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We implement a multiorbital cluster dynamical mean-field theory (DMFT) by improving a sample update
algorithm in the continuous-time quantum Monte Carlo method based on the interaction expansion. The proposed
sampling scheme for the spin-flip and pair-hopping interactions in the two-orbital systems mitigates the sign
problem, giving an efficient way to deal with these interactions. In particular, in the single-site DMFT, we
see that the negative signs vanish. We apply the method to the two-dimensional two-orbital Hubbard model
at half-filling, where we take into account the short-range spatial correlation effects within a four-site cluster.
We show that, compared to the single-site DMFT results, the critical interaction value for the metal-insulator
transition decreases and that the effects of the spin-flip and pair-hopping terms are less significant in the parameter
region we have studied. The present method provides a firm starting point for the study of intersite correlations
in multiorbital systems. It also has a wide applicable scope in terms of realistic calculations in conjunction with
density functional theory.
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I. INTRODUCTION

Strongly correlated materials have attracted much interest
because of their diverse fascinating properties [1], which are
believed to originate from a severe competition between the
itinerancy and the locality of low-energy electrons. A minimal
model to describe this competition is the Hubbard model,
which has been found to be surprisingly versatile despite its
simple definition. In two or three dimensions, the Hubbard
model has not been solved analytically, except for several
special cases [2], and therefore we have to resort to numerical
simulations.

The dynamical mean-field theory (DMFT) [3], which takes
into account the dynamical local correlations accurately by
mapping a lattice model onto a single-impurity problem
subject to a self-consistency condition, is one of the most suc-
cessful methods for describing the strong-correlation physics
such as the Mott transition in infinite dimensions [3]. However,
the DMFT totally neglects the spatial correlations, which are
essential in quantitative and also qualitative description of
real materials. For example, the single-site DMFT can not
describe the d-wave superconductivity observed in high-Tc

cuprates. To overcome this problem, cluster extensions of the
DMFT (cDMFT) have been formulated [4–7]. Many studies on
the two-dimensional (2D) single-orbital Hubbard model have
been performed by the cDMFT to clarify the pseudogap phase
[8–26] and the superconductivity [27–42] of the cuprates.

More generally, in most strongly correlated materials, sev-
eral orbitals are involved in the low-energy region around the
Fermi level, as exemplified by the transition-metal compounds
and heavy-fermion systems. A description of these materials
requires an extension of the Hubbard model to the multiorbital
one. Even in the cuprates, where orbitals other than the one
composing the Fermi surface are neglected in many cases, it
has been proposed that the orbital degrees of freedom play a
key role [43–45] in accounting for the material dependence of
the superconducting transition temperature.

*nomura@moegi.t.u-tokyo.ac.jp

These manifest the importance of studying multiorbital
Hubbard model with including the spatial correlations. Nev-
ertheless, it has barely been explored before because of the
huge computational cost in solving the impurity problem. A
few exceptions are the two-site cDMFT + the noncrossing
approximation study of a two-orbital model in Ref. [46], the
two-site cDMFT + the Hirsch-Fye quantum Monte Carlo
calculation [47] of a three-orbital model for Ti2O3 in Ref. [48],
and the four-site cDMFT + the continuous-time quantum
Monte Carlo (CTQMC) [49,50] calculation for an anisotropic
two-orbital model in Ref. [51]. In the latter two studies, the
spin-flip and pair-hopping terms present in the multiorbital
Hubbard Hamiltonian were neglected. A study based on
an accurate numerical calculation on the full multiorbital
Hamiltonian (i.e., with the spin-flip and pair-hopping terms)
is still missing in literature. Then, the aim of this paper is
to develop such a numerical scheme and to provide the first
calculated results to explore the intersite correlation physics in
the multiorbital systems.

