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Finite-size corrections for charged defect supercell calculations typically consist of image-charge and potential
alignment corrections. Regarding the image-charge correction, Freysoldt, Neugebauer, and Van de Walle
(FNV) recently proposed a scheme that constructs the correction energy a posteriori through alignment of the
defect-induced potential to a model charge potential [C. Freysoldt et al., Phys. Rev. Lett. 102, 016402 (2009)].
This, however, still has two shortcomings in practice. First, it uses a planar-averaged electrostatic potential
for determining the potential offset, which can not be readily applied to defects with large atomic relaxation.
Second, Coulomb interaction is screened by a macroscopic scalar dielectric constant, which can bring forth large
errors for defects in layered and low-dimensional structures. In this study, we use the atomic site potential as
a potential marker, and extend the FNV scheme by estimating long-range Coulomb interactions with a point
charge model in an anisotropic medium. We also revisit the conventional potential alignment and show that it
is unnecessary for correcting defect formation energies after the image-charge correction is properly applied.
A systematic assessment of the accuracy of the extended FNV scheme is performed for defects and impurities
in diverse materials: β-Li2TiO3, ZnO, MgO, Al2O3, HfO2, cubic and hexagonal BN, Si, GaAs, and diamond.
Defect formation energies with −6 to +3 charges calculated using supercells containing around 100 atoms are
successfully corrected even after atomic relaxation within 0.2 eV compared to those in the dilute limit.
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I. INTRODUCTION: CORRECTION SCHEMES ON
FIRST-PRINCIPLES POINT DEFECT CALCULATIONS

Point defects and impurities are ubiquitous in semicon-
ductors or insulators and strongly dominate a wide variety
of material properties such as optical, mechanical, electrical,
and transport properties, having a decisive impact on their
performance in applications, e.g., photovoltaics, photocata-
lysts, ionic conductors, transistors, and light-emitting diodes.
Therefore, knowledge and precise control of defects are
inherently the key to the smart design of materials with
superior performance. Despite the importance, it is difficult
to directly and fully study point defects by experiments, and
first-principles calculations have emerged as an invaluable tool
for modeling and understanding point defects in particular
thanks to rapid progress on the computational speed and
electronic-structure calculation methods [1–4]. These calcu-
lations support and complement experimental findings.

First-principles point defect calculations commonly rely on
the supercell approach under the periodic boundary condition.
However, the cell sizes are not usually sufficiently large
for describing the low concentration of defects in realistic
materials such as 1014–1018 cm−3. Calculations using common
approximations to density functional theory (DFT), viz.
local density approximation (LDA) or generalized gradient
approximation (GGA), can treat a few thousand atoms at most,
and hybrid functionals such as the Heyd-Scuseria-Ernzerhof
functional (HSE06) [5,6] up to a few hundred atoms, which
corresponds to 1020–1021 cm−3. Formation energies of the
charged defects calculated with such small supercells could
include huge convergence errors up to several eV, especially
for highly charged defects. In the case that the defect charge
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is fully contained in the supercell, the main source of the error
comes from the spurious long-range Coulomb interactions
between the defect charge, its periodic images, and background
charge [7,8], the last of which is required for avoiding
the divergence of the electrostatic energy. Consequently, the
formation energy slowly converges with the supercell size.
A correction for removing the spurious interactions, which
we call the image-charge correction, is therefore valuable for
precisely evaluating the defect formation energy in the isolated
limit unless the dielectric constant is large enough to screen
the interactions. In addition, since the average electrostatic
potential in the entire supercell is conventionally set to zero
by removing a constant in the Fourier transformation of
electrostatic potential, the eigenvalues are defined only up to
an undetermined constant [9]. Whereas the total energies of
charge-neutral systems, including both molecular systems in
vacuum and defective systems in crystals, are well defined,
those of charged systems depend on this arbitrary shift of
the electrostatic potential. Therefore, it has been believed that
one needs to align the valence band maximum (VBM) in the
calculation of a charged defect to that of the pristine host for
restoring physically meaningful formation energies [2,10]. We
define the alignment of the VBM as potential alignment in this
study.

A number of image-charge correction schemes have been
devised since a few decades ago [7,11–18]. The simplest
correction is the point charge (PC) correction, which is the
leading term for correcting spurious electrostatic interactions.
Usually, the PC correction energy is constructed with a scalar
dielectric constant under the assumption that the dielectric
response is isotropic. Recently, Rurali and Cartoixà derived
the Ewald formalism for the more rigorous PC energy with a
dielectric tensor and applied it to the Al substitution energy in
one-dimensional Si nanowires [19], and later on Murphy and
Hine applied it to the formation energies of the Ti vacancy
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(V −4
Ti ), Li antisite on Ti (Li−3

Ti ), and oxygen interstitial (O−2
i )

in monoclinic β-Li2TiO3 [20]. Although the PC correction
basically improves the defect formation energy, in some cases
higher-order terms are not negligible, and the defect formation
energy has to be extrapolated to the infinite interdefect distance
limit with a set of supercell calculations. This is, however,
prohibitive when a computational cost severely limits the
size of supercells especially with hybrid functionals, quantum
Monte Carlo, etc. [21–30].

Recently, Freysoldt, Neugebauer, and Van de Walle (FNV)
proposed a scheme which allows us to correct the defect
formation energies a posteriori through alignment of the
defect-induced potential to a model charge potential [15,16].
The principal benefit of this scheme is to construct a correction
energy from two supercell calculations with and without a
defect. Therefore, it is useful especially when computationally
expensive schemes are employed. We are, however, prevented
from applying it to defects in practical applications by its two
inherent shortcomings.

First, it uses a planar-averaged electrostatic potential to
align the defect-induced potential obtained by subtracting the
bulk supercell potential from the defective supercell potential
to a model charge potential. This works well when the atomic
positions are fixed in unrelaxed crystalline positions. However,
accurate calculations require relaxation of atomic positions. As
pointed out by Komsa et al. [8], the defect-induced potential
strongly fluctuates when the atomic displacements are large
even far from the defect in the supercell. Consequently, the
potential offset between defect-induced potential and model
charge potential has to be determined, e.g., by convoluting the
defect-induced potential with a suitable Gaussian function [8].
Second, in the original paper, the long-range Coulomb
interaction is calculated with a macroscopic scalar dielectric
constant. This is acceptable when diagonal components of
a dielectric tensor are close to each other and off-diagonal
components are relatively small. To resolve these two
practical deficiencies is necessary to expand the versatility of
the scheme to broad classes of materials. Thus, we use atomic
site electrostatic potential for evaluating the defect-induced
potential and an anisotropic PC model for long-range
Coulomb interactions. Since the FNV correction energy is
the sum of the PC and alignmentlike correction energies as
shown in Sec. III C, our extension can also be considered as
an extension of the anisotropic PC correction scheme [19,20].
The FNV scheme in the anisotropic form is tested with layered
compounds, hexagonal BN (h-BN) and β-Li2TiO3, as well as
isotropic systems. Details are discussed in Secs. III and V.

