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Generation of undamped exciton-biexciton beats in InAs quantum dots using six-wave mixing
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We report the generation of undamped exciton-biexciton beats for coherent dynamics of excitons in InAs
quantum dots at telecommunication wavelengths. The exciton-biexciton beat is damped rapidly in four-wave
mixing measurements, but a six-wave mixing technique with three excitation pulses enables us to regenerate and
control the exciton-biexciton beat perfectly. We have demonstrated the complete regeneration of the exciton-
biexciton beat by adjusting the delay time between the first and second excitation pulses. This approach is different
from conventional coherent control in quantum dots. Furthermore, the initial phase of the exciton-biexciton beat
is controlled by using this technique. We show that the generation of undamped beats is a powerful tool for
controlling quantum states.
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Coherent control of quantum states is actively being
investigated for the study of quantum information processing.
Electron spin states and Rabi oscillations of excitons have
been controlled in optical and transport measurements [1–4].
Four-wave mixing (FWM) has been used for coherent control
of excitons in semiconductors [5–8]. Originally, the FWM
technique was used for the measurement and control of co-
herent processes including beat structures in the time domain.
Excitonic beat structures were observed as quantum beats of
heavy-hole and light-hole excitons [9,10], scattering processes
between excitons and phonons [6,8,11], and exciton-biexciton
beats [7,12]. Microscopic quantum dynamics clearly shows
the periodic shifts of quantum states. However, it is difficult
to use the beat structures for quantum information processing
because control over a long period of time is forbidden by the
damping of the beat amplitudes. Such amplitudes are enhanced
or suppressed by using a coherent control technique based on
phase-locked pulses [5–8], but the damping is fundamentally
unavoidable. Perfect suppression of such damping has not yet
been achieved. The damping degrades the controllability for
the quantum states, and hence the suppression of the damping
is a prerequisite for quantum state control over a sufficient
time period.

It is also important to preserve the quantum states of elec-
trons in storage media for quantum information processing.
Recently, the photon echo signals in FWM measurements
have been applied to solid-state storage [13]. The storage of a
time-bin qubit and an optical pulse at the single-photon level
has been demonstrated in rare-earth-doped solids [14,15]. The
photon echo technique is of interest as a method for storing
and retrieving input optical pulses. The essential feature of the
photon echo measurement is the rephasing of the polarizations
in media with inhomogeneous broadening of the resonance
energy, i.e., time reversal. Input pulses are stored until the
rephasing time, which is set by the arrival time of the read
pulse. Taking full advantage of the photon echo feature, it is
possible to generate coherently controlled quantum states that
can be stored for a long time without the loss of controllability.
Excitons in semiconductor quantum dots (QDs) show fairly

long coherence times compared to those in bulk [16]. Studies
of excitons in QDs have focused on their usage as long-lived
coherent states in solids, but the loss of controllability has
not yet been solved. The perfect control of quantum states in
QDs, especially biexciton states, is an important step for the
realization of quantum memories in solid state media, because
biexcitons generate entangled photon pairs [17,18].

In this paper, we show the undamped exciton-biexciton
beat generated by six-wave mixing (SWM) in self-assembled
InAs QDs. The technique presented in this study differs
from conventional three-pulse photon echo measurements,
which are widely being used to accurately analyze third-order
nonlinear processes [19–21]. We used three-pulse excitation
to control the damping of the beat in fifth-order nonlinear
processes. The exciton-biexciton beat in semiconductor QDs
disappears for long delay times in the FWM measurements
[12,22,23], but the beat is regenerated completely in the SWM
measurements. This study is a demonstration of the undamped
exciton-biexciton beat in QDs.