In this study, we adopt the CTQMC algorithm based on the
interaction expansion (CT-INT) [52,53]. Compared to other
CTQMC algorithms [49], the CT-INT has an advantage in
incorporating various types of interactions such as Hund’s
coupling and electron-phonon interacton [54,55]. It also
gives an efficient way to deal with relatively large degrees
of freedom, complementary to the algorithm based on the
hybridization expansion [56–58], which is efficient for a
few degrees of freedom while the computational cost grows
exponentially with the degrees of freedom. Moreover, an
efficient sampling update algorithm, called submatrix update
algorithm [59,60], has recently been developed for another
weak-coupling CTQMC method exploiting an auxiliary-field
decomposition (CT-AUX), and has been successfully em-
ployed in cDMFT calculations on the 2D [21,22,24,40] and
three-dimensional [60] single-orbital Hubbard models. As we
will show in this work, a similar submatrix update algorithm
can apply to the CT-INT as well as to the multiorbital models,
too, and it enables us to reach a strongly correlated regime
at rather low temperatures within the multiorbital cDMFT in
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a reasonable computational time. Furthermore, we develop a
sampling scheme which mitigates the sign problem coming
from the spin-flip and pair-hopping terms in the two-orbital
models. Although in the cDMFT the negative signs remain
due to the one-body hopping terms within the cluster, in the
single-site DMFT, we see that the proposed method completely
eliminates the negative signs.

We apply the method to the 2D two-orbital Hubbard model
on a square lattice within the four-site cellular DMFT [5].
We show that the short-range spatial correlations reduce
the critical interaction strength of the Mott metal-insulator
transition substantially. We also find that the model with the
Ising-type Hund’s coupling overestimates the tendency toward
the insulating phase, while the difference between the results
with and without the spin-flip and pair-hopping terms is less
significant than that of the single-site DMFT.

This paper is organized as follows. In Sec. II, we briefly
review the CT-INT algorithm and show how the submatrix
update and the efficient update scheme for the non-density-
density interactions are incorporated into the algorithm. We
show the cellular DMFT results for the 2D two-orbital Hubbard
model in Sec. III. Section IV is devoted to the conclusion. The
derivation of the several equations used in Sec. II, and a proof
of the absence of negative signs in the two-orbital models in
our scheme, are given in Appendices.

II. METHOD

In this section, we explain, in detail, the schemes employed
in our calculations. Sections IIA1 and IIA2 are devoted to
a brief introduction of the CT-INT algorithm. Section IIA3
shows how the submatrix update scheme, which has been
employed only in the Hirsch-Fye and CT-AUX algorithms in
literature, is incorporated in the CT-INT method. In Sec. II B,
we show the extension to the single-site multiorbital case,
where we propose an efficient sampling scheme for the
spin-flip and pair-hopping terms, double-vertex update, in the
two-orbital case. Finally, we show the extension to multisite
multiorbital case in Sec. II C.

A. Single-orbital case

1. Interaction expansion of partition function

The CT-INT algorithm was developed by Rubtsov et al.
[52,53]. Here, we review the basic part of the algorithm in
order to define our notations used in the next section. We
first consider the single-orbital and single-impurity model for
simplicity.

The action for the single-orbital impurity problem reads as

Simp = S0 + Sint, (1)

where

S0 = −
∫ β

0
dτ

∫ β

0
dτ ′ ∑

σ

G−1
0σ (τ − τ ′)ĉ†σ (τ )ĉσ (τ ′) (2)

and

Sint =
∫ β

0
dτ Un̂↑(τ )n̂↓(τ ) (3)

with the inverse temperature β, the bath Green’s function G0σ ,
and the Hubbard interaction U . ĉ†σ (ĉσ ) is a Grassmann variable
representing the creation (annihilation) of an impurity electron
with the spin σ , and n̂σ = ĉ†σ ĉσ .

In order to reduce the sign problem, we introduce additional
parameters ασ defined as [54]

α↑(s) = 1/2 + sδ,
(4)

α↓(s) = 1/2 − sδ

with δ = 1/2 + 0+ and s = ±1. In practice, we typically set
0+ to be the order of 10−2. In the absence of this α term, we
suffer from the negative sign problem because the elements of
the V matrix corresponding to the U vertex in Eq. (B2) can
take negative values [61]. Then, the action is recast into

S0 = −
∫ β

0
dτ

∫ β

0
dτ ′ ∑

σ

G̃−1
0σ (τ − τ ′)ĉ†σ (τ )ĉσ (τ ′) (5)

and

Sint =
∫ β

0
dτ

∑
s=±1

U

2
[n̂↑(τ ) − α↑(s)][n̂↓(τ ) − α↓(s)], (6)

where G̃0σ is the Weiss function defined with a new chemical
potential μ̃ = μ − U/2. The perturbation expansion with
respect to U term leads to

Z

Z0
=

∞∑
n=0

(
−U

2

)n ∫ β

0
dτ1

∑
s1=±1

. . .

