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We show here the existence of the indirect coupling of electron and magnetic or nuclear ion spins in self-
assembled quantum dots mediated by electron-electron interactions. With a single localized spin placed in the
center of the dot, only the spins of electrons occupying the zero angular momentum states couple directly to the
localized spin. We show that when the electron-electron interactions are included, the electrons occupying finite
angular momentum orbitals interact with the localized spin. This effective interaction is obtained using exact
diagonalization of the microscopic Hamiltonian as a function of the number of electronic shells, shell spacing,
and anisotropy of the electron-Mn exchange interaction. The effective interaction can be engineered to be either
ferromagnetic or antiferromagnetic by tuning the parameters of the quantum dot.
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I. INTRODUCTION

There is currently interest in understanding the coupling of
a localized spin, either magnetic impurity or nuclear spin, with
spins of interacting electrons [1,2]. This includes the Kondo
effect in metals [3–7] and quantum dots [8–11], the impurity
spin in diamond [12,13], charged quantum dots with magnetic
ions [14–18], and nuclear spins coupled to fractional quantum
Hall states [19–22]. Here we focus on a highly tunable system
of quantum dots with a single magnetic ion and a controlled
number of electrons. Such a system is realized in CdTe
quantum dots with a magnetic impurity in the center of the
dot loaded with a controlled, small at present, number of elec-
trons [16]. The interplay between electron-electron Coulomb
interactions and the electron-Mn exchange interaction has been
studied using exact diagonalization techniques [15,17] and us-
ing the mean-field approach [14,23]. Other studies focused on
electron-electron interactions in excitonic complexes coupled
with localized spins [16,18,23–26].

Here we focus on the indirect coupling of electron and
magnetic or nuclear ion spins in self-assembled quantum dots
(QDs) mediated by the electron-electron interaction. With a
localized spin placed in the center of the dot, only the spins
of electrons occupying the zero angular momentum states of
the s,d, . . . shells couple directly to the localized spin via a
contact exchange interaction. The situation is identical to the
Kondo problem in metals where only zero angular momentum
states of the Fermi sea are considered as interacting with the
localized spin. The question arises as to the role of electron-
electron interactions. Here we show that, in quantum dots,
when electron-electron interactions are included, the electrons
occupying finite angular momentum orbitals (e.g., p shell)
do interact with the localized spin. The effective interaction
for p-shell electrons is obtained using exact diagonalization
of the microscopic Hamiltonian as a function of the number
of electronic shells, shell spacing, and anisotropy of the
exchange interaction. The anisotropy of exchange interpolates
between the interaction types characteristic for conduction
band electrons (Heisenberg-like) and valence band holes

(Ising-like). We show that the effective electron-electron
mediated exchange interaction can be engineered to be
either ferro- or antiferromagnetic by varying quantum-dot
parameters.

The paper is organized as follows: In Sec. II we describe
the model of a self-assembled quantum dot with a single Mn
impurity in its center and a controlled number of electrons.
Section III presents results of exact diagonalization of the
model Hamiltonian for quantum dots confining from two to
six electrons and the emergence of the indirect electron-Mn
coupling for QDs with a partially filled p shell. Section IV
summarizes our results.

II. MODEL

We consider a model system of N electrons (N = 2, . . . ,6)
confined in a two-dimensional (2D) parabolic quantum dot
with a single magnetic impurity in the center. Figure 1(a)
illustrates a schematic representation of the investigated QD.
For definiteness we consider an isoelectronic impurity, a
manganese ion with a total spin M = 5/2 in a CdTe quantum
dot [1]. In the effective mass and envelope function approx-
imations, the single-particle states |i,σ 〉 are those of a 2D
harmonic oscillator (HO) with the characteristic frequency ω0.
They are labeled by two orbital quantum numbers, i = {n,m},
and the electron spin σ = ±1/2. The single-particle states are
characterized by energy En,m = ω0(n + m + 1) and angular
momentum Le = n − m. Figure 1(b) shows the single-particle
states as a function of angular momentum. We express all
energies in units of the effective Rydberg, Ry∗ = m∗e4/2ε2

�
2,

and all distances in units of the effective Bohr radius, a∗
B =

ε�
2/m∗e4, where m∗, e, ε, and � are respectively the electron

effective mass and charge, the dielectric constant, and the
reduced Planck constant. For CdTe we take m∗ = 0.1m0 and
ε = 10.6, where m0 is the free-electron mass, and Ry∗ =
12.11 meV and a∗

B = 5.61 nm. Unless otherwise stated, we
take the HO frequency ω0 = 1.98 Ry∗, consistent with our
previous work [26].
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FIG. 1. (Color online) (a) Schematic representation of a CdTe
quantum dot containing electrons and one Mn spin at its center.
(b) Single-particle states as a function of angular momentum.