The investigated sample was grown on a InP(311)B
substrate by molecular beam epitaxy. The sample contains 60
layers of InAs self-assembled QDs separated by 20-nm-thick
In1−x−yGaxAlyAs spacers. Highly stacked InAs QDs are
realized by the strain-compensation technique [24,25]. The
exciton states in the QDs were split into X and Y excitons
due to the fine-structure splitting. The X and Y excitons
were excited in the linear polarization along the [011̄] and
[2̄33] directions, respectively [23]. In this study, the excitation
pulses were performed with Y -polarized linear polarization
in order not to excite X excitons. The sample was mounted
in a closed-cycle refrigerator at 3.4 K. For FWM and SWM
measurements, optical pulses were generated by an optical
parametric oscillator pumped by a mode-locked Ti:sapphire
laser tuned to the exciton resonance wavelength of 1470 nm.
The pulse duration was 130 fs, and the repetition rate was
76 MHz. The first, second, and third excitation pulses were
incident on the sample with wave vectors k1, k2, and k3,
respectively. For the FWM measurements, the third excitation
pulse was not used; the FWM (SWM) signal in the direction
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FIG. 1. Illustration of the time development of the excitation
processes in (a) four-wave mixing and (b) six-wave mixing measure-
ments. The first, second, and third excitation pulses are incident at
0, τ21, and τ21 + τ32, respectively. Photon echo signals appear at 2τ21

and 2τ32 in four-wave mixing and six-wave mixing measurements,
respectively. The signal intensities obey the exponential decay of
excitonic polarization (dotted lines). (c) Energy structure of ground
(|g〉), exciton (|e〉), and biexciton (|b〉) states. Transition processes
are shown by double-sided Feynman diagrams for (d),(e) four-wave
mixing and (f)–(i) six-wave mixing.

of 2k2 − k1 (2k3 − 2k2 + k1) was detected by a photodetector
in transmission geometry.

The time development of excitation processes in FWM and
SWM measurements is shown in Figs. 1(a) and 1(b). The
excitonic polarizations generated by the first excitation pulse
disappear rapidly due to the phase difference caused by the
inhomogeneous broadening of the exciton resonance energy.
The second excitation pulse begins the reversal of the phase
evolution at τ21. This reversal of the phase shifts takes the same
duration as the delay between the two excitation pulses; the
rephased photon echo signal appears at a time of 2τ21 in FWM
measurements. In contrast, the photon echo signal in SWM
measurements does not appear before the third excitation.

After the first rephasing at 2τ21, the third excitation pulse
begins to reverse the phase evolution again; the reversal occurs
until the second rephasing. Eventually, the rephased photon
echo signal appears at 2τ32 in SWM measurements. The de-
phasing of the FWM signal is proportional to e−(4/T2)τ21 , where
T2 is the dephasing time of excitons. In contrast, the SWM
signal is proportional to e−(4/T2)τ32 , because the rephasing time
2τ21 in FWM measurements is replaced by the rephasing
time 2τ32 in SWM measurements. The excitonic transitions
in QDs are explained by the three-level system shown in
Fig. 1(c). The resonance energy of biexciton transition,
�ωeg − �ωB, is smaller than that of exciton transition, �ωeg,
by the biexciton binding energy �ωB. The FWM processes are
illustrated by double-sided Feynman diagrams in Figs. 1(d)
and 1(e). The interference between exciton and biexciton
transitions causes the beat with a period of TB = 2π/ωB. In
the SWM measurements, the SWM signals are composed of
four transition processes illustrated in Figs. 1(f)–1(i).

The experimental result of the FWM measurement is shown
in Fig. 2(a). The excitons in QDs show long coherence times
because the coherent states of excitons are protected by the
confinement potential of the QDs [16,22]. The dephasing
time T2 is obtained to be 0.8 ns. In the time range of 0
to 6 ps, the exciton-biexciton beat was observed as shown
in Fig. 2(b). The beat period TB is obtained to be 1.16 ps,
which corresponds to the biexciton binding energy. Here, it

FIG. 2. Four-wave mixing intensity at delay times of (a) 0 to
500 ps, (b) 0 to 6 ps, and (c) 32 to 39 ps.
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should be noted that the period is modulated slightly by the
fine-structure splitting energy [22,23]. Each QD has a different
biexciton binding energy because the energy is determined by
the confinement potential of the corresponding QD. Therefore,
the beat exhibits the damping due to the inhomogeneous
broadening of the biexciton binding energy. Calculating the
diagrams in Figs. 1(d) and 1(e), the FWM intensity in the
direction of 2k2 − k1 is expressed as

