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Giant magnetoresistance and perfect spin filter in silicene, germanene, and stanene
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Silicene, germanene, and stanene are two-dimensional topological insulators exhibiting helical edge states. We
investigate global and local manipulations at the edges by exposing them to (i) a charge-density-wave order, (ii) a
superconductor, (iii) an out-of-plane antiferromagnetic, and (iv) an in-plane antiferromagnetic field. We show that
these perturbations affect the helical edge states in a different fashion. As a consequence one can realize quantum
spin-Hall effect without edge states. In addition, these edge manipulations lead to very promising applications:
a giant magnetoresistance and a perfect spin filter. We also investigate the effect of manipulations on a very few
edge sites of a topological insulator nanodisk.
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I. INTRODUCTION

Topological phases play a major role in modern condensed-
matter physics. It is expected that topological effects will soon
become more important for applications and technological
developments. In general, topological phases are characterized
by nonlocal “quantum numbers” such as topological invariants
[1–4] or topological entanglement entropy [5,6]. This contrasts
the paradigm of conventional symmetry broken phases, e.g.,
magnets and superfluids, described by a local order parameter.
As a consequence of this nonlocality, it is often said that
microscopic details as well as local perturbations do not matter
for topological phases.

There exist at least two types of topological orders, intrinsic
topological order [7] and symmetry protected topological
order [2,8–12]. Examples of the former are the fractional
quantum Hall effect [13,14] and Z2 spin liquids [15],
while those of the latter are spin-1 Haldane chains [16],
time-reversal invariant topological insulators, and topological
superconductors [17–19]. For intrinsic topological order, it is
well known that local perturbations are irrelevant and cannot
change the topological phase; this insight is at the heart
of topological quantum computing [20]. Also for symmetry
protected topological phases (SPTPs), local perturbations are
irrelevant as long as the protecting symmetries are not broken.
One can easily convince oneself that global breaking of,
say, time-reversal symmetry destroys the topological insulator
phase. It is, however, less clear what the effect of a local
perturbation is when it breaks the protecting symmetry. From a
fundamental perspective, it is important to understand whether
or not a SPTP becomes fragile only because the protecting
symmetry is broken locally on a single or a few sites in a
macroscopic sample consisting of thousands or millions of
sites. From a technological aspect, this question becomes
interesting as well: Is it possible to change the topological
phase or the systems character by manipulating a small region
of the system?

In this paper, we aim to shed some light on this fundamental
questions by considering a simple example of SPTP in the
two-dimensional topological insulator candidate materials
silicene, germanene, and stanene. At a boundary between
two topologically different phases (including the vacuum),
metallic edge modes must appear and traverse the bulk gap.

We investigate the effect of various perturbations applied
(i) to one half of the system, (ii) to the lattice sites belonging to
the edges, and (iii) to isolated islands consisting of a few edge
sites only. It is intriguing that we can realize the quantum spin
Hall (QSH) effect without edge states. Our analysis paves the
way to some very interesting applications which base on local
edge manipulations. We propose that silicene, germanene, and
stanene nanoribbons with manipulated edges can be used for
giant magnetoresistance and as a perfect spin filter.

II. QUANTUM SPIN HALL EFFECT IN SILICENE,
GERMANENE, AND STANENE

Silicene, germanene, and stanene are candidate materials
for two-dimensional time-reversal invariant topological insu-
lators [21–23]. Under symmetry-breaking external fields [24]
even more topological phases might be realized.

Silicene is a monolayer of silicon atoms forming a buckled
honeycomb lattice. The spin-orbit (SO) coupling is expected
[22] to be λ = 3.9 meV= 2.4 × 10−3 t with the hopping
parameter t = 1.6 eV. The Rashba SO terms are present
but they are negligibly small to affect our analysis [22,25].
Germanene is a single layer of germanium atoms forming a
buckled honeycomb lattice. The SO coupling is about ten times
larger than that of silicene [22], λ = 43 meV= 3.3 × 10−2 t

with t = 1.3 eV. Stanene is the tin version of silicene and
germanene: a single layer of tin atoms forming a buckled
honeycomb lattice. Recent ab initio calculations have revealed
[23] that λ = 0.1 eV = 0.077 t with t = 1.3 eV. Furthermore,
it could be that λ = 0.3 eV= 0.15t with t = 2 eV in fluorinated
stanene. A huge bulk gap due to the SO coupling would
make it possible to materialize a topological insulator at room
temperature. We take λ = 0.2t for illustrations in what follows.