The Hamiltonian of N electrons confined in our QD and
interacting with a single Mn spin is written as [15]

H =
∑

i,σ

Ei,σ c
†
i,σ ci,σ + γ

2

∑

i,j,k,l

σ,σ ′

〈i,j |Vee|k,l〉c†i,σ c
†
j,σ ′ck,σ ′cl,σ

−
∑

i,j

Ji,j (R)

2
[(c†i,↑cj,↑ − c

†
i,↓cj,↓)Mz + ε(c†i,↓cj,↑M+

+ c
†
i,↑cj,↓M−)], (1)

where c
†
i,σ (ci,σ ) creates (annihilates) an electron on the orbital

i = {m,n} with spin σ .
In the above Hamiltonian, the first term is the single-particle

energy and the second term is the electron-electron (e-e)
Coulomb interaction. The e-e term is scaled by a dimensionless
parameter γ : γ = 0 describes the noninteracting electronic
system and γ = 1 describes the interacting system. The
matrix elements 〈i,j |Vee|k,l〉 of the Coulomb interaction are
evaluated in the basis of 2D HO orbitals in the closed form [27].

The last term of the Hamiltonian describes the electron-Mn
interaction (e-Mn). It is scaled by the exchange coupling
matrix elements Ji,j (R) = J 2D

C φ∗
i (R)φj (R), where J 2D

C =
2Jbulk/d, Jbulk = 15 meV nm3 is the s-d exchange constant for
the CdTe bulk material, d = 2 nm is the QD height, and φi(R)
is the amplitude of the HO wave function at the Mn position
R. In particular, we define Jss(R) = J 2D

C φ∗
s (R)φs(R), which

is the matrix element of an electron on the s shell interacting
with a magnetic ion. For Mn at the QD center its value is Jss ≈
0.15 meV.

The e-Mn interaction consists of two terms. The first one
is the Ising interaction between the electron and Mn spin.
The second term accounts for the e-Mn spin-flip interactions.
The anisotropy of the exchange interaction is tuned by the
factor ε. By setting ε = 0 we obtain the anisotropic Ising
e-Mn exchange Hamiltonian and setting ε = 1 we obtain the
isotropic Heisenberg exchange Hamiltonian. In the former
case, the spin projections sz and Mz are separately good
quantum numbers. The total spin projection of the electrons
depends on the number and polarization of the particles. For
the manganese spin we have M = 5/2 and the six possible spin
projections Mz = −5/2, . . . ,5/2. The isotropic Heisenberg
Hamiltonian, in contrast, conserves the total angular momen-
tum J = M + S and its projection Jz = sz + Mz. Hence, for
the case ε = 1, one can establish the total spin quantum number

J of the given manifold of states by considering its degeneracy
g(J ) = 2J + 1.

Since the elements Ji,j depend on the position R of the
Mn spin, the e-Mn coupling can be engineered by choosing
a specific R [15]. In this work we place the Mn spin in the
center of the QD and the only nonzero matrix elements Ji,j

appear if both orbitals i and j are zero angular momentum
states. The spin of an electron placed on any other HO orbital
is not coupled directly to the Mn spin.

The eigenenergies and eigenstates of the Hamiltonian (1)
are obtained in the configuration-interaction approach. In
this approach, we construct the Hamiltonian matrix in
the basis of configurations of N electrons and one Mn
spin: |νi〉 = |i1↑,i2↑, . . . ,iN↑〉|j1↓,j2↓, . . . ,jN↓〉|Mz〉, where
|i1σ ,i2σ , . . . ,iNσ 〉 = c

†
i1σ

c
†
i2σ

, . . . ,c
†
iNσ

|0〉, |0〉 is the vacuum
state, and N = N↑ + N↓ is the number of electrons, in which
N↑ and N↓ are the number of electrons with spin up and
spin down, respectively. The total number of configurations
depends on the number of electrons and on the number of the
HO shells available in the QD. With Mn impurity in the center,
the total orbital angular momentum of electrons L = ∑N

i=1 Li
e

is conserved by the Hamiltonian (1). Moreover, depending
on the anisotropy of e-Mn interactions, the Hamiltonian also
conserves the total projections Sz and Mz of the electron and
Mn spin separately (the Ising model) or the projection Jz =
sz + Mz of the total spin (the Heisenberg model). Based on
these conservation rules, we divide the basis of configurations
into subspaces labeled by the numbers L, Sz, and Mz (for the
Ising model) or L and Jz (for the Heisenberg model), and
diagonalize the Hamiltonian in each subspace separately.