IFWM(τ21) ∝ �(τ21)e−(4/T2)τ21
∣∣2 − CBeiωBτ21e−(σ 2

B/4)τ 2
21
∣∣2

, (1)

where ωB is the frequency of the exciton-biexciton beat, σB

is the linewidth of the inhomogeneous broadening of the
biexciton binding energy, CB is the beat amplitude, and �(t) is
a step function. The detailed derivation of Eq. (1) is explained
in the Appendixes. The signal from the exciton (biexciton)
transition is expressed by the first (second) term as illustrated
in Fig. 1(d) [Fig. 1(e)]. It is assumed that the difference between
the dephasing times of the exciton and biexciton is sufficiently
negligible because the time development depending on the
difference varies slowly compared to the damping factor
e−(σ 2

B/4)τ 2
21 [23]. The biexcitonic polarization is opposite in

sign to the excitonic polarization because of the difference
between the final states. The phase shift due to the biexciton
binding energy is not reversed in the FWM process; the
interference of the exciton and biexciton states is observed
at the rephasing time 2τ21 as the exciton-biexciton beat. In
the FWM measurement, the exciton-biexciton beat cannot be
observed after a delay time of 10 ps, owing to the effect of
the damping factor e−(σ 2

B/4)τ 2
21 , as shown in Fig. 2(c). The

manipulability of the quantum state is limited to the time
range before damping. The technique for suppression of the
damping is necessary to control the quantum states in the
exciton-biexciton beat for long delay times. Then, SWM
measurements with three excitation pulses were performed
to eliminate the damping of the beat.

In the SWM measurements, the diffracted signal in the
direction of 2k3 − 2k2 + k1 is determined by two delay times
τ21 and τ32, as shown in Fig. 1(b). Compared to the rephasing
time 2τ21 in the FWM measurements, the SWM signal appears
at the rephasing time 2τ32. It should be noted that the rephasing
time is independent of the delay time τ21. The delay time τ21 is
adjusted to control the exciton-biexciton beat as explained in
the following. In order to explain the role of the delay time τ21,
the experimental results of the SWM measurements for τ21 =
0.0 ps are shown in Figs. 3(a) and 3(b) by the black lines. The
exciton-biexciton beat in the SWM measurements is similar
to that in the FWM measurements, as shown in Figs. 2(b)
and 2(c). The exciton-biexciton beat was observed within the
delay time of 10 ps. The damping of the exciton-biexciton beat
is caused by the inhomogeneous broadening of the biexciton
binding energy, as it is for the FWM signal. For long delay
times τ21 and τ32, the exciton-biexciton beat is caused by
the interference between the transition processes illustrated in
Figs. 1(f) and 1(g). The processes illustrated in Figs. 1(h) and
1(i) disappear due to the damping. Using the same expansion
approach to nonlinear response as conventionally used for
FWM signals [26,27], the SWM intensity is obtained from the
fifth-order terms in the density matrix. The detailed derivation
of theoretical SWM intensity is explained in the Appendixes.

FIG. 3. (Color online) Six-wave mixing intensity at delay times
of (a) 0 to 6 ps and (b) 32 to 39 ps. The black lines show the results
for τ21 = 0.0 ps. The red line shows the result for τ21 obeying Eq. (3).

Calculating the diagrams in Figs. 1(f) and 1(g), the SWM
intensity in the direction of 2k3 − 2k2 + k1 is expressed as

ISWM(τ32,τ21) ∝ �(τ32 − τ21)�(τ32)�(τ21)e−(4/T2)τ32

×∣∣2 − CBeiωB(τ32−τ21)e−(σ 2
B/4)(τ32−τ21)2 ∣∣2

. (2)

This result is well explained by comparing to the FWM
intensity in Eq. (1). The dephasing is expressed by e−(4/T2)τ32 ,
because the rephasing time 2τ21 in FWM measurements is
replaced by 2τ32 in SWM measurements. The interference
of excitonic and biexcitonic signals occurs due to the phase
evolution in time from biexciton excitation to signal emission.
In the FWM processes, the exciton-biexciton beating factor is
determined by τ21, which is the time interval from the second
excitation at τ21 to the rephasing at 2τ21. In contrast, the beat
in the SWM processes depends on τ32 − τ21. This is the time
interval from the third excitation at τ21 + τ32 to the rephasing
at 2τ32.