Both silicene, germanene, and stanene are well described
by Kane and Mele’s minimal topological insulator model on
the honeycomb lattice [4,22,26],

HKM = −t
∑

〈ij〉α
c
†
iαcjα + i

λ

3
√

3

∑

〈〈ij〉〉αβ

νij c
†
iασ z

αβcjβ, (1)

where σ z is the Pauli matrix associated with spin degree of
freedom. The first term ∝t represents the nearest-neighbor
hopping resulting in a Dirac semimetal. The second term ∝λ
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FIG. 1. (Color online) QSH nanoribbons (with λ = 0.2 t and a ribbon width W = 128 atoms) where one half of the system is exposed to
one of the following perturbations: (a) CDW order leading to inner edge states at the boundary between the CDW and QSH regions. We have
set M = 2λ. (b) OP-AF order leading to inner edge states at the boundary between the magnetic and QSH regions. We have set mOP = 2λ.
(c) IP-AF order not leading to inner edge states. We have set mIP = λ. (d) Superconducting order not leading to inner edge states. Magenta
(cyan) solid [dotted] lines represent up-spin (down-spin) polarized modes localized at the outer [inner] edge. We have set � = λ.

represents the intrinsic SO term LzSz corresponding to an
imaginary spin-dependent second-neighbor hopping in real
space, where νij = +1(−1) if the next-nearest-neighboring
hopping is anticlockwise (clockwise) with respect to the
positive z axis. Note that since only σ z is involved, the spin
component Sz is a good quantum number.

The SO coupling λ determines for Hamiltonian (1) the
bulk gap, εgap = 2λ. Changing the value of λ does not change
any of our results. To guarantee stability of the topological
phases, for very small values of λ the ribbon width W must
be sufficiently large making numerical simulations efficient.
But the qualitative results are not affected when varying λ.
Therefore we consider throughout the paper the SO coupling
λ = 0.2 eV, hopping amplitude t = 1eV, and a ribbon width
of W = 128 sites. We emphasize that all results apply, hence,
not only to stanene but also to silicene and germanene.

In the following, we consider various perturbation terms
which lead to topological phase transitions from the QSH
phase into the trivial phase. First, we consider the charge-
density-wave (CDW) term (staggered potential) which breaks
the spatial inversion symmetry:

HCDW = M
∑

iα

(a†
iαaiα − b

†
iαbiα), (2)

where the annihilation operator aiσ (biσ ) acts on sublattice A

(B). Second, we consider the superconducting s-wave pairing
term which breaks the U(1) particle conservation:

HSC =
∑

i

(�c
†
i↑c

†
i↓ + �∗ci↓ci↑). (3)

We also consider two magnetic terms, an out-of-plane antifer-
romagnetic (OP-AF) exchange field (i.e., the magnetization is
perpendicular to the plane),

HOP = mOP

∑

iαβ

(
a
†
iασ z

αβaiβ − b
†
iασ z

αβbiβ

)
, (4)

and an in-plane antiferromagnetic (IP-AF) exchange field (i.e.,
the magnetization lies in the plane),

HIP = mIP

∑

iαβ

(
a
†
iασ x

αβaiβ − b
†
iασ x

αβbiβ

)
. (5)

The latter two terms break the time-reversal symmetry. The
IP-AF exchange field also breaks the Sz spin symmetry, while

the OP-AF exchange field preserves it. Note that the IP-AF
exchange field corresponds to the mean-field description
[27–29] of the correlated extension of Hamiltonian (1). Any of
these perturbations may turn the system into the trivial phase.
Note that there are several distinguishable states belonging to
the trivial phase which, in principle, might all be adiabatically
connected with each other.

III. HYBRID NANORIBBONS

The QSH phase as present in (1) is protected by the U(1)
particle conservation, time-reversal, and Sz spin symmetries.
If these symmetries are globally broken, the edge states
become gapped immediately and the phase can be adiabatically
connected to a conventional trivial band-insulator phase. But
as long as these symmetries are intact, there must be metallic
edge states at the boundaries between the topological phase
and any topologically trivial phase (including the vacuum).
We investigate the effect of the aforementioned perturbations
applied to only one half of the nanoribbon [30]. That is,
one half of the ribbon is described by Eq. (1) and the other
half by the Hamiltonian (1) plus one of the additional terms
(2)–(5). We call it a hybrid nanoribbon. It turns out that
such a nanoribbon is separated into two topologically different
regions with a phase boundary. Between the two topologically
different regions an inner phase boundary or an inner edge is
present.