∫ τn−1

0
dτn

∑
sn=±1

∏
σ

×〈[n̂σ (τ1) − ασ (s1)] . . . [n̂σ (τn) − ασ (sn)]〉0

=
∞∑

n=0

(
−U

2

)n ∫ β

0
dτ1

∑
s1=±1

. . .

∫ τn−1

0
dτn

×
∑

sn=±1

∏
σ

detA′
σ ({si,τi}), (7)

where Z0 = ∫
D[ĉ†,ĉ]e−S0[ĉ†,ĉ] is a noninteracting partition

function and the thermal average for the products of Grass-
mann variables 〈V [ĉ†,ĉ]〉0 is defined as

〈V [ĉ†,ĉ]〉0 =
∫

D[ĉ†,ĉ]e−S0[ĉ†,ĉ]V [ĉ†,ĉ]. (8)

A′
σ ({si,τi}) is an n × n matrix whose element is given by

[A′
σ ({si,τi})]ij = G̃0σ (τi − τj ) − ασ (si)δij . (9)

With a function

fσ (s) =
{

ασ (s)
ασ (s)−1 , s = ±1
1, s = 0

(10)

a configuration

Cn = {(s1,τ1), . . . ,(sn,τn)}, (11)

Eq. (7) is rewritten as

Z

Z0
=

∞∑
n=0

∫ β

0

∑
s1=±1

. . .

∫ τn−1

0

∑
sn=±1

×
[

n∏
i=1

K(si)dτi

2β

∏
σ

detAσ (Cn)

]
, (12)
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where

K(s) = −βU

[f↑(s) − 1][f↓(s) − 1]
for s = ±1,

Aσ (Cn) = F {si }
σ − G

{τi }
0σ

(
F {si }

σ − 1
)
. (13)

Here, we define n × n matrices G
{τi }
0σ and F {si }

σ , whose elements
are [

G
{τi }
0σ

]
ij

= G̃0σ (τi − τj ) (14)

and [
F {si }

σ

]
ij

= fσ (si)δij , (15)

respectively. Since the equality K(s = 1) = K(s = −1) holds
for our choice of ασ [Eq. (4)], we will simply denote them as
K hereafter.

2. Monte Carlo sampling

According to Eq. (12), the weight for the configuration Cn

is given by

W (Cn) =
(

Kdτ

2β

)n ∏
σ

detAσ (Cn). (16)

To guarantee the ergodicity, the addition and removal of the
vertices with a random orientation of the auxiliary Ising spins
si = ±1 at randomly chosen imaginary times τi ∈ [0,β) are
sufficient. To add a vertex, we randomly pick an imaginary
time from the range [0,β) and put there an auxiliary Ising
spin with a randomly chosen orientation, with a proposal
probability of P0(Cn → Cn+1) = dτ/2β. To remove a vertex,
we randomly choose one of the existing vertices, with
the proposal probability P0(Cn+1 → Cn) = 1/(n + 1). In the
Metropolis algorithm, the acceptance ratio is

P (C → C ′) = min

(
W (C ′)P0(C ′ → C)

W (C)P0(C → C ′)
,1

)
. (17)

Applying this to the CT-INT, we obtain the acceptance ratios

P (Cn → Cn+1) = min

(
K

n + 1

∏
σ

detAσ (Cn+1)

detAσ (Cn)
,1

)
(18)

for the addition of a vertex, and

P (Cn+1 → Cn) = min

(
n + 1

K

∏
σ

detAσ (Cn)

detAσ (Cn+1)
,1

)
(19)

for the removal of a vertex.

3. Submatrix update

In the conventional fast update scheme, the matrix A−1
σ

is updated at each change of the auxiliary spins. Nukala
et al. [59] and subsequently Gull et al. [60] introduced a
more efficient update algorithm, called submatrix update,
to the Hirsch-Fye and the CT-AUX quantum Monte Carlo
algorithms, respectively, where the matrix A−1

σ is updated at
once after kmax-time updates are done. The speedup comes not
from the reduction of the operation times, but from an efficient
memory management by employing the matrix (submatrix)
which is accommodated in a cache memory of the modern
computer architectures, as is detailed in Ref. [60]. Here, we

introduce a similar submatrix update algorithm to the CT-INT,
which is essential for implementing the multiorbital cDMFT
calculation, described in Sec. II B, in a practical computational
time. We refer the readers to Refs. [59,60] for a detailed
derivation of Eqs. (24), (25), and (26), for which we avoid
a repetition.