The damping of the exciton-biexciton beat is eliminated by
adjusting the delay time τ21 in a way that depends on the delay
time τ32. The exciton-biexciton beat is regenerated even for
long delay times because an appropriate shift of the delay time
τ21 eliminates the damping. In the regeneration technique, the
delay time τ21 is chosen according to the following condition:

τ21 = nTB for

(
1

2
+ n

)
TB � τ32 <

(
3

2
+ n

)
TB, (3)

where n is an integer. Substituting this condition into Eq. (2),
the SWM intensity is expressed as

ISWM(τ32) ∝ �(τ32)e−(4/T2)τ32
∣∣2 − CBeiωBτ32

∣∣2
. (4)

This equation represents the undamped exciton-biexciton beat.
Even if the delay time τ32 is set to be long, the exciton-biexciton
beat can be observed by adjusting the long delay time τ21.
The damping of the exciton-biexciton beat due to the long
delay time τ32 is canceled by increasing the delay time τ21.
We performed this condition for the SWM measurements by
adjusting the delay times such as τ21 = 31.32 ps (n = 27)

195306-3



TAHARA, OGAWA, MINAMI, AKAHANE, AND SASAKI PHYSICAL REVIEW B 89, 195306 (2014)

for 31.90 ps � τ32 < 33.06 ps and τ21 = 32.48 ps (n = 28)
for 33.06 ps � τ32 < 34.22 ps. The experimental result of the
SWM intensity under the condition of Eq. (3) is shown in
Fig. 3(b) by the red line. The exciton-biexciton beat cannot
be observed for the time range of 32 to 39 ps in the FWM
measurements, but the beat is regenerated for long delay times
in the SWM measurements. The invariant amplitude of the
beat shows the complete elimination of the damping. This
regeneration technique is effective up to longer delay times
scaled by T2.

This regeneration technique was also used to control the
initial phase of the exciton-biexciton beat, θi, by modifying
the selection procedure for τ21 from Eq. (3) to the following
condition:

τ21 = nTB + θi

ωB

for

(
1

2
+ n

)
TB + θi

ωB
� τ32 <

(
3

2
+ n

)
TB + θi

ωB
. (5)

The initial phase of the beat is determined by the offset θi/ωB

in this shifted form of the delay time τ21. In this condition, the
SWM intensity is expressed as

ISWM(τ32) ∝ �(τ32)e−(4/T2)τ32
∣∣2 − CBe−iθieiωBτ32

∣∣2
. (6)

The initial phase is expressed by the factor e−iθi , where the
exciton-biexciton beat becomes out of phase at τ32 = 0 for
the condition θi = 0. The initial phase is manipulated by
changing the condition of the delay time τ21. Control of the
initial phase was performed by adjusting the delay times such
as τ21 = 31.32, 31.61, 31.90, and 32.19 ps for θi = 0, π/2,
π , and 3π/2, respectively, to measure the intensity at the
delay time τ32 = 33 ps. The experimental results, shown in
Fig. 4, demonstrate clear π/2 shifts of the initial phase of
the exciton-biexciton beat. The initial phase was successfully
controlled by an appropriate offset of the delay time τ21.
It should be noted that the rephasing time of the photon
echo signal is determined by the delay time τ32, which is
independent of the delay time τ21 controlling the initial phase.
Even if the measurement uses a fixed delay time τ32, the
interference of the exciton and biexciton states is controlled
by this shift of the delay time τ21. The advantage of the

FIG. 4. (Color online) Six-wave mixing intensity for the initial
phases of θi = 0 (solid circle), π/2 (open circle), π (solid square),
and 3π/2 (open square). The result for τ21 = 0.0 ps is shown as a
black line.

SWM measurements with such shifts is not only the complete
elimination of the damping but also the multiple degrees of
control allowed by two independent delay times.

In conclusion, we have demonstrated the regeneration and
control of the exciton-biexciton beat in the quantum dot en-
semble using a six-wave mixing technique. The damping of the
exciton-biexciton beat cannot be suppressed in four-wave mix-
ing, but appropriate timing of the excitation pulses in six-wave
mixing enables us to eliminate the damping. We have clearly
shown that the conditional six-wave mixing measurement is
a powerful technique for the control of quantum states. The
presented technique is compatible with a decoherence control
technique for fundamental dephasing processes [28,29]. By
combining these techniques, the controllability of quantum
state becomes almost unlimited. This study for quantum dot
ensemble is an important demonstration to realize perfect
quantum memories in solid. It is also applicable to a wide range
of other quantum beats, e.g., complicated beats in multilevel
systems. We believe that this technique for eliminating the
problem of damping will allow the measurement of many
heretofore hidden fundamental beating phenomena.