We show the band structures of hybrid nanoribbons in
Fig. 1, where various perturbations are applied to only one half
of the nanoribbon. The helical edge modes at the upper edge
remain unchanged, since they are not exposed to the applied
field. In contrast, the helical edge modes at the lower edge
disappear because this region of the nanoribbon has changed
into a topologically trivial phase due to the applied field. An
important question is whether inner edge modes emerge. It
turns out that this depends on the type of applied field or
perturbation and we have to distinguish between two classes
of such perturbations.

The first class contains the CDW and OP-AF orders, where
the inner edge modes emerge as shown in Figs. 1(a) and
1(b). For hybrid nanoribbons of the first class, the spin-Chern
number remains as a good topological invariant. Hence the
gap must collapse at the boundary and this is accomplished by
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FIG. 2. (Color online) Band structure of “asym-
metric” hybrid ribbons, i.e., a QSH ribbon where
region 1 with width W1 is exposed to the OP-AF
exchange field (mOP = 2λ) while region 2 with
width W2 is unaffected (mOP = 0). The total width
of the ribbon is W = W1 + W2. (a) Nanoribbon
with W = 128 atoms where W1 = 64 and W2 = 64.
(b) Nanoribbon with W = 126 atoms where W1 =
64 and W2 = 62. (c) Nanoribbon with W = 128
atoms where W1 = 63 and W2 = 65.

the helical edge states traversing the bulk gap. The spin-Chern
number becomes ill-defined and changes its value at this point.
The Fermi momentum of the original helical edge modes is
present at k = π/a. On the other hand, the Fermi momentum
of the inner edge modes resides at the K or K ′ point and it is
well described by the Jackiw-Rebbi solution [31].

The second class contains the IP-AF and superconducting
(SC) orders, where the inner edge modes do not emerge as
shown in Figs. 1(c) and 1(d). It has been clarified [25,32,33]
that the IP-AF and SC orders can be connected to the QSH
insulator without gap closing. We conclude that the emergence
of the inner edge modes has a one-to-one correspondence with
whether the two adjacent topological phases can be connected
due to a parameter-driven quantum phase transition without
gap closing [25,32,33].

A comment is in order. So far we have assumed that
the inner boundary is located precisely at the middle of
the nanoribbon. Our results do not change even if we
alter the position of the inner boundary. For demonstration,
we show the band structure of a hybrid nanoribbon in Fig. 2(b)
where the width of the unperturbed region is slightly shorter
leading to an asymmetric hybrid ribbon. The band structure
remains effectively unchanged compared to the symmetric
case, Fig. 2(a). As the penetration length of the edge states is
as short as one site, the position of the inner boundary does not
matter at all. Moreover, we show the band structure of a hybrid
nanoribbon in Fig. 2(c) where the inner boundary is shifted
by one site compared to Fig. 2(a). Although the high-energy
structure is slightly modified, the low-energy spectrum is
unaffected showing that the details of the boundaries are
irrelevant.

Another important question about the edge modes is
whether they are spin polarized when perturbations break
the Sz spin symmetry. We have numerically checked that
all gapless edge modes are perfectly spin polarized for all
situations discussed in this paper, with exception of the
scenario shown in Fig. 4(b). Note that pure ↑-spin (↓-spin)
polarized edge states are always shown in magenta (cyan)
throughout the paper; in case that both spin components are
involved the colors are superimposed yielding dark blue.

IV. EDGE MANIPULATION OF NANORIBBONS

We have so far exposed one half of a nanoribbon to
various fields (i.e., perturbations) leading to topologically
trivial phases in the exposed region. But what happens if we
shrink the exposed region to a few sites so that one can hardly
talk about a phase anymore?