There also exist a wide variety of ways to perform the po-
tential alignment. In the most common approach, the potential
is aligned so that the electrostatic potential at the outermost
atomic sites in the supercell with a charged defect becomes the
same as that of the bulk [2,31–33]. We call this conventional
potential alignment in the following. Instead, Lany and Zunger
adopted the reference by averaging potential differences from
the perfect cell at all atomic sites except the immediate
neighbors of a defect [10]. Taylor and Bruneval, however,
demonstrated that the Madelung potential, which is taken into
account by the first-order image-charge correction, brings a
potential shift and one can not perform the image-charge
correction and potential alignment independently [17]. In order

to remove the long-range Coulomb interactions, Komsa et al.
proposed a way to align the potential at the outermost area of
the neutral defect to that of the pristine bulk [8]. Taylor and
Bruneval also proposed to align the potential averaged over
the entire supercell including exchange-correlation potential to
the bulk potential [17]. In Sec. IV, we revisit the controversial
potential alignment, and advocate that the potential alignment
is unnecessary under the assumption that the image-charge
correction is properly constructed.

The cell-size dependence of the FNV scheme for relaxed
defects has been reported only by Komsa et al. with V +1

O
in MgO [8]. To assess the performance of the correction
scheme is essential for practical applications. In Sec. V, we
apply the extended FNV scheme introduced in this study to a
wide variety of material classes: ZnO, MgO, corundum Al2O3,
monoclinic HfO2 (m-HfO2), cubic BN (c-BN), Si, GaAs, and
diamond in addition to β-Li2TiO3 and h-BN with layered
structures and evaluate its accuracy for relaxed defects. In
addition, we discuss the remaining error sources.

II. DETAILS OF FIRST-PRINCIPLES CALCULATIONS

We here summarize the details of the first-principles cal-
culations used in this study. Our calculations were performed
using the projector augmented-wave (PAW) method [34] as
implemented in VASP [35,36]. We adopted Perdew-Burke-
Ernzerhof GGA (PBE-GGA) [37] except for GaAs and
diamond: The LDA [38] was used for GaAs because the band
gap is more significantly underestimated with the PBE-GGA
at the theoretical lattice constant (0.16 eV with the GGA versus
0.51 eV with the LDA), and the HSE06 hybrid functional for
diamond in order to demonstrate how accurately the extended
FNV scheme can correct HSE06 defect formation energies. A
Hubbard U correction was applied to a Ce impurity in c-BN
(U − J = 4.5 eV for f orbitals) [39,40].

In this study, Li 2s, B 2s and 2p, C 2s and 2p, N 2s and 2p,
O 2s and 2p, Mg 3s, Al 3s and 3p, Si 3s and 3p, Ti 4s and 3d,
Zn 4s and 3d, Ga 4s and 4p, As 4s and 4p, and Ce 4f , 5d,
and 6s, and Hf 6s and 5d were described as valence electrons.
The PAW data set with radial cutoffs of 1.08, 0.90, 0.70, 0.79,
0.80, 1.06, 1.01, 1.01, 1.48, 1.22, 1.38, 1.11, 1.36, and 1.59 Å
was used for Li, B, C, N, O, Mg, Al, Si, Ti, Zn, Ga, As, Ce,
and Hf, respectively. The average atomic site potential was
evaluated within spheres of radii 0.97, 0.77, 0.79, 0.71, 0.72,
1.07, 1.04, 0.99, 1.28, 1.06, 1.26, 0.95, and 1.25 Å for Li, B, C,
N, O, Mg, Al, Si, Ti, Zn, Ga, As, and Hf. Wave functions were
expanded with plane waves up to energy cutoffs of 400 and
550 eV for the cases where lattice parameters were fixed and
optimized, respectively. Integrations in reciprocal space for
defect calculations were performed with k-point grids with
> 6.0 × 103 Å3; the lowest k-point density is the �-point
only sampling for a c-BN 5 × 5 × 5 supercell. In this study,
atomic positions were relaxed, whereas the lattice constants
were fixed at the bulk optimized values for defect calculations.
When analyzing the planar-averaged potential, the atomic
positions were fixed in unrelaxed crystalline positions. Forces
acting on the atoms and stresses were reduced to be less
than 0.02 eV/Å and 0.1 GPa. The dielectric tensors are
indispensable for the correction scheme of the defect formation
energies discussed in this study. Both ion-clamped dielectric
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TABLE I. Calculated lattice parameters in units of Å and degrees,
ion-clamped (εele) dielectric tensors and ionic contributions to the
dielectric tensors (εion) in ZnO (space group: P 63mc), MgO (Fm3m),
Al2O3 (R3c), HfO2 (P 21/c), c-BN (F43m), h-BN (P 63/mmc),
β-Li2TiO3 (C2/c), Si (Fd3m), GaAs (F43m), and diamond (Fd3m).
Available experimental values are also shown. The experimental εele

are high-frequency dielectric constants ε∞, and εion are estimated
by subtracting ε∞ from static dielectric constants. Note that ionic
contributions of elemental substances (Si and diamond) are null
because Born effective charges are zero.

Lattice parameter εele εion

ZnO
a = 3.29
b = 5.31

ε⊥ = 5.20
ε‖ = 5.22

ε⊥ = 5.14
ε‖ = 6.02

Expt.a
a = 3.250
b = 5.207

ε⊥ = 3.70
ε‖ = 3.78

ε⊥ = 4.07
ε‖ = 5.13

MgO a = 4.25 3.16 7.50
Expt.b a = 4.211 3.0 6.6

Al2O3
a = 4.81
c = 13.12

ε⊥ = 3.27
ε‖ = 3.24

ε⊥ = 6.74
ε‖ = 9.11

Expt.c
a = 4.76
c = 12.99

ε⊥ = 3.1
ε‖ = 3.1

ε⊥ = 6.3
ε‖ = 8.5

HfO2

a = 5.14
b = 5.19
c = 5.32
β = 100

ε11 = 4.79
ε22 = 4.77
ε33 = 4.52

ε13 = −0.13

ε11 = 15.17
ε22 = 13.46
ε33 = 10.74
ε13 = −1.09

Expt.d

a = 5.117
b = 5.175
c = 5.292
β = 99

NA NA

β-Li2TiO3

a = 5.09
b = 8.85
c = 9.82
β = 100

ε11 = 5.45
ε22 = 5.49
ε33 = 3.74
ε13 = 0.01

ε11 = 36.95
ε22 = 36.32
ε33 = 12.07
ε13 = −1.06

Expt.e

a = 5.06
b = 8.79
c = 9.75
β = 100

NA NA

c-BN a = 3.63 4.61 2.34
Expt.f a = 3.616 4.46 2.6

h-BN
a = 2.51
c = 6.66

g ε⊥ = 4.76
ε‖ = 2.68

ε⊥ = 1.83
ε‖ = 0.44

Expt.h
a = 2.5
c = 6.66

ε⊥ = 4.3
ε‖ = 2.2

ε⊥ = 2.6
ε‖ = 2.9

Si a = 5.47 12.98
Expt.i a = 5.431 11.7

GaAs a = 5.63 15.92 1.95
Expt.j a = 5.654 11.1 2.0

diamond a = 3.55 5.58
Expt.k a = 3.567 5.7

aReferences [44,45].
bReferences [8,46].
cReferences [47,48].
dReference [49].
eReference [50].
fReferences [51,52].
gThe lattice constant in the c direction is fixed to the experimental
value.
hReference [52].
iReferences [52,53].
jReferences [8,54].
kReferences [8,55].

tensors and ionic contributions to the dielectric tensors were
calculated with density functional perturbation theory [41,42].
The ion-clamped electronic part includes local field effects
within DFT. The ionic part was calculated with a finite different
scheme [43].