This work was supported by the Global Center of Excel-
lence Program by MEXT, Japan through the Nanoscience and
Quantum Physics Project of the Tokyo Institute of Technology.
H.T. was supported by a Grant-in-Aid for JSPS Fellows.

APPENDIX A: THEORETICAL FOUR-WAVE MIXING
SIGNAL FOR THE EXCITON-BIEXCITON SYSTEM

The theoretical nonlinear response is obtained by solving
the equation of motion for the density matrix [26,27]. We use
a three-level density matrix to represent the exciton-biexciton
system. The density matrix is written as ρij (i,j = g,e,b),
where the ground, exciton, and biexciton states are denoted
by g, e, and b, respectively. The equation of motion for the
density matrix is expressed as

∂ρ

∂t
= − i

�
[H,ρ] (A1)

with

H = H0 + H1, (A2)

H0 =

⎛
⎜⎝

�ωgg 0 0

0 �ωee 0

0 0 �ωbb

⎞
⎟⎠, (A3)

H1 =

⎛
⎜⎝

0 −μgeE
∗ 0

−μegE 0 −μebE
∗

0 −μbeE 0

⎞
⎟⎠, (A4)

where the unperturbed Hamiltonian H0 shows the eigenener-
gies in the absence of excitation fields; the eigenenergies of
the ground, exciton, and biexciton states are denoted by �ωgg,
�ωee, and �ωbb, respectively. The energy differences �ωee −
�ωgg and �ωbb − �ωee are denoted by �ωeg and �ωeg − �ωB,
respectively, where �ωB is the biexciton binding energy. The
light-matter interaction Hamiltonian H1 represents the exciton
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and biexciton transitions. The dipole moment between the
ground and exciton (exciton and biexciton) states is denoted
by μge (μeb), where the complex conjugate is expressed
as μeg = μ∗

ge (μbe = μ∗
eb). The electric field for two-pulse

excitation is expressed as E = ∑
j=1,2 Ej (t)eikj ·r−iωeg(t−tj ),

where kj and tj are the wave vector and the arrival time
of the j th excitation pulse, respectively. The frequency of
incident light is adjusted to match the exciton resonance. The
excitation pulses are assumed to be delta-function pulses, i.e.,
Ej (t) ∝ δ(t−tj ).

In order to express the coherent dynamics of the exciton-
biexciton system, the decay terms should be taken into account.
The equation of motion for the nth-order density matrix ρ(n),
which is proportional to the nth power of the electric field, is
expressed as

∂ρ(n)
gg

∂t
= − i

�

(
Hgeρ

(n−1)
eg − ρ(n−1)

ge Heg
) + 1

T1
ρ(n)

ee , (A5)

∂ρ(n)
ee

∂t
= − i

�

(
Hegρ

(n−1)
ge − ρ(n−1)

eg Hge + Hebρ
(n−1)
be

− ρ
(n−1)
eb Hbe

) − 1

T1
ρ(n)

ee + 1

T ′
1

ρ
(n)
bb , (A6)

∂ρ
(n)
bb

∂t
= − i

�

(
Hbeρ

(n−1)
eb − ρ

(n−1)
be Heb

) − 1

T ′
1

ρ
(n)
bb , (A7)

∂ρ(n)
eg

∂t
= − i

�

(
Hegρ

(n−1)
gg − ρ(n−1)

ee Heg + Hebρ
(n−1)
bg

)

− iωegρ
(n)
eg − 1

T2
ρ(n)

eg , (A8)

∂ρ
(n)
be

∂t
= − i

�

(
Hbeρ

(n−1)
ee − ρ

(n−1)
bg Hge − ρ

(n−1)
bb Hbe

)

− i(ωeg − ωB)ρ(n)
be − 1

T ′
2

ρ
(n)
be , (A9)

∂ρ
(n)
bg

∂t
= − i

�

(
Hbeρ

(n−1)
eg − ρ

(n−1)
be Heg

)