To answer this question, we investigate a nanoribbon where
the perturbations are applied to the outermost sites of (i) a
single edge or (ii) both edges: see the top panels in Fig. 3. This
represents the least perturbation one can apply to a nanoribbon.
It is worth mentioning that the antiferromagnetic (AF) and the
ferromagnetic (FM) order become indistinguishable when they
are applied only to the outermost sites of zigzag edges [34].
For practical purposes it is easier to apply the FM field rather
than the AF field.

In addition, we have two important motivations for con-
sidering this setup: (i) it will be experimentally relevant to
perform the manipulations only on the edge of the sample
since the whole sample might not always be accessible due
to substrate, gates, etc.; (ii) in case of a large honeycomb
sheet, we can safely assume that the topological phase will not
be destroyed if only a small fraction of the sheet (namely the
edge) is exposed to a perturbation, hence the edge manipulation
should be irrelevant for the topological properties of the bulk.
In the following, we will restrict our discussion to consider
the magnetic perturbations (the OP-FM field as an example of
the first class and the IP-FM field as an example of the second
class). Almost identical results are derived for the cases of the
CDW order and the superconductor.

By applying the IP-FM order to a single edge of the
nanoribbon, the edge modes located at the same edge be-
come immediately gapped. By exposing both edges of the
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FIG. 3. (Color online) Nanoribbon with a width of W = 128
atoms and SO coupling λ = 0.2t . (a) IP-FM exchange field is applied
only to the outermost sites of the upper edge. Only the upper
edge modes are gapped. (b) IP-FM exchange field is applied to the
outermost sites of both edges. All edge modes are gapped. We have
set mIP = λ.
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nanoribbon to the IP-FM field, all the edge modes become
gapped. Both scenarios are illustrated in Fig. 3. This is because
the penetration length of edge modes located at zigzag edges
is almost as short as a single lattice spacing.

A nanoribbon can be very wide, consisting of thousands of
unit cells. It is very unlikely that the QSH phase is destroyed
deep in the bulk when performing these manipulations at the
edge. Nevertheless the edge states are gapped. This situation
corresponds to a QSH phase without edge states.

In the case of an armchair nanoribbon, the helical edge
modes become also gapped in the presence of the IP-AF
order. The magnitude of gap opening becomes larger as the
region of the applied IP-AF field becomes larger. This is due
to the fact that the penetration length is longer compared to
zigzag edge modes.

V. LOCAL MANIPULATIONS OF NANODISKS

We have so far considered merely perturbations affecting
the whole edge. We proceed to investigate how a perturbation,
which has the size of a few sites located at the edge, affects the
QSH phase. We have checked various disk sizes ranging from
400 to 1600 lattice sites in order to rule out finite-size artifacts.

First, the CDW and the OP-AF exchange fields create
an inner boundary with helical edge modes [Figs. 1(a) and
1(b)]. We can conjecture that also for a disk geometry such
a perturbation will detour the helical edge states around the
exposed sites. Indeed this is what we observe for nanodisks:
see Fig. 4(a) for an example with applied OP-AF field. The
perturbation is applied in the yellow region. The shown edge

FIG. 4. (Color online) Local manipulations on honeycomb nan-
odisks (λ = 0.5t) consisting of 800 lattice sites: the local density
|ψσ (x,y)|2 of the edge state is shown which is proportional to the
radius of the dots. On the left side, |ψ↑|2 is plotted in magenta, on
the right side, |ψ↓|2 is plotted in cyan. (a) OP-AF exchange field
(mOP = 2t) is applied to a small region at the edge. The helical
edge modes detour the perturbation. Note that the edge state ψ

corresponding to the energy closest to zero is shown; it is a pure
↑-spin state. (b) IP-AF exchange field (mIP = 2t) is applied to five
adjacent sites at the edge. At the perturbation, no edge state is present.
Instead, the spin is flipped and sent back. Again the edge state ψ with
energy closest to zero is shown; the state has equal weights for ↑-
and ↓-spin components.

state density |ψ |2 corresponds to a pure ↑-spin state with
energy E = −5.560 × 10−3t . Note that this state is degenerate
with ψ̃ which is a pure ↓-spin state.