The calculated lattice parameters and dielectric tensors
are summarized in Table I. The lattice constants estimated
with the PBE-GGA are systematically overestimated, a typical
tendency in the PBE-GGA. The ion-clamped dielectric con-
stants are overestimated compared to the experimental ones
except for diamond that is treated using HSE06. This could be
related to underestimation of the band gaps with the LDA and
PBE-GGA. When the atomic positions are relaxed, dipoles
of polarizable ions in addition to electrons screen the charged
defects. Therefore, the sum of an ion-clamped dielectric tensor
and an ionic contribution should be used for a relaxed system,
whereas only an ion-clamped dielectric tensor is appropriate
for an unrelaxed system [8].

III. IMAGE-CHARGE CORRECTION

The formation energy of defect D in charge state q can be
written as [8,56]

Ef [Dq] = {E[Dq] + Ecorr[D
q]} − EP −

∑
i

niμi

+ q{(εVBM + �v) + �εF }. (1)

Here, E[Dq] and EP are the total energies of the supercell
with the defect D in charge state q and the perfect supercell
without any defect, respectively. ni is the number of removed
(ni < 0) or added (ni > 0) i-type atoms and μi refers to
the chemical potential. εVBM is the energy level of the VBM,
and �εF is the Fermi level referenced to εVBM. Ecorr[Dq]
and �v, corresponding to the image-charge correction and
potential alignment correction, respectively, are for charged
defects. Then εVBM + �v + �εF (= εF ) represents the Fermi
level. We discuss relative defect formation energies as a
function of cell size and corrections on them; thus, only
E[Dq] + Ecorr[Dq] − EP + q�v is meaningful in this study.

Here, we address ourselves to the image-charge correction
schemes that have been devised over the last decades. The
electrostatics-based image-charge correction is intended to
subtract the spurious interaction energy caused by the defect
image charges and background charge, and requires an
assumption that the defect charge is localized in the supercell.
Following Ref. [8], we consider three systems: (1) a pristine
bulk system, (2) a system with a periodic array of localized
defects with charge q and a neutralizing background charge
with charge density − q

�
, where � is volume of the supercell,

and (3) a system with a single isolated defect with charge q.
The potential is represented with Vbulk, Vdefect,q , and Visolated,q ,
respectively. Here and hereafter, to avoid confusions, we
adopt the signs based on conventional electrostatic potential
following Ref. [8]. The electron charge is then set to the
negative value.

Another assumption is that charge density of a single defect
within the supercell ρd (r), which satisfies q = ∫

�
ρd (r)d r , is

close to each other in periodic and isolated systems [13,57].
In other words, the variation of ρd (r) induced by the spurious
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potential caused by the periodic images and background charge
is negligibly small. The electrostatic energy of a defect, its
images, and background charge of the periodic system is

Eperiodic = 1

2

∫
�

[Vdefect,q(r) − Vbulk(r)]

(
ρd (r) − q

�

)
d r.

(2)

The factor 1
2 accounts for removing double counting, and the

integration is performed over the supercell. We emphasize
that Eq. (2) should in principle contain − q

�
differing from

Refs. [8,58]. The electrostatic energy of an isolated defect
without the periodic boundary condition can be written as

Eisolated = 1

2

∫
[Visolated,q(r) − Vbulk(r)]ρd (r)d r. (3)

The integration is performed over all space. Following∫
�

Vdefect,qd r = 0 and
∫
�

Vbulkd r = 0 by convention and the
assumption that the defect charge is localized in the supercell,
the correction on the defect formation energy is written
as [8,58]

Ecor = Eisolated − Eperiodic = 1

2

∫
�

Vcor(r)ρd (r)d r, (4)

where Vcor = Visolated,q − Vdefect,q . Note that the background
charge density does not contribute to the correction energy
due to the convention of zero-average potential.

A. Point-charge correction

The simplest image-charge correction is to subtract the PC
energy. Only Vcor at the defect site is essential for the PC
correction, and can be estimated by an Ewald summation.
Fuchs derived the Ewald formalism for the Madelung energy
of periodically repeating PCs immersed in a neutralizing
background charge for the study of the stability of Cu
metal [59]. Leslie and Gillan employed it for the corrections
of defect formation energies [11]. Suppose that the long-range
Coulomb interaction is screened by a scalar dielectric constant
ε in an isotropic medium. The potential at defect site R0 caused
by PCs with charge q located at periodic image sites Ri (i �= 0)
and the background charge with charge density − q

�
, namely

Madelung potential, for a cubic cell is [59]

V iso
PC,q = −αq

εL
= q

ε

{ i �=0∑
Ri

erfc(γ |Ri |)
|Ri | − π

�γ 2

+
i �=0∑
Gi

4π

�

exp(−Gi
2/4γ 2)

Gi
2 − 2γ√

π

}
, (5)

where the summations of Ri and Gi run over all vectors
of the direct and reciprocal lattices except R0 and G0 = 0,
and L is the dimension of the supercell, α the Madelung
constant which depends on the Bravais lattice, and γ a suitably
chosen convergence parameter which does not affect the
potential [11,59]. Here and hereafter, we suppose that a single
defect exists in the supercell, and its coordinate is taken to
be r = R0 = 0. Note that the second term, which is absent in
the charge-neutral Ewald summation without the background
charge, is essential for correcting the potential shift introduced

by a periodic array of Gaussian charges instead of PCs in the
third term [59], and obtained by

− 1

�

∫ ∞

0

erfc(γ r)

r
4πr2dr = − π

�γ 2
. (6)

The fourth term corresponds to the cancellation of the potential
introduced by the Gaussian located at r = 0 which is included
in the third term. The correction potential is then Vcor =
−V iso

PC,q . This is the same as the functional derivative of
the PC correction energy with respect to the defect charge
density [8,17]. The PC correction energy is then written as

Eiso
PC = 1

2

∫
�

(−V iso
PC,q

)
qδ(r)d r = −q

2
V iso

PC,q = αq2

2εL
. (7)

The use of a dielectric constant is valid for systems with
nearly isotropic dielectric response, and it should be replaced
by a dielectric tensor ε for the others, especially layered
and low-dimensional materials [20]. With the principal axis
transformation in conjunction with Eq. (5) [60], Rurali and
Cartoixà derived the Ewald formalism for the Madelung
potential with ε as

V aniso
PC,q =

i �=0∑
Ri

q√|ε|
erfc(γ

√
Ri · ε−1 · Ri)√

Ri · ε−1 · Ri

− πq

�γ 2

+
i �=0∑
Gi

4πq

�

exp(−Gi · ε · Gi/4γ 2)

Gi · ε · Gi

− 2γ q√
π |ε| . (8)

When the normalized coordinates are changed to regular
Cartesian coordinates, � changes to �/

√|ε| [60]. This cancels
out

√|ε| in the second and third terms. The correction energy
is then written as Eaniso

PC = − q

2 V aniso
PC,q . Murphy and Hine applied

it to correct the defect formation energies in monoclinic
β-Li2TiO3 and showed the importance of the anisotropic
extension [20]. Very recently, Petretto and Bruneval also
corrected the energies of the Zn vacancy, group-V dopants,
and their complexes in ZnO with it [61].