Our model is also suitable for electrons interacting with
a single nuclear spin. In the Fermi-contact hyperfine interac-
tion [28], the Hamiltonian of electrons interacting with nuclear
spins has the same form as the Hamiltonian of electrons
interacting with Mn spins. Even though the interaction between
electrons and single nuclear spins has not been achieved in
self-assembled quantum dots, today it is possible to manipulate
a few nuclear spins in diamond [29], silicon [30,31], and
carbon nanotubes [32].

The computational procedure adopted in this work is as
follows. For a chosen number of electrons N = 2, . . . ,6 and
a chosen number of HO shells, we look for the ground and
several excited states for the system with and without e-e
interactions in the Ising and isotropic Heisenberg models.
By analyzing the degeneracies of the states we find the total
spin of the system. Further, from the ordering of different
states with respect to their total spin, we draw conclusions
as to the ferromagnetic or antiferromagnetic character of the
effective e-Mn interactions. By comparing the results for
the system with and without the e-e interactions (γ = 1 or
γ = 0, respectively) we establish the e-e interaction mediated
effective e-Mn Hamiltonian for electrons not directly coupled
to the central spin.

III. SPIN SINGLET CLOSED SHELLS COUPLED WITH
THE MAGNETIC ION

We start with a discussion of a filled s shell with N =
2 electrons in the zero angular momentum channel. Each
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FIG. 2. (Color online) (a) Schematic pictures of two-electron-
Mn configurations, GS and electronic triplet states, coupled by the
e-Mn interactions. (b) Ground-state energy of the two-electron-Mn
system as a function of the number of quantum-dot shells. (c) and (d)
Ground-state energies of the two-electron-Mn system for the quantum
dot confining three shells plotted as a function of the strength of
electron-electron interactions in the Heisenberg e-Mn model (c) and
as a function of the isotropy of the e-Mn Hamiltonian for the fully
interacting electron system (d). Numbers at the energy level bars
represent the degeneracy of states.

electron is directly coupled to the Mn impurity, but the singlet
state couples only via e-e interactions [26]. Here we discuss the
role of anisotropy of the exchange interaction on this indirect
coupling. A similar discussion applies to other closed shells,
e.g., N = 6.

The lowest-energy s-shell spin singlet configuration with
S = 0 and orbital angular momentum L = 0, |sGS

z = 0,Mz〉 =
c
†
s,↑c

†
s,↓|0,Mz〉, is shown schematically in the top left panel

of Fig. 2(a). The expectation value of the e-Mn Hamiltonian
against the configuration |sGS

z = 0,Mz〉 is zero.
Increasing the number of confined shells to three adds

one additional orbital (1,1) with zero angular momentum
in the d shell directly coupled to the Mn spin. Now the
two-electron triplet states with total angular momentum L = 0
couple to the Mn spin. The triplet with Sz = 0, |sE

z = 0,Mz〉 =
(1/

√
2)(c†d,↑c

†
s,↓ − c

†
s,↑c

†
d,↓)|0〉|Mz〉. One of its components

is shown schematically in the top right panel of Fig. 2(a),
while the bottom left panel of that figure shows the spin-
polarized triplet |sz = 1,Mz − 1〉 = c

†
s,↑c

†
d,↑|0,Mz − 1〉, and

the bottom right panel shows the triplet |sz = −1,Mz+〉 =
c
†
s,↓c

†
d,↓|0,Mz + 1〉. Applying the e-Mn Hamiltonian to the

|sGS
z = 0,Mz〉 state, we obtain

He-Mn

∣∣sGS
z = 0,Mz

〉 = −Jsd√
2
Mz

∣∣sE
z ,Mz

〉

−Jsd

2
ε(β−|sz = 1,Mz − 1〉 − β+|sz = −1,Mz + 1〉), (2)

where Jsd is the exchange matrix element in which one electron
is scattered from the s orbital to the d orbital and β± =√

(M ∓ Mz)(M ± Mz + 1). We find that upon the inclusion
of the d shell, the low-energy s-shell singlet two-electron con-
figuration becomes coupled by e-Mn interactions to electron
triplet configurations, with and without flip of the Mn spin.