In the following, we omit the spin index σ for simplicity
while the procedure described below has to be done for
both spins σ =↑ and ↓. We start from a configuration C0

n .
Suppose we know the corresponding matrix A−1

0 (C0
n) and

that we propose insertions or removals of the auxiliary spins
(vertices) for the next kmax times; let kins

max be the number of the
insertions. We define an extended configuration C̃0

n+kins
max

, which

is comprised of the original configuration C0
n and the kins

max
“noninteracting” vertices added at randomly chosen imaginary
times, i.e.,

C̃0
n+kins

max
= {(

s0
1 ,τ

0
1

)
, . . . ,

(
s0
n,τ

0
n

)︸ ︷︷ ︸
C0

n

,
(
s0
n+1 = 0,τ 0

n+1

)
,

. . . ,
(
s0
n+kins

max
= 0,τ 0

n+kins
max

)}
. (20)

Then, we accordingly define an extended (n + kins
max) × (n +

kins
max) matrix Ã−1

0 (C̃0
n+kins

max
) by

Ã−1
0 =

(
A0 0

B 1

)−1

=
(

A−1
0 0

−BA−1
0 1

)
. (21)

Here, B is a kins
max × n matrix with elements Bij = −G̃0(τ 0

n+i −
τ 0
j )[f (s0

j ) − 1]. Notice that the equality detA0(Cn) =
detÃ0(C̃n+kins

max
) holds, which is utilized in the calculation of

the acceptance ratio described below.
With the extended matrix Ã−1

0 and configuration C̃0
n+kins

max
,

the addition and the removal of the vertices can be done by just
flipping the orientation of the auxiliary spins: The addition is
expressed by changing an auxiliary spin s from 0 to ±1 while
the removal is expressed by the change from ±1 to 0. Since the
number of auxiliary spins (including those with zero value) is
fixed during the spin-flip process, we abbreviate C̃0

n+kins
max

to C̃0

below.
For later use, we denote the configuration after k(<kmax)th

updates by C̃k and the auxiliary spins in C̃k by {sk
i }. The posi-

tions of the flipped spins are denoted by pj (j = 1,2, . . . ,lk;
1 � pj � n + kins

max) with lk being the number of the flipped
spins. With these notations, we define an lk × lk matrix �k by

[�k]ij = [G̃(C̃0)]pipj
− δij

1 + γ
(
sk
pi

,s0
pi

)
γ
(
sk
pi

,s0
pi

) , (22)

with

γ (s ′,s) = f (s ′) − f (s)

f (s)
. (23)

The elements of the Green’s function matrix [G̃(C̃0)]ij can be
efficiently calculated by using Eq. (A3) for 1 � j � n. For
n + 1 � j � n + kins

max, we need to use Eq. (A4) to compute
them since sj = 0. The matrix �−1

k is updated at each change of
the auxiliary spins and is used to calculate the acceptance ratio.
An efficient method to update �−1

k is elaborated in Ref. [60]
and we do not repeat it here.
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The acceptance ratios [Eqs. (43) and (44)] can also be
calculated easily from �−1

k . Let us consider a (k + 1)th update
at which the pth spin is proposed to change from sk

p to s ′k
p and

the configuration moves from C̃k to C̃ ′k . When p 
= pj for
j = 1,2, . . . lk , the determinant ratio is given by

detÃ′
k

detÃk

= −γ
(
s ′k
p ,sk

p

)det�′
k

det�k

, (24)

where �′
k is an (lk + 1) × (lk + 1) matrix whose elements of

the (lk + 1)th row and column are calculated from Eq. (22)
with plk+1 = p. Otherwise, p coincides with one of {pj } (j =
1,2, . . . lk), i.e., a previously inserted vertex is proposed to be
removed. In this case, the pth spin has already been changed
from s0

p = 0 to sk
p = ±1, and therefore s ′k

p = 0 = s0
p. Then,

the determinant ratio is given by

detÃ′
k

detÃk

= − 1

γ
(
sk
p,0

) det�′
k

det�k

. (25)

Here, �′
k is an (lk − 1) × (lk − 1) matrix in which a column

and a row corresponding to pth spin are removed from �k .
If the proposal is accepted, the proposed configuration C̃ ′k

becomes the new configuration C̃k+1, and accordingly, the
size of the � matrix increases or decreases. Otherwise, the
configuration and the � matrix are unchanged. Then, we move
to the (k + 2)th update. We repeat this procedure up to kmax

times.
After kmax-th update, we recompute the A−1 matrix. To this

end, we use the identity [59,60]