B. Makov-Payne correction

The PC correction is the leading term of the image-charge
correction with the L−1 order. Makov and Payne (MP) then
derived the correction term with the L−3 order [12]. Dabo et al.
later rederived the same formula in a simpler and physically
intuitive manner [58]. Following Refs. [12,58], the correction
potential Vcor for a defect in a periodically repeated cubic cell
is written as

V iso
MP(r) = −V iso

PC,q − 2πq

3εL3
r2 + 4π

3εL3
p · r − 2πQ

3εL3
+ O(r4).

(9)

Here, p = ∫
rρd (r)d r is the dipole moment and Q =∫

r2ρd (r)d r the second radial moment. The correction energy
under the cubic symmetry up to the L−3 order is then

Eiso
MP = 1

2

∫
�

V iso
MP(r)ρd (r)d r

= Eiso
PC − 2πqQ

3εL3
+ 2π p2

3εL3
+ O(L−5). (10)
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Assuming that the dipole moment is negligible, the third term
can be omitted. For charged ions and molecules in vacuum un-
der the periodic boundary condition, we can exactly calculate
Eiso

MP up to the third order as discussed in Sec. IV. However,
there are some difficulties for defects in crystalline materials.
First, the defect charge ρd is ill defined because the immersed
ρd and screening charge are inseparable; thus, Q can not be
calculated directly [7,8]. Second, the Coulomb interaction can
be assumed to be screened by a scalar dielectric constant,
which is suited only for systems with nearly isotropic dielectric
response. It is also doubtful that the short-range Coulomb
interaction can be assumed to be screened by the scalar dielec-
tric constant. Therefore, Eiso

MP is usually not directly evaluated
and estimated by fitting the energies calculated with various
supercells with different sizes and shapes [14,18,24]. Such
calculations need massive computational resource especially
for large supercells and are not accessible with advanced DFT
and many-body theory calculations.

C. FNV correction

Later on, Freysoldt, Neugebauer, and Van de Walle pro-
posed another correction scheme [15]. Our main purpose in
this study is to extend this scheme to be applied to broad
classes of materials and assess its performance. Following
Refs. [16,62], the correction energy of the FNV scheme is
expressed as

EFNV = EPC − q�VPC,q/b|far. (11)

�VPC,q/b is the potential difference between the defect-
induced potential

Vq/b = Vdefect,q − Vbulk, (12)

and the PC potential VPC,q [8,15,16,62],

�VPC,q/b = Vq/b − VPC,q . (13)

�VPC,q/b|far is �VPC,q/b at a place far from the defect in the
supercell. Instead of a Gaussian charge originally adopted in
Ref. [15] as a model charge for the localized defect in the
supercell, we use a PC. This is because the PC model can
be readily rewritten in the anisotropic form, and the correction
energy can be divided into a physically meaningful long-range
Coulomb interaction part and a short-range part [62]. The latter
can also be attained with a Gaussian function by redefining
the long-range Coulomb interaction energy and alignmentlike
term in cubic systems [16].

The second term in Eq. (11) is referred to as potential
alignmentlike term [8,15]. An important point is that this
alignmentlike term is different from the conventional potential
alignment and approximately corresponds to the MP third-
order term when the PC model is used [8,62]. When ρd has
a spherical distribution, which is an assumption of the FNV
correction scheme, the defect-induced potential outside of the
defect coincides with the PC potential under the open boundary
condition, whereas they are different under the periodic
boundary condition. This discrepancy is due to the convention
of the zero-average potential. Komsa et al. have discussed
this point in detail in Ref. [8] and derived the relationship
�VPC,q/b|far = 2πQ

3ε�
in an isotropic medium. This spurious

potential shift caused by the periodic boundary condition

has to be removed for charged defects, and its correction
corresponds to the alignmentlike term. The principal advantage
of the FNV scheme is that we do not have to know the
details of microscopic screening and its coupling to the actual
unscreened or partially screened charge distribution beyond
the PC model because these effects are incorporated into the
alignmentlike term. Another benefit is that it is applicable to
any shapes of supercells, under the assumption that the defect
charge is fully contained in the supercell.

Although it was originally proposed to use either neutral
defect or pristine bulk as a reference potential for estimating
�VPC,q/b, we use the pristine bulk only. This is because the
pristine bulk is a reference state of a defective system as with
vacuum of a molecular system, and the defect charge and
defect-induced potential are defined as charge and potential
variations from those of the pristine bulk, respectively. Komsa
et al. proposed a way to estimate �VPC,q/b by using the
potential of a neutral defect system as a reference, and to
perform the conventional potential alignment between the
neutral defect and pristine bulk systems [8]. Their approach
is conceptually different, but the final correction energy is the
same as ours.

D. Application of atomic site potential as a potential marker

Originally, the FNV scheme used planar-averaged electro-
static potential to determine �VPC,q/b|far [15]. This, however,
does not work when atoms far from the defect are strongly
shifted from their unrelaxed crystalline positions after geome-
try optimization. It is especially significant for an ionic host, in
which long-range Coulomb interaction is screened by dipoles
of polarizable ions. This is demonstrated in Figs. 1(a) and 1(b)
that show the planar-averaged defect-induced potential Vq/b,
PC potential VPC,q , and their difference �VPC,q/b for the
unrelaxed and relaxed B vacancy in the −3 charge state
(V −3

B ) in c-BN. In the unrelaxed geometry, both Vq/b and
VPC,q show a parabolic shape far from the defect, which
comes from the homogeneous background charge through the
Poisson’s equation. Their difference then reaches a plateau
between the defect and its periodic image, and �VPC,q/b|far

can be obtained with small uncertainty. On the other hand,
Vq/b strongly fluctuates in the relaxed geometry reflecting the
atomic displacements, whereas VPC,q remains parabolic. As a
result, �V PC

q/b|far can not be determined accurately.
An alternative way is to employ atomic site electrostatic

potential. This is often utilized for the potential alignment
in defect calculations [7,33] as well as determination of
ionization potential and band offsets in semiconductors and
insulators [30,63,64]. In analogy with Eq. (8), using the
principal axis transformation and following derivation of the
Ewald scheme, we derive the screened potential at an arbitrary
position r �= 0 in an anisotropic dielectric as

V aniso
PC,q (r �= 0)

=
∑

Ri

q√|ε|
erfc(γ

√
(Ri − r) · ε−1 · (Ri − r)√

(Ri − r) · ε−1 · (Ri − r)
− πq

�γ 2

+
i �=0∑
Gi

4πq

�

exp(−Gi · ε · Gi/4γ 2)

Gi · ε · Gi

· exp(iGi · r). (14)
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FIG. 1. (Color online) Planar-averaged defect-induced potential
Vq/b, PC potential VPC,q , and their difference �VPC,q/b of (a)
unrelaxed and (b) relaxed V −3

B in c-BN with a 3 × 3 × 3 supercell
containing 215 atoms. Inset in (b): Schematic illustration showing
the displacements of polarizable ions under the electric field caused
by the charged defect.

