫
d2k

(2π )2
ln

[(
ω2

n + vF k2
) 1

2 − η

2

]
= (1 − η) 2N

∫
d2k

(2π )2
T

∑
ωn

ln
[
ω2

n + v2
F k2

]
. (E13)

= (1 − η) 2N

∫
d2k

(2π )2

[
vF k − 2T ln

(
1 + e− vF k

T

)]
, (E14)

which is also divergent. Similar to Eq. (E7), the finite redefined
F (T ) has the form

F (T ) = − (1 − η) 4NT

∫
d2k

(2π )2
ln

[
1 + e− vF k

T

]
= −(1 − η)

3Nζ (3)

2πv2
F

T 3, (E15)

which leads to the specific heat

CV = −T
∂2F (T )

∂T 2
= (1 − η)

9Nζ (3)

πv2
F

T 2. (E16)

Comparing Eq. (E4) with Eq. (E12), we see that the fermion
DOS is linear in energy for the free system, but the linear
dependence on energy of DOS is changed once a finite positive
anomalous dimension η is generated in the fermion propagator
[90,91]. The quadratic T dependence of specific heat does not
change even if η �= 0 [85,91,92]. From Eq. (E16), we see that
η enters into the specific heat only in the prefactor of T 2.

Now let us go back to the interacting model considered in
this paper. Due to the interplay of Coulomb interaction and
a random gauge potential (random mass), the fermion DOS
is no longer linear in ω in the limit ω → 0, but the specific
heat still exhibits quadratic T dependence in the limit T → 0.
The reason for this behavior is that the fermion velocities

195404-22
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v1 and v2 approach a constant at the lowest energy, which
means the dynamical exponent z → 1, whereas the fermion

propagator acquires a finite positive anomalous dimension η =
liml→∞[−C0(l) + Cg(l)].
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[35] I. F. Herbut, V. Juričić, and O. Vafek, Phys. Rev. Lett. 100,
046403 (2008).

[36] O. Vafek and M. J. Case, Phys. Rev. B 77, 033410 (2008).
[37] D. V. Khveshchenko, Phys. Rev. Lett. 87, 246802 (2001).
[38] E. V. Gorbar, V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy,

Phys. Rev. B 66, 045108 (2002).
[39] D. V. Khveshchenko and H. Leal, Nucl. Phys. B 687, 323

(2004).
[40] G.-Z. Liu, W. Li, and G. Cheng, Phys. Rev. B 79, 205429

(2009).
[41] D. V. Khveshchenko, J. Phys.: Condens. Matter 21, 075303

(2009).
[42] O. V. Gamayun, E. V. Gorbar, and V. P. Gusynin, Phys. Rev. B

81, 075429 (2010).
[43] S. Hands and C. Strouthos, Phys. Rev. B 78, 165423 (2008).
[44] J. E. Drut and T. A. Lähde, Phys. Rev. Lett. 102, 026802 (2009);

,Phys. Rev. B 79, 165425 (2009); ,79, 241405(R) (2009).
[45] A. H. Castro Neto, Physics 2, 30 (2009).
[46] C.-X. Zhang, G.-Z. Liu, and M.-Q. Huang, Phys. Rev. B 83,

115438 (2011).
[47] G.-Z. Liu and J.-R. Wang, New J. Phys. 13, 033022 (2011).
[48] J.-R. Wang and G.-Z. Liu, New J. Phys. 14, 043036 (2012).
[49] J. Gonzalez, F. Guinea, and M. A. H. Vozmediano, Mod. Phys.

Lett. B 7, 1593 (1993); ,Nucl. Phys. B 424, 595 (1994).
[50] J. Gonzalez, F. Guinea, and M. A. H. Vozmediano, Phys. Rev.

B 59, 2474(R) (1999).
[51] D. T. Son, Phys. Rev. B 75, 235423 (2007).
[52] O. Vafek, Phys. Rev. Lett. 98, 216401 (2007).
[53] D. E. Sheehy and J. Schmalian, Phys. Rev. Lett. 99, 226803

(2007).
[54] E. H. Hwang, BenYu-Kuang Hu, and S. Das Sarma, Phys. Rev.

Lett. 99, 226801 (2007).
[55] L. Fritz, J. Schmalian, M. Müller, and S. Sachdev, Phys. Rev. B

78, 085416 (2008).
[56] E. G. Mishchenko, Europhys. Lett. 83, 17005 (2008).
[57] D. E. Sheehy and J. Schmalian, Phys. Rev. B 80, 193411

(2009).
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