− i(2ωeg − ωB)ρ(n)
bg − 1

T ′′
2

ρ
(n)
bg , (A10)

where Hij is a matrix element of the total Hamiltonian
H . The decay times of ρee, ρbb, ρeg, ρbe, and ρbg are
phenomenologically introduced as T1, T ′

1, T2, T ′
2, and T ′′

2 ,
respectively. The nth-order density matrix ρ(n) is calculated
from the (n − 1)th-order density matrix ρ(n−1), where the
initial state corresponds to the ground state ρ(0)

gg �= 0, i.e.,

ρ(0)
ee = ρ

(0)
bb = ρ(0)

eg = ρ
(0)
be = ρ

(0)
bg = 0.

The four-wave mixing (FWM) signal is calculated from
the off-diagonal elements of the third-order density matrix,
i.e., μgeρ

(3)
eg + μebρ

(3)
be . The first (second) term corresponds

to the FWM signal illustrated in Fig. 1(d) [Fig. 1(e)]. In
the investigated quantum dot (QD) ensemble, each QD has
a different resonance energy because each resonance energy is
determined by the confinement potential of the corresponding
QD. To calculate the theoretical FWM signal, the inhomo-
geneous broadening of the resonance energy should be taken

into account. The inhomogeneous broadening of the exciton
resonance energy is assumed to be a Gaussian distribution
given by g(ω) = (Aeg/

√
πσeg)e−(ω−ω̄eg)2/σ 2

eg with a magnitude
Aeg, a central value �ω̄eg, and a linewidth �σeg [26]. Using
this distribution, the FWM signal with the inhomogeneous
broadening is given by PFWM(t) = ∫

dωegg(ωeg)(μgeρ
(3)
eg +

μebρ
(3)
be ). The inhomogeneous broadening of the biexciton

binding energy causes the damping in the exciton-biexciton
beat. This inhomogeneous broadening, as well as that of
the exciton resonance energy, is assumed to be a Gaussian
distribution: gB(ω) = (AB/

√
πσB)e−(ω−ω̄B)2/σ 2

B . Taking into
account this distribution, the exciton-biexciton beat factor eiωB t

is replaced by eiω̄Bt e−(σ 2
B/4)t2

. The damping factor e−(σ 2
B/4)t2

is
determined by the linewidth of the inhomogeneous broaden-
ing. The FWM signal in the direction of 2k2 − k1 is expressed
as

PFWM(t) ∝ �(t − t2)�(t2 − t1)ei(2k2−k1)·re−iω̄eg(t−2t2+t1)

×e−(σ 2
eg/4)(t−2t2+t1)2

e−(1/T2)(t−t1)

×(
2 − CBeiω̄B(t−t2)e−(σ 2

B/4)(t−t2)2)
, (A11)

where �(t) is a step function; the beat amplitude CB

corresponds to AB|μeb|2/|μge|2. The difference between the
dephasing times of the exciton and biexciton is assumed
to be sufficiently negligible because the damping factor
e−(σ 2

B/4)(t−t2)2
decreases much faster than the time development

depending on the difference between the dephasing times.
The rephasing time, i.e., photon echo generation, is expressed
by the factor e−(σ 2

eg/4)(t−2t2+t1)2
, which is caused by the in-

homogeneous broadening of the exciton resonance energy.
Since the inhomogeneous broadening in the QD ensemble is
considerably larger than the spectral linewidth of the excitation
pulses, the linewidth �σeg is determined by the linewidth of
the excitation pulses [23]. Therefore, the photon echo signal
exhibits a delta-function shape at t = 2t2 − t1 due to the factor
e−(σ 2

eg/4)(t−2t2+t1)2
. In FWM measurements, the time-integrated

signal is measured as a function of the delay time τ21 = t2 − t1.
The FWM intensity IFWM(τ21) = ∫

dt |PFWM(t)|2 is expressed
as

IFWM(τ21) ∝ �(τ21)e−(4/T2)τ21
∣∣2 − CBeiω̄Bτ21e−(σ 2

B/4)τ 2
21
∣∣2

.

(A12)

Since the rephasing time is 2τ21, the dephasing factor is
measured as the exponential decay e−(4/T2)τ21 . The exciton-
biexciton beat factor eiω̄Bτ21e−(σ 2

B/4)τ 2
21 is also determined by the

delay time τ21.