Compared to the Madelung potential shown in Eq. (8), R0 is
included into summation in the first term, and the fourth term
in Eq. (8) is removed. This is used for evaluating �VPC,q/b in
Eq. (13). We should keep in mind that the farthest atomic
site from the defect is not necessarily the best reference
for evaluating �VPC,q/b|far. This is because (i) the farthest
atom lies between the defect and its periodic images, and
non-negligible overlap of defect wave functions might exist in
small supercells, and (ii) the displacements of polarizable ions
as a result of screening may bias the electrostatic potential as
illustrated in the inset of Fig. 1(b). The FNV scheme assumes
that an approximately spherical defect charge is fully contained
in the supercell. Thus, we instead propose for �VPC,q/b|far to
average �VPC,q/b at the atomic positions in the region outside
of the sphere that is in contact with the Wigner-Seiz cell with
radius RWS as illustrated in Fig. 2(a). We call this region the
sampling region. It is also advantageous that the sampling
region does not depend on the choice of the supercell if
the Bravais lattice is unchanged. As an example, the atomic
site Vq/b, VPC,q , and �VPC,q/b of V −3

B in c-BN are shown in
Fig. 2(b). �VPC,q/b shows scattering behavior near the defect,
but it converges at the outside of RWS.

A disadvantage of the use of the atomic site potential is
that the number of atomic sites for determining �VPC,q/b|far

might not be sufficient in small supercells, and non-negligible

defect

Sampling region for 
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FIG. 2. (Color online) (a) Schematic of the sampling region used
for estimating �VPC,q/b|far by averaging atomic site �VPC,q/b at the
region outside of the sphere in contact with the Wigner-Seiz cell. Note
that the sampling region depends only on the Bravais lattice of the
supercell. (b) Vq/b, VPC,q , and �VPC,q/b at the atomic positions in the
supercell of relaxed V −3

B in c-BN. The region for averaging �VPC,q/b

and its averaged value are expressed in the width and height of the
arrow, respectively.

sampling errors might be involved. To check the accuracy, we
compare the averaged atomic site �VPC,q/b|far with planar-
averaged �VPC,q/b|far. In Figs. 3(a)–3(d), we show atomic
site and planar-averaged Vq/b, VPC,q , and �VPC,q/b of the
Mg vacancy (V −2

Mg ) in MgO and the Si self-interstitial at the

tetrahedral site (Si+2
i ) in Si. For comparison, we used relatively

small 2 × 2 × 2 supercells constructed from the conventional
unit cells and did not relax atomic positions. Between the
defect and its images, the planar-averaged �VPC,q/b almost
converges in both defect systems, indicating the defect charge
is well localized in the supercells. �VPC,q/b|far determined
from the atomic site potential at the sampling region are almost
the same for V −2

Mg in MgO and Si+2
i in Si; the differences are

less than 40 meV in both systems. When the cell size increases,
these differences and consequently sampling errors drastically
reduce, partly owing to the increase of the sampling points for
evaluating �VPC,q/b.

E. Assessment of the accuracy of the extended FNV
scheme for anisotropic materials

Here, we discuss the performance of the extended FNV
scheme using the anisotropic PC model. The test calculations
were performed for the Ti vacancy (V −4

Ti ) in β-Li2TiO3 [20]
and the B antisite defect on N (B+2

N ) in h-BN. Their crystal
structures are shown in Figs. 4(a) and 4(b). As can be inferred
from the layered structures, the dielectric tensors have very
different diagonal components as listed in Table I.

Figures 4(c) and 4(d) show the atomic site Vq/b, VPC,q , and
�VPC,q/b of V −4

Ti in a β-Li2TiO3 2 × 2 × 2 supercell and B+2
N

in an h-BN 8 × 8 × 3 supercell. Vq/b widely scatter even at
the same distance from the defect, reflecting the anisotropic
screening feature. Interestingly, Vq/b in B+2

N can be divided into
layer-by-layer components. �VPC,q/b in B+2

N is almost constant
except the immediate vicinity of the defect, indicating that the
defect charge is very localized. On the other hand, �VPC,q/b

of V −4
Ti in β-Li2TiO3 is widespread and converges in a region

far from the defect.
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We corrected their formation energies based on Eq. (11).
Ef [V −4

Ti ] in β-Li2TiO3 and Ef [B+2
N ] in h-BN without correc-

tions, with FNV corrections in the isotropic form, where the
average of the diagonal components of the dielectric tensor
is used as a dielectric constant ε = 〈εii〉, and PC and FNV
corrections in the anisotropic form are plotted in Figs. 4(e)
and 4(f) for a range of supercell sizes and shapes. As discussed
later, the potential alignment is not considered to avoid double
counting of the correction term.

Without corrections, Ef [V −4
Ti ] in β-Li2TiO3 widely scatters

depending on the supercell size and shape. The isotropic

FNV correction with a dielectric constant, which is a typical
approximation, does not avail to correct Ef [V −4

Ti ]; in the elon-
gated supercells, it makes Ef [V −4

Ti ] even worse. On the other
hand, the anisotropic PC drastically reduces the cell size/shape
dependence of Ef [V −4

Ti ] as also reported in Ref. [20]. The
potential alignmentlike term in the anisotropic FNV scheme
corrects the remaining cell size/shape dependence, and it
almost vanishes in large supercells. As a result, we see
that the extension along the a axis is essential for accurate
estimation of Ef [V −4

Ti ], and the 2 × 1 × 1 95-atom supercell
would be a good compromise for computationally expensive
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first-principles calculations such as hybrid functional calcu-
lations. Similarly, the anisotropic PC correction significantly
improves Ef [B+2

N ] in h-BN, but the alignmentlike term is quite
small due to the small second radial moment (see Sec. V).
Ef [B+2

N ] is systematically overestimated when the c axis is
not expanded in the supercell. In this case, BN sheets with and
without defects alternate layer by layer, and it would not be
appropriate to use a static dielectric constant εele + εion along
the c direction. Thus, good compromise for Ef [B+2

N ] would
be a 4 × 4 × 2 128-atom supercell, which is expected to have
an error less than 0.15 eV.