We now diagonalize the two-electron-Mn Hamiltonian and
compute the ground-state (GS) energy EMn of the QD with a
manganese ion, and the energy Ee of the system without Mn.
Figure 2(b) shows the effect of the Mn ion on the ground-state
energy, 
 = (EMn − Ee)/Jss , measured from the ground-state
energy without the Mn ion, as a function of the number of shells
for the interacting system (γ = 1) and the isotropic exchange
interaction (ε = 1). We find that, irrespective of the number of
confined shells, the GS is sixfold degenerate, with the total spin
JGS = 5/2. However, the energy of the GS markedly depends
on the number of shells. For two confined shells we have 
 =
0, because in this case we can generate only one configuration,
|sGS

z = 0,Mz〉, which is decoupled from the Mn spin. The
inclusion of the d shell adds an additional Le = 0 orbital into
the single-particle basis, resulting in the scattering of electrons
by the localized spin and lowering of energy. A further
lowering of the energy occurs when the fifth shell, containing
another Le = 0 single-particle state, becomes confined.

Now we fix the number of shells to three, set the Heisenberg
form of e-Mn interactions, and study the effect of e-e
interactions. Figure 2(c) shows the energy 
 without (γ = 0)
and with full Coulomb interactions (γ = 1). We find that
the ground state in both cases is sixfold degenerate but the
e-e Coulomb interactions enhance the effects of the e-Mn
coupling, lowering 
. This is due to a larger contribution of
triplet configurations to the GS.

We now compare the results for the isotropic coupling
versus the anisotropic coupling. For the anisotropic coupling,
ε = 0, we observe that the GS is split into three energy levels
labeled by |Mz|, each of them twice degenerate, as shown in
Fig. 2(d). In Ising-like coupling the total angular momentum
J is not conserved, and the characteristic sixfold degeneracy
of the ground state is broken. Comparing the isotropic and
anisotropic coupling, we observe that 
 is negative for both
couplings and also that the Heisenberg-like interaction results
in a lower energy than the Ising-like interaction [26].

IV. ELECTRONS IN FINITE ANGULAR
MOMENTUM CHANNELS

In this section we discuss electrons populating finite angular
momentum channels which are not directly coupled with the
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Mn ion. For N = 3 we show the existence of an effective
coupling mediated by e-e interactions. Similar results are
obtained for N = 5.

A. One electron on the p shell

The lowest-energy configuration in the ground state of three
electrons is formed by two electrons in the s shell and one
electron in the p shell. With Mn in the QD center the total
angular momentum L of the three electrons is conserved and
we show the results for L = 1.

Figure 3(a) illustrates the degenerate three-electron con-
figurations, |sz = 1/2,Mz〉 and |sz = −1/2,Mz + 1〉, with an
electron with spin up and Mn in state Mz and an electron
with spin down on the p orbital and Mn in state Mz + 1. As
the electron-Mn exchange interaction in the p shell vanishes,
Jpp = 0, these configurations do not interact with each other.

FIG. 3. (Color online) (a) Ground-state three-electron configura-
tions with the p-shell electron spin up (top) and spin down (bottom).
(b) Energy difference 
 between a three-electron GS in the Mn-doped
and undoped QD for both noninteracting (γ = 0) and interacting
(γ = 1) electrons. The numbers indicate the degeneracy of each level.
(c) Diagram of coupling between electrons in the p shell and Mn.
The solid arrow represents a direct coupling via e-Mn coupling or
e-e Coulomb interaction, and the dashed arrow illustrates the indirect
coupling. (d) The energy difference 
 as a function of the number of
shells for a QD containing three shells and γ = 1.

As a consequence, the GS is 12-fold degenerate, two electron
spin configurations times six Mn spin orientations. In order to
understand the effect of interactions we include configurations
coupled with |sz = 1/2,Mz〉 and |sz = −1/2,Mz + 1〉 by both
e-e and e-Mn interactions and diagonalize the Hamiltonian
in the L = 1 subspace. The number of three-electron-Mn
configurations depends on the number of electronic shells,
with 24, 228, 852, and 2520 for two, three, four, and five
shells, respectively.