Second, the exposed edge modes disappear in the nanorib-
bon for the applied SC and IP-AF orders [Figs. 1(c) and 1(d)].
Does such a perturbation detour the edge states as well in
the case of the nanodisk? Or does it make them disappear?
Neither of these guesses is correct. At the exposed sites, the
edge modes disappear, but everywhere else they persist. This
is accomplished by flipping the spin of the edge mode at
the perturbation and send the edge mode back with reversed
spin orientation. That is, the former right-moving ↑-spin edge
state is now a superposition of right-moving ↑-spin (magenta
dots) and left-moving ↓-spin (cyan dots) edge state. For
an illustration of the ↑- and ↓-spin densities see Fig. 4(b),
where the yellow region indicates the lattice sites which are
exposed to the IP-AF field. The shown edge state density |ψ |2
corresponds to the state with energy E = −1.617 × 10−2t .
Note that there is no fundamental reason to choose such a
large SO coupling as in Fig. 4. In order to localize the edge
states at the edges for a small disk size, large λ is required. By
considering much larger disks we could have used λ = 0.2t

instead as in the other figures.

VI. APPLICATIONS

The previous considerations and results can be directly used
to propose some applications.

A. Giant magnetoresistance

The first application is a giant magnetoresistance. We
consider the following setup (see Fig. 5): a nanoribbon (or
equivalently a two-dimensional plane where we assume one
direction to be infinitely extended) whose edges are exposed
to a magnetic field with variable direction of magnetization. In
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FIG. 5. (Color online) Illustration of a giant magnetoresistance.
We take a nanoribbon (W = 128), to which the FM order is applied
only at the outermost sites of both edges. We have set λ = 0.2t .
(a) When the FM order is out of plane (θ = 0), there are edge states
yielding a quantized conductance. We have set mOP = λ. (b) When
the FM order has finite in-plane component (θ > 0), there are no
metallic edge modes. We have set mIP = λ.
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FIG. 6. (Color online) Illustration of a perfect spin filter. A solid
(dotted) boundary represents an edge where metallic edge modes (do
not) emerge. (a) In general, helical modes circulate around a sample.
(b) By introducing the IP-AF order to the lower half of the sample,
helical modes only propagate along the upper edge. In this example,
only ↑ spins are transported from the left to the right lead.

the simplest case, we assume that the direction can be adjusted
in the xz plane by parametrizing

medge = m (sin θ,0, cos θ ). (6)

We assume that the magnetization strength is sufficiently
large, m ∼ λ, and θ can be controlled externally. The edge
magnetization is chosen such that it corresponds to an OP-AF
(IP-AF) exchange field for the limiting case θ = 0 (θ = π ). For
0 < θ < π both OP-AF and IP-AF components are present.

For θ = 0, there are edge states which contribute to a quan-
tized spin current, see for the corresponding edge states the
left bottom panel in Fig. 5. This corresponds to the “on state.”
A tiny change in θ causes an in-plane magnetic contribution
and the edge modes acquire a gap. By adjusting the chemical
potential at zero energy, a tiny gap in the edge modes causes
vanishing of the spin current. This corresponds to the “off
state.” Turning θ back to zero, the conductance jumps again
on a finite, quantized value. This is a giant magnetoresistance
since the finite conductance jump is controlled or induced by
a tiny angle of the external magnetic field.

One might call this setup also a topological quantum
transistor [35] since the conductance can be switched by the
external field.

B. Perfect spin filter

The second application is a perfect spin filter, which is
realized when we turn on the IP-AF order only on one half
of the nanoribbon [Fig. 6(b)]. Since helical edge states are
present only on the other half of the nanoribbon, we have a one-
way helical edge state. That is, by sending a spin-unpolarized
current through the nanoribbon, only ↑ spins (or ↓ spins) can
pass the nanoribbon, hence it is a spin filter. The spin filter
is perfect since the spin-momentum locking is an inescapable
property of the topological insulator. We note that usual helical
edge modes circulate around the sample, that is, the direction
of two helical edge modes are opposite on opposite sides of
the nanoribbon [Fig. 6(a)]. In the latter case, there is no spin-
filtering effect. Note that similar ideas about blocking a helical
edge channel have been considered in Refs. [36,37].

VII. DISCUSSION

We have repeated all calculations, shown in this paper
for silicene, germanene, and stanene also for the BHZ
model [38] which describes the topological insulator phase
in HgTe/CdTe quantum wells [39]. All our considerations
about edge manipulations remain unchanged and, hence, the
HgTe/CdTe quantum wells provide an equally well suited
platform for a giant magnetoresistance and a perfect spin filter.
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