IV. POTENTIAL ALIGNMENT REVISITED

As mentioned above, there is a longstanding controversy
over the need for a potential alignment and how best to
formulate it. We here demonstrate that the potential alignment
is not needed under the assumption that the image-charge
correction is properly constructed. Indeed, some authors
refrain from adopting both potential alignment and image-
charge corrections because the former might contain a part
of the latter, leading to double counting of spurious Coulomb
interaction corrections [17,24,65]. As indicated in Eq. (4),
image-charge corrections remove the spurious Coulomb po-
tential caused by the defect images and background charge, and
shifts the potential from Vdefect,q to Visolated,q . Then, Visolated,q =
Vdefect,q + Vcor = Vbulk + Vq/b + Vcor, and Vq/b + Vcor is the
potential induced by a single defect. The proper potential
alignment is achieved at a point infinitely far from the defect,
and lim|r|→∞(Vq/b + Vcor) = 0. Hence, after adopting the
image-charge correction, the potential of the supercell with a
single defect is aligned to the bulk potential, indicating that the
potential alignment is unnecessary for estimating the charged
defect formation energy, i.e., �v = 0 in Eq. (1).

The situation is analogous to an isolated charged ion in a cell
under the periodic boundary condition, where the electrostatic
potential reference is not the pristine bulk but vacuum. Even in
this case, the total energy depends on the undetermined shift of
electrostatic potential, and thus the potential at vacuum must
be aligned to be zero. Because the screening charge is absent
and the ionic charge ρion is well defined, Q = ∫

r2ρion(r)d r is
calculated exactly. Figure 5(a) shows the planar-averaged elec-
trostatic potential of a Si+ ion obtained from a self-consistent
calculation with the PBE-GGA and of the PC model with the
+1 charge, and their difference in a 10 Å × 10 Å × 10 Å cell.
Around the Si+ ion, the electrostatic potential is substantially
different from the PC potential because of a finite distribution
of the electrons. It, however, becomes almost parallel to
the PC potential at a distance of ∼2 Å from the ion, and
the difference converges to a constant of 2πQ

3L3 . Therefore,
after applying the PC correction and alignmentlike correction,
i.e., the FNV correction, the electrostatic potential far from
the Si+ ion changes to zero, meaning that the outermost
potential from the Si+ ion is already aligned to zero. We
find that the alignmentlike correction is almost the same as
the MP third-order correction via an explicit calculation of
Q in this atomic case (the difference is 0.02 meV in the
10 Å × 10 Å × 10 Å cell). Figure 5(b) shows the cell-size
dependence of the ionization energy of the Si atom. Note also
that the ionization energy with the FNV correction (sum of the

PC correction and potential alignmentlike correction) does not
show the cell-size dependence.

We emphasize that when the potential alignment is per-
formed at a particular atomic site before the image-charge
correction, which is the most commonly used potential
alignment, a part of the PC correction is included in addition
to the alignmentlike term. This can be understood by writing
the potential alignment term with Eq. (13) as

− qVq/b(r) = −q
[
V iso

PC,q(r) + �VPC,q/b

∣∣
far

]
= α(r)Eiso

PC − q�VPC,q/b|far, (15)

where the potential alignment is performed at r outside of
the defect; thus, �VPC,q/b reaches a plateau of �VPC,q/b|far.
Fractions α of the PC correction included in the potential
alignment are calculated from α(r) = −qV iso

PC,q(r)/Eiso
PC in an

isotropic medium. Note that α depends only on the fractional
coordinates and supercell shape. Figure 5(c) shows α at (0.5,
0, 0), (0.5, 0.5, 0), and (0.5, 0.5, 0.5) in fractional coordinates
in cubic systems. For instance, when the potential at (0.5, 0.5,
0.5) is aligned to the bulk potential, 57% of the PC correction
and 100% of the alignmentlike term are incorporated via
Eq. (15). This is demonstrated for the Si ionization energy.
Figure 5(b) shows the corrected ionization energies by the
potential alignment at (0.5, 0.5, 0.5). They have cell-size
dependence linear to L−1, and the rest of the correction energy
corresponds to 43% of the PC correction. 41% and 7% of the
PC correction are included if the potential alignment is made
at (0.5, 0.5, 0) and (0.5, 0, 0), respectively.

Lany and Zunger have reported that after the potential
alignment, the third-order contribution of the image-charge
correction vanishes and only 65% of the first-order contribu-
tion remains for various defects with different charge states in
GaAs [7,10]. They explained the unexpected proportionality
by calculating the second radial moment in the MP third-order
term using the total charge density difference between the
charged and neutral DFT calculations, which includes the
defect charge, screening charge, and counterscreening charge.
However, their explanation contradicts with the fundamental
assumption of the MP correction that the defect charge ρd does
not include screening and counterscreening charges as pointed
out by Komsa et al. [8] and Lambrecht [4].

Here, we provide another explanation for the L−1 behavior
after potential alignment. We can rewrite the FNV correction
energy with Eq. (15) as

EFNV = EPC − q�VPC,q/b|far

= [1 − α(r)]EPC − qVq/b(r). (16)

Supposing that the FNV scheme successfully corrects the
defect formation energy, namely, no cell-size dependence
remains after the FNV correction, [1 − α(r)]EPC should
remain after the potential alignment. Then, after the potential
alignment is performed at the same fractional coordinates
in the supercells with the same shape, the defect formation
energies show L−1 dependence. Although in Ref. [10] the
potential alignment was achieved by averaging the potential
offset at atomic sites except for the immediate neighbors of
the defect and thus α is unclear, the absence of the third-order
contribution would be explained with Eq. (16). Our results
support this as shown in the next section.
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FIG. 5. (Color online) (a) Planar-averaged electrostatic potential of a Si+ ion calculated with the PBE-GGA located in a 10 Å × 10 Å ×
10 Å cell, the PC potential with the +1 charge, and their difference. (b) Cell-size dependence of the uncorrected and corrected ionization
energy of a Si atom, E(Si+ ion) − E(Si atom) + Ecor. The ionization energy becomes almost independent of the cell dimension after applying
both the PC correction and alignmentlike correction (the FNV correction scheme). (c) The fractions α of the PC correction implicitly included
in the potential alignment at three points written in fractional coordinates in the cubic cell in an isotropic medium. Note that the alignmentlike
term is fully included in the potential alignment at any point (see text).