Figure 3(b) shows the result of exact diagonalization of the
e-Mn Hamiltonian for three confined shells in the QD and
an isotropic e-Mn interaction (ε = 1), for both noninteracting
(γ = 0) and interacting (γ = 1) electron systems. For the non-
interacting case we observe that the GS is 12-fold degenerate,
with the energy lowered by the e-Mn interaction (negative

). This behavior is identical to what was shown for the two
electrons in the previous section, i.e., the two electrons in
the s shell are coupled with Mn, while the electron in the p

shell is only a spectator. However, in the strongly interacting
regime, γ = 1, we observe a splitting of the degenerate GS
into two degenerate shells. The splitting and the degeneracy
of levels is consistent with an effective Hamiltonian Heff =
−Jeff�s · �M coupling the p-shell electron spin s with Mn spin
M [15]. The effective coupling Jeff is mediated by Coulomb
interactions. In Fig. 3(c) we illustrate the processes which
couple |sz = 1/2,Mz〉 and |sz = −1/2,Mz + 1〉 states. The
e-Mn interaction acting on the |sz = 1/2,Mz〉 state scatters
the spin-up (blue) electron from the s shell to the spin-down
(red) electron on the d shell with a simultaneous transition
of the Mn spin from Mz to Mz + 1. In the next step, the e-e
interaction scatters the d-shell and p-shell electron pair into the
s-shell and p-shell electron pair, with the spin-down electron
on the p shell and the spin-up electron on the s shell. The net
result is a spin flip of the p-shell electron and of the Mn spin.
We see that the ground state is sevenfold degenerate, implying
that the electron spin is aligned with the Mn spin and Jeff is
hence ferromagnetic.

Let us now investigate the dependence of the GS energy on
the number of confined shells in the QD. Figure 3(d) shows
the evolution of the GS energy as a function of the number of
shells for γ = 1 and ε = 1. We observe that for two shells there
is no splitting, i.e., Jeff = 0, while for three and four shells the
GS is split into two shells. For two shells the GS is 12-fold
degenerate, 
 = 0, and there is no interaction between Mn and
electrons. For three shells the GS is split into two shells, as dis-
cussed above. For four shells the GS is also split into two, but
there is an inversion of the degeneracy of the energy levels. This
is a consequence of an antiferromangetic interaction Jeff < 0
between the electron and Mn spins. We also have observed
that for QDs confining five or six shells the results are similar
to what was obtained for QD with four shells, i.e., the anti-
ferromagetic coupling is stabilized for a QD containing more
than three confined shells. This can be understood by looking
at the way the GS is coupled to Mn. In Fig. 3(c) we show
that there is an indirect coupling between configurations |sz =
1/2,Mz〉 and |sz = −1/2,Mz + 1〉 which is mediated via e-e
Coulomb and e-Mn interactions between the GS and excited
configurations. As the number of shells increases, more excited
state configurations interact with the GS, stabilizing the anti-
ferromagnetic indirect coupling between the electrons and Mn.
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FIG. 4. (Color online) (a) Evolution of the energies of three-
electron levels with J = 3 and J = 2 as a function of the QD shell
spacing ω0. (b) Energy difference 
 for both anisotropic (ε = 0)
and isotropic (ε = 1) e-Mn interactions in a three-shell QD with full
interactions (γ = 1).

If the indirect magnetic ordering shown above depends on
the number of shells, it also should depend on the QD shell
spacing ω0. Figure 4(a) shows the dependence of GS energy on
ω0 for three electrons confined in a Mn-doped QD containing
three shells, γ = 1 and ε = 1. We note that the exchange
coupling changes from ferromagnetic to antiferromagnetic
for ω0 ≈ 3.3 Ry∗. We observe the same behavior for QDs
with four shells, but in this case the crossing occurs at ω0 ≈
0.45 Ry∗.

Next we discuss the effect of anisotropy on the e-Mn
exchange interaction. Figure 4(b) shows the GS energy for
three electrons in a QD containing three shells in the strongly
interacting regime as a function of the e-Mn coupling. For ε =
0 the electrons and Mn interact via an anisotropic Ising-like
Hamiltonian, and for ε = 1 the e-Mn interaction is isotropic,
Heisenberg-like. For ε = 0, sz is a good quantum number,
and therefore the electron spin degeneracy is preserved. In
Fig. 4(b) we observe that for ε = 0 the energy spectrum is split
into six doubly degenerate levels. This splitting is due to the
e-e Coulomb interaction driving the indirect e-Mn interaction
between the p-shell electron and Mn, as was observed in
the ε = 1 case. The double degeneracy for the anisotropic
coupling arises due to the fact that the state |sz = 1/2,Mz〉 has
the same energy as the configuration of |sz = −1/2, − Mz〉.