APPENDIX B: THEORETICAL SIX-WAVE MIXING
SIGNAL FOR THE EXCITON-BIEXCITON SYSTEM

The six-wave mixing (SWM) signal is also calculated
from the equation of motion for the density matrix. In the
calculation, the electric field for three-pulse excitation is
expressed as E = ∑

j=1,2,3 Ej (t)eikj ·r−iωeg(t−tj ). The SWM
signal is obtained from the off-diagonal elements of the fifth-
order density matrix, i.e., PSWM(t) = ∫

dωegg(ωeg)(μgeρ
(5)
eg +

μebρ
(5)
be ), where the inhomogeneous broadening of the exciton

resonance energy is taken into account. The first (second) term

195306-5



TAHARA, OGAWA, MINAMI, AKAHANE, AND SASAKI PHYSICAL REVIEW B 89, 195306 (2014)

is composed of the SWM signals illustrated in Figs. 1(f) and
1(h) [Figs. 1(g) and 1(i)]. The SWM signal in the direction of
2k3 − 2k2 + k1 is expressed as

PSWM(t) ∝ �(t − t3)�(t3 − t2)�(t2 − t1)

×ei(2k3−2k2+k1)·re−iω̄eg(t−2t3+2t2−t1)

×e−(σ 2
eg/4)(t−2t3+2t2−t1)2

e−(1/T2)(t−t1)

×(
4 − 2CBeiω̄B(t−t3)e−(σ 2

B/4)(t−t3)2

+CBe−iω̄B(t3−t2)e−(σ 2
B/4)(t3−t2)2

− 2C ′
Beiω̄B(t−2t3+t2)e−(σ 2

B/4)(t−2t3+t2)2)
, (B1)

where the beat amplitude C ′
B corresponds to AB|μeb|4/|μge|4.

The inhomogeneous broadening of the biexciton binding
energy is taken into account in the exciton-biexciton beat. The
first, second, third, and fourth terms correspond respectively to
the SWM signals illustrated in Figs. 1(f), 1(g), 1(h), and 1(i).
The photon echo signal exhibits a delta-function shape at t =
2t3 − 2t2 + t1 due to the factor e−(σ 2

eg/4)(t−2t3+2t2−t1)2
. In SWM

measurements, the time-integrated signal ISWM(τ32,τ21) =∫
dt |PSWM(t)|2 is measured as a function of the first and

second delay times, which are denoted by τ21 = t2 − t1 and
τ32 = t3 − t2, respectively. The SWM intensity is expressed as

ISWM(τ32,τ21) ∝ �(τ32 − τ21)�(τ32)�(τ21)e−(4/T2)τ32

×∣∣4 − 2CBeiω̄B(τ32−τ21)e−(σ 2
B/4)(τ32−τ21)2

+CBe−iω̄Bτ32e−(σ 2
B/4)τ 2

32

− 2C ′
Be−iω̄Bτ21e−(σ 2

B/4)τ 2
21
∣∣2

. (B2)

For long delay times compared to the damping of the exciton-
biexciton beat, i.e., 2/σB � τ21,τ32, the SWM intensity is
expressed as

ISWM(τ32,τ21) ∝ �(τ32 − τ21)�(τ32)�(τ21)e−(4/T2)τ32

×∣∣2 − CBeiω̄B(τ32−τ21)e−(σ 2
B/4)(τ32−τ21)2 ∣∣2

. (B3)

Since the rephased photon echo appears at 2τ32, the dephasing
of the SWM signal is determined by the second delay time τ32.
It is expressed by the exponential decay e−(4/T2)τ32 . In contrast,
the exciton-biexciton beat depends on the difference between
the first and second delay times, i.e., τ32 − τ21.
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[11] L. Bányai, D. B. Tran Thoai, E. Reitsamer, H. Haug,
D. Steinbach, M. U. Wehner, M. Wegener, T. Marschner, and
W. Stolz, Phys. Rev. Lett. 75, 2188 (1995).

[12] T. F. Albrecht, K. Bott, T. Meier, A. Schulze, M. Koch, S. T.
Cundiff, J. Feldmann, W. Stolz, P. Thomas, S. W. Koch, and
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