V. APPLICATIONS TO DEFECTS IN DIVERSE
MATERIALS

A. Systematic evaluation of the extended FNV scheme

To assess the accuracy of the extended FNV scheme,
we calculated the formation energies of defects in a variety
of host materials: V −2

Zn , V +2
O , and the Zn interstitial at the

octahedral site (Zn+2
i ) in ZnO [7,24,61,66–68], V −2

Mg and V +2
O

in MgO [68,69], V −3
Al and V +2

O in Al2O3 [68,70], V −4
Hf and

V +2
O on the threefold-coordinated O site in HfO2, V −3

B and a
defect complex of Ce on the N site coupling with neighboring
four B vacancies (CeN-4V −6

B ) in c-BN [40], Si+2
i and V +2

Si

in Si [17,57,71–73], V +3
As in GaAs [7,10,74], and V +2

C in dia-
mond [75]. This covers a wide range of crystal structures, local
structures, chemistry (covalency and ionicity), and defect types
(vacancies, interstitials, and substitutional impurities). We
checked that these defects do not have delocalized perturbed
host states with and without electron occupation for donorlike
and acceptorlike states, respectively, which is a prerequisite
of the electrostatics-based corrections including the FNV
scheme; perturbed host states require special treatments, e.g.,
by considering effective defect charges [8,24]. The uncorrected
and corrected defect formation energies with the PC model,
FNV scheme with an isotropic approximation, and extended
FNV scheme are shown in Fig. 6. The uncorrected defect
formation energies are extrapolated to the dilute limit by fitting
a function of the form aN−1

atoms + bN
−1/3
atoms + c, where Natoms

is the number of atoms in the supercell before introducing
a defect, when the cell dimension is isotropically expanded.
We find that the cell-size dependencies of the FNV corrected
defect formation energies with large supercells are rather
small, indicating the validity as the reference energies.

The PC corrections basically improve the defect formation
energies. Especially, V −2

Zn and Zn+2
i in ZnO and V −3

B in c-BN
are well corrected. However, it overshoots the energy of V +2

O

in ZnO, MgO, Al2O3, and HfO2, V +2
Si in Si, V +3

As in GaAs, and
V +2

C in diamond. The FNV corrections, which are the sum of

the PC correction and the alignmentlike term, greatly improve
the defect formation energies in most cases, but E[V −2

Zn ] and
E[Zn+2

i ] in ZnO are overshot. E[V +2
C ] in diamond calculated

with the HSE06 hybrid functional are also well corrected by
the FNV scheme.

To compare the FNV corrected energies with an averaged
dielectric constant and a dielectric tensor is helpful to see how
large an error is when using the isotropic FNV scheme for
anisotropic systems. Contrary to the defects in β-Li2TiO3 and
h-BN, the defects in ZnO, Al2O3, and HfO2 do not show a
large difference between the isotropic and anisotropic FNV
schemes. Therefore, using an averaged dielectric constant
would be a good approximation for these materials.

As discussed in Sec. III, essential assumptions are (i) the
defect charge is fully contained in the supercell, and (ii) its
distribution does not have cell-size dependence. The absence
of the delocalized perturbed host states is just an essential
condition and not sufficient to confirm the assumptions. The
obvious cell-size dependence of E[V +2

Si ] in Si with FNV
correction may reflect violation of the assumption. To check
this, we plotted �VPC,q/b|far� in Fig. 7. Supposing that
the defect charge remains the same in different supercells,
�VPC,q/b|far� ≈ 2πQ

3ε
must be constant because Q is constant.

One can see that �VPC,q/b|far� are mainly positive in
vacancies and negative in interstitials. This can be qualitatively
understood as follows. Supposing the unrelaxed geometry,
Table II shows the sign of second radial moment Q and

TABLE II. Sign of charge q, second radial moment Q, and align-
mentlike term −q�VPC,q/b|far for charged vacancies and interstitials
in a A+N B−N binary compound.

V −N
A V +N

B X+N
i X−N

i

q − + + −
Q, �VPC,q/b|far + + − −
−q�VPC,q/b|far + − + −
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FIG. 6. (Color online) Relative formation energies of (a) V −2
Zn , (b) V +2

O , and (c) Zn+2
i in ZnO, (d) V −2

Mg and (e) V +2
O in MgO, (f) V −3

Al and
(g) V +2

O in Al2O3, (h) V −4
Hf and (i) V +2

O in HfO2, (j) V −3
B and (k) CeN-4V −6

B in c-BN, and (l) Si+2
i and (m) V +2

Si in Si, (n) V +3
As in GaAs, and (o)

V +2
C in diamond with atomic relaxation considered. Zeros are set to the anisotropic FNV corrected defect formation energies calculated with

the largest supercells. The horizontal axis is taken as the inverse of the cube root of the number of atoms. In the cases where the cell dimension
is isotropically expanded, the uncorrected defect formation energies are fitted with a function of aN−1

atoms + bN
−1/3
atoms + c.
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FIG. 7. (Color online) �VPC,q/b|far� of the defects shown in Fig. 6. For comparison, the scales of the vertical axes are set to be the same
except for V +2

Si in Si and V +3
As in GaAs. Large changes of �VPC,q/b|far� are indicated by arrows for guides to the eye.
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alignmentlike term −q�VPC,q/b|far for charged vacancies and
interstitials. In the case of vacancies, the valence and core
electrons of the removed atom are also removed, and hence
ρd (r �= 0) > 0 and Q = ∫

r2ρd (r)d r > 0, because the nu-
cleus of the removed atom located at the defect site r = 0.
On the contrary, in the case of interstitials, due to the
electrons of the interstitial atom, ρd (r �= 0) < 0 and Q < 0.
The alignmentlike term −q�VPC,q/b|far of negatively (posi-
tively) charged vacancies or positively (negatively) charged
interstitials is then positive (negative) as listed in Table. II.

Interestingly, �VPC,q/b|far� of V +2
O are around 100

[V · Å3] in any binary oxide in this study, and that of V +3
B

in c-BN is very small, reflecting a significantly small B3+
ionic radius. �VPC,q/b|far� are almost constant except for V +2

Si

in Si and V +3
As in GaAs; their �VPC,q/b|far� relate to the change

of the defect charge distribution as a function of supercell size.
In other words, they violate the assumptions of electrostatics-
based image-charge correction. In these two cases, however,
the defect formation energies are better corrected than PC
corrected ones, although the FNV corrected energies still
have small cell-size dependence even with large supercells.
The energy and atomic structure of V +2

Si are notoriously
dependent upon supercell size and k-point sampling [71,73].
In fact, �-only k point sampling is not sufficient even with
a 1726-atom supercell, and Monkhorst-Pack [76] 2 × 2 × 2
k-point mesh was adopted in this study. This would be because
the defect charge immersed in the valence band spreads widely,
and leads to the erroneous defect-defect interactions. Indeed,
planar-averaged �VPC,q/b|far in the unrelaxed geometry does
not reach a plateau between the defect and its image even with
a 1726-atom supercell. As a result, �VPC,q/b|far� increases as
the supercell gets larger and larger, and more defect charge
is contained. The situation of E[V +3

As ] in GaAs is the same
although the influence on the energy is rather small and the
energies are well corrected with the FNV scheme even with
small supercells. Note that the same trend is observed even with
the Ga PAW potential including 3d electrons in the valence.