We also investigated the effect of Mn positions on three-
electron GSs. Moving Mn away from the QD center couples
the electron in the p orbital directly with Mn. This coupling is
ferromagnetic. Considering a QD containing three shells and
ω = 1.98 Ry∗, the indirect e-Mn coupling is also ferromag-
netic, and therefore both direct and indirect e-Mn interactions
add up. As Mn is moved away from the QD center, the direct
coupling becomes the dominant effect for Mn positions larger
than R ≈ 0.2l0. Even though the direct e-Mn interaction is
dominant for Mn far away of the QD center, the indirect e-Mn
coupling is always present.

B. Two spin-polarized electrons on the p shell

Next we describe the electronic properties of a half-filled
p shell. The lowest-energy configuration of the four-electron
GS state is formed by two electrons in the s shell and two
spin triplet electrons in the p shell. Figure 5(a) illustrates
the four-electron configurations, the triplet |S = 1,sz = 1,Mz〉
and one of the singlet component |S = 0,sz = 0,Mz + 1〉
configurations. These two configurations have the same total
spin projection Jz. In the presence of an e-e Coulomb
interaction the S = 1 triplet state is the GS and the singlet
is an excited state. For Mn in the QD center the p electrons do
not couple with Mn, the electron spin degeneracy is preserved,
and the degeneracy of the triplet state in a Mn-doped QD is
18, while the singlet state is sixfold degenerate.

We shall now investigate how the GS of four electrons
confined in a Mn-doped QD is affected by the presence of
the e-e Coulomb interaction, number of shells, shell spacing,
and e-Mn coupling. We take advantage of the conservation of
the total angular momentum and diagonalize our microscopic
Hamiltonian in the L = 0 subspace. The number of configura-
tions in this subspace is 30, 498, and 3498 for two, three, and
four shells, respectively.

The e-e mediated coupling of the electronic and Mn spin
is interpreted in terms of the effective exchange Hamiltonian.
Adding the electron and Mn spins results in total spin J =
7/2,5/2,3/2 and splitting of the 18-fold degenerate ground
state into eightfold, sixfold, and fourfold degenerate shells.
Figure 5(b) shows the evolution of the low-energy part of the
spectrum of four electrons in the magnetic dot as a function of
the number of shells for full e-e interactions (γ = 1) and the
isotropic e-Mn coupling (ε = 1). The energies of these states
are shown relative to the energy of the ground-state triplet
of the undoped QD. The triplet and singlet states split for
any number of shells due to an e-e exchange interaction. In a
QD with only s and p shells, the effective exchange coupling
for p-shell electrons is zero and the triplet and singlet states
are 18 and six times degenerate, respectively. Increasing the
number of shells leads to a finite and ferromagnetic exchange
interaction with the triplet states coupled to the Mn spin and
the 18-fold degenerate shell split into eight-, six- and fourfold
degenerate levels. The character of this exchange interaction
depends on the number of shells. For three shells we have
a ferromagnetic coupling, but for four shells the coupling
becomes antiferromagnetic.

Figure 5(c) illustrates the configurations involved in the
indirect coupling of the electrons on the p shell and the Mn
spin. Here, the solid arrows represent the direct coupling
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FIG. 5. (Color online) (a) Low-energy configurations of four
electrons in a magnetic QD. (b) Low-energy spectrum of the system
as a function of the number of shells for interacting (γ = 1) electrons,
measured from the respective GS energy Ee of a nonmagnetic
system. Here the QD shell spacing ω0 = 1.98 Ry∗. (c) Indirect
coupling diagram of two four-electron configurations. The solid
arrows represent direct interactions between configurations and the
dashed arrow represents the indirect e-Mn coupling.

between configurations, and the dashed arrow represents
the indirect interaction between two configurations. Let us
explain how this indirect coupling arises, starting from the
configuration with two spin-up electrons in the p shell, which
is labeled as |S = 1,sz = 1,Mz〉 [see Fig. 5(c), top left]. This
configuration is coupled with an excited state in which there
are two spin-down electrons in both Le = 0 orbitals, one in
the s shell and the other in the d shell. This coupling occurs
via an e-Mn interaction, which scatters the spin-up electron
in the s shell of |S = 1,sz = 1,Mz〉 to the d shell, flipping
the electron spin down, and the Mn spin up, i.e., Mz + 1.
This excited state with sz = 0 and Mz + 1 is coupled with one
of the |S = 0,sz = 0,Mz + 1〉 GS configurations via the e-e
Coulomb interaction, in which the spin-down electron in the
d shell is scattered to the Le = 1 p orbital, and the spin-up
electrons in this orbital are scattered to the s shell.