For V −2
Mg and V +2

O in MgO, we calculated the defect
formation energies with two types of supercells constructed
from conventional and primitive cells, respectively, which
have simple cubic (sc) and face-centered-cubic (fcc) defect
allocations [10]. Intuitively, the fcc supercells seem suited
for defect calculations since the defect-defect distance is
longer than that of the sc supercells in the same volume
because of the larger coordination number in the fcc allocation.
Both E[V −2

Mg ] and E[V +2
O ] are, however, more accurately

calculated with the sc supercells. The reason is unclear
but the defect-defect interactions might be enhanced in fcc
supercells. Such behavior has also been observed in V +3

As in
GaAs [10].

The absolute error is of importance in practice, and thus
we plot the relative defect formation energies calculated with
small supercells containing around 100 atoms in Fig. 8. Such
small supercells are convenient for advanced first-principles
calculations. It is found that the defect formation energies
are excellently corrected by the extended FNV scheme and
the differences from those in the dilute limit are less than
0.2 eV in our test set. Surprisingly, the errors do not largely
depend on the defect charge as Freysoldt et al. pointed out in
Ref. [15].
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FIG. 8. (Color online) Relative defect formation energies esti-
mated with supercells containing less than 100 atoms except for
B+2

N antisite defects in h-BN, compared to extended FNV corrected
energies estimated with the largest supercells. Atomic relaxation is
considered in all cases. The uncorrected energy of CeN-4V −6

B in c-BN
is −11.6 eV. The defects in the shaded area have large cell-size
dependencies of �VPC,q/b|far�, indicating violation of the assumption
that the defect charge distribution in the supercell is the same as the
isolated one. Note that the corrected energies with the extended FNV
scheme are located within ±0.2 eV.

The potential alignment discussed in Sec. IV is also
reviewed with CeN-4V −6

B in c-BN, Si+2
i in Si, and V +3

As in GaAs
in Fig. 9. The energies corrected with the potential alignment
at the farthest atomic site from the defect and its images have
nearly linear dependence against L−1. The deviations from
the linear dependence are, however, larger than that of the
Si+ ionization energy shown in Fig. 5(b). This is because the
farthest atoms do not always locate at (0.5, 0.5, 0.5) of the
supercells. For instance, such atoms locate at (0.5, 0.5, 0.5)
when N in the N3-fold Sii supercell is an odd number, but it
does not when N is an even number. One can find that the sum
of the conventional potential alignment and 1 − α of the PC
correction energy almost recovers the FNV corrected energies,
similar to the Si ionization energy in Sec IV. Indeed, they must
be the same based on Eq. (16), and the remaining differences
correspond to the difference in potential sampling methods; the
conventional potential alignment is performed at the farthest
atomic site, whereas the FNV correction is performed with the
potential in the sampling region in this study.

B. Sources of remaining errors

The FNV scheme can correct the defect formation energies
up to the L−3 order. We here discuss the origins of the
remaining error. The error sources considered are as follows:
(i) The defect charge spills out from the supercell. (ii) The
defect charge distribution is affected by the spurious potential
caused by the image charges and background charge [12].
(iii) Sampling error for the potential alignmentlike term. (iv)
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FIG. 9. (Color online) Relative formation energies of (a) CeN-4V −6
B in c-BN, (b) Si+2

i in Si, (c) V +3
As in GaAs, and their energies corrected

with the extended FNV scheme, conventional potential alignment, and potential alignment plus [1 − α(r)]EPC. The potential alignment was
performed at the farthest atomic site. In the cases where the farthest atoms locate at (0.5, 0.5, 0.5), α = 0.57. Otherwise, α values are shown.

Energy correction with L−5 or higher orders. (v) Defect-
induced dipoles, which contribute to decrease the formation
energy as shown in Eq. (10). (vi) Defect-induced elastics,
which contributes to increase the formation energy.

(i)–(iii) can be checked with �VPC,q/b|far� as shown in
Fig. 7. (iv) would be dominant when fitting with a function of
the form aN−1

atoms + bN
−1/3
atoms + c works poorly. (v) may be only

related to the defects in ZnO without an inversion symmetry in
this study. The omission of the leading dipole term, however,
should underestimate the defect formation energies and this
is not true for the defects in ZnO. Roughly estimating, we
calculate the dipole energy of the charges ±e separated
0.5 Å from each other ( p = 0.5 · z [e · Å]) in the 4 × 4 × 2

supercell of ZnO (� = 1590 Å
3
) with a theoretical dielectric

constant ε = 〈εii〉 = 10.64, and obtain 2π p2

3ε�
= 5.6 meV, which

is negligibly small compared to the remaining error of the
defects in ZnO. Only (vi) is not explicitly dependent on q.
Since the remaining errors after the extended FNV correction
are not strongly dependent on the defect charges, (vi) might be
a main error source for the defects localized in the supercell.
Note that the lattice optimization of the defective supercell is
not useful to reduce the elastic energy in general because the
spurious elastic interactions occur under the periodic boundary
condition, and can underestimate the defect formation energy
especially in the low-symmetry supercell. A combination of
first-principles calculations and elastic theory might resolve
this issue [77].

VI. CONCLUSIONS

In this paper, we have discussed electrostatics-based
finite-cell-size corrections for first-principles point defect
calculations under the periodic boundary condition. In the
beginning, the PC correction that is the leading term of the
image-charge correction has been reviewed in detail. Then,
we have revisited the higher-order correction term O(L−3)
appearing in the MP and FNV schemes, and proposed a way to
extend the FNV scheme to be applicable to a wider variety of
materials, especially with low dimensionality. First, we have
adopted the atomic site potential for determining the potential
offset between the defect-induced potential and PC potential,

and compared it with the planar-averaged potential. Second,
we have described a PC model with a dielectric tensor for
evaluating long-range Coulomb interactions. The anisotropic
FNV scheme has been tested with V −4

Ti in β-Li2TiO3 and B+2
N

in h-BN, and their formation energies are found to be well
corrected.

The potential alignment, which has been discussed by
many authors, has also been revisited in Sec. IV. We have
concluded that the potential alignment is unnecessary when
the image-charge correction is properly constructed. This is
confirmed by calculating the ionization energy of the Si atom
in the atomic case. In addition, the correspondence of the FNV
scheme to the MP scheme is also confirmed in this limit. We
also have discussed the physical meaning of the conventional
potential alignment, and found that it contains a part of the
PC correction energy and 100% of the alignmentlike term of
the FNV scheme. This would be the origin of the absence of
the L−3 order term and reduction of the L−1 order term after
applying the potential alignment previously reported [10].

In Sec. V, we have tested the accuracy of the extended FNV
scheme with a test set composed of 17 defects in 10 materials,
and found that it systematically improves the defect formation
energies. The signs of the second radial moment Q and
alignmentlike term −q�VPC,q/b|far have also been discussed.
The corrected defect formation energies with −6 to +3
charges calculated with around 100-atom supercells are within
±0.2 eV compared to those in the dilute limit. We believe that
the extended FNV scheme is a powerful tool in practice for
correcting defect formation energies under the assumption that
the defect charges are fully contained in the supercells.
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