FIG. 6. (Color online) (a) Energy difference 
 for noninteracting
(γ = 0) and interacting (γ = 1) electrons in the four-electron
magnetic dot. (b) GS energy difference as a function of the QD
shell spacing ω0 for three shells confined in the QD. (c) GS energy
difference for the anisotropic (ε = 0) and isotropic (ε = 1) e-Mn
coupling.

Figure 6(a) shows the GS energy for both noninteracting
(γ = 0) and fully interacting (γ = 1) electrons. We considered
a Mn-doped QD with three confined shells and the isotropic
e-Mn interaction (ε = 1). For the noninteracting case there is
no triplet-singlet splitting, and as an e-e Coulomb interaction
mediates the indirect interaction between Mn and the p-shell
electrons, the triplet is not split either. Therefore, the four-
electron GS is 24-fold degenerate. Even though the four
noninteracting electron triplet states are not split by the
indirect coupling, we see a negative 
, which means that
electrons lower their energy by an exchange interaction with
Mn. Turning the e-e Coulomb interaction on results in the
singlet-triplet splitting and a further splitting of the triplet
energy shell. The triplet splitting is caused by the indirect
interaction between Mn and electrons in the p shell, which is
mediated by the e-e Coulomb interaction.
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In Fig. 6(a) we show the effect of the e-e Coulomb
interaction on the low-energy spectrum of the four-electron
and Mn complex. We note the appearance of triplet and singlet
energy shells, separated by the e-e exchange interaction. The
splitting of the triplet shell is governed by the e-e and e-Mn
exchange interactions.

Figure 6(b) presents the energy difference 
, i.e., the
effective exchange coupling, as a function of ω0 for four
interacting electrons (γ = 1) confined in the Mn-doped QD
with three confined shells. Here we also have a ferromagnetic
to antiferromagnetic crossing as a function of the QD shell
spacing. For QDs with four shells the ferromagnetic to
antiferromagnetic crossing occurs at ω0 ≈ 0.04 Ry∗.

Now we show the effect of the symmetry of the e-Mn
coupling on the four-electron GS. In Fig. 6(c) we compare
the effects of the anisotropic (ε = 0) and isotropic (ε = 1)
coupling for a Mn-doped QD with three confined shells and
in the presence of a full e-e Coulomb interaction (γ = 1).
For the anisotropic coupling the triplet state is split into nine
doubly degenerate levels. In this case, both sz and Mz are
good quantum numbers, and therefore sz = 1 and sz = −1
breaks the Mn spin degeneracy into six. As the energy of the
state with sz = 1 and Mz is equal to the energy of the state
sz = −1 and −Mz, these six states are double degenerate. The
sz = 0 configurations split into three, where the degeneracy is
given by Mz, i.e., the sz = 0 configurations are degenerate and
labeled by |Mz|, as for the two electrons interacting with the
Mn via an anisotropic e-Mn interaction. The singlet state is
also split into three doubly degenerate levels.

One way to probe the indirect e-Mn interaction is by per-
forming a circularly polarized photoluminescence experiment
of quantum dots containing a single Mn spin and confining
three or more electrons. In this case, the indirect e-Mn coupling
gives rise to a fine structure of both initial and final states of
the emission process [18].

V. CONCLUSION

In conclusion, we presented a microscopic model of inter-
acting electrons coupled with a magnetic ion spin localized
in the center of a self-assembled quantum dot. We showed
that the electrons occupying finite angular momentum orbitals
interact with the localized spin through an effective exchange
interaction mediated by electron-electron interactions. The
effective interaction for p-shell electrons is obtained using
exact diagonalization of the microscopic Hamiltonian as a
function of the number of electronic shells, shell spacing, and
anisotropy of the exchange interaction. It is shown that the
effective interaction can be engineered to be either ferro- or
antiferromagnetic, depending on the quantum-dot parameters.
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