[
Ã−1

kmax

]
ij

=
[
Ã−1

0

]
ij

− [G̃(C̃0)]ipk

[
�−1

kmax

]
pkpl

[
Ã−1

0

]
plj

1 + γ
(
s
kmax
i ,s0

i

) . (26)

We then delete the “noninteracting” auxiliary spins from Ã−1
kmax

by removing the corresponding rows and columns and obtain
a new A−1 matrix, which gives the starting point for the next
kmax-times updates.

B. Multiorbital case

1. Extension to the multiorbital systems with
the conventional single-vertex update

We now extend the above algorithm to the multiorbital case.
The action of the multiorbital impurity problem is given by

Simp = S0 + Sint, (27)

where

S0 = −
∫ β

0
dτ

∫ β

0
dτ ′ ∑

ij,σ

[
G−1

0σ (τ − τ ′)
]
ij
ĉ
†
iσ (τ )ĉjσ (τ ′)

(28)

and

Sint =
∫ β

0
dτ

[ ∑
i

Un̂i↑(τ )n̂i↓(τ ) +
∑
i<j,σ

U ′n̂iσ (τ )n̂jσ (τ )

+
∑
i<j,σ

(U ′ − JH)n̂iσ (τ )n̂jσ (τ )

+
∑
i 
=j

JHĉ
†
i↑(τ )ĉj↑(τ )ĉ†j↓(τ )ĉi↓(τ )

+
∑
i 
=j

JHĉ
†
i↑(τ )ĉj↑(τ )ĉ†i↓(τ )ĉj↓(τ )

]
. (29)

Here, the Weiss function G−1
0σ (τ − τ ′) is a matrix with respect

to the orbitals i and j . U , U ′, and JH are the intraorbital
Coulomb interaction, interorbital Coulomb interaction, and
Hund’s coupling, respectively. ĉ

†
iσ (ĉiσ ) is a Grassmann

variable representing the creation (annihilation) of the impurity
electron with the orbital i and the spin σ , and n̂iσ = ĉ

†
iσ ĉiσ .

As in the single-orbital case, we introduce additional
parameters. We employ [62]

α1↑(s) = 1/2 + sδ1,
(30)

α1↓(s) = 1/2 − sδ1

with s = ±1 and δ1 = 1/2 + 0+, and

α2↑(s) = +sδ2,
(31)

α2↓(s) = −sδ2

with a small positive real number δ2. Then, we rewrite the
noninteracting part of the action as

S0 = −
∫ β

0
dτ

∫ β

0
dτ ′ ∑

ij,σ

[
G̃−1

0σ (τ − τ ′)
]
ij
ĉ
†
iσ (τ )ĉjσ (τ ′),

(32)

where G̃0σ is the local noninteracting Green’s function defined
at a modified chemical potential μ̃ = μ − U/2 − Norb(2U ′ −
JH)/2 with Norb being the number of the orbitals. The
interaction part of the action is

Sint =
∫ β

0
dτ

∑
s=±1

[∑
i

U

2
[n̂i↑(τ ) − α1↑(s)][n̂i↓(τ ) − α1↓(s)]

+
∑
i<j,σ

U ′

2
[n̂iσ (τ ) − α1σ (s)][n̂jσ (τ ) − α1σ (s)]

+
∑
i<j,σ

U ′ − JH

2
[n̂iσ (τ ) − α1σ (s)][n̂jσ (τ ) − α1σ (s)]

+
∑
i 
=j

JH

2
[ĉ†i↑(τ )ĉj↑(τ )−α2↑(s)][ĉ†j↓(τ )ĉi↓(τ )−α2↓(s)]

+
∑
i 
=j

JH

2
[ĉ†i↑(τ )ĉj↑(τ )−α2↑(s)]

× [ĉ†i↓(τ )ĉj↓(τ )−α2↓(s)]

]
. (33)

Thanks to the α1 terms, we can avoid the negative signs coming
from the density-density interactions as in the Hirsch-Fye and
CT-AUX algorithms [62]. Without them, negative signs appear
since the V matrix corresponding to the density-density-type
vertex in Eq. (B2) obtains matrix elements with negative values
[61]. On the other hand, the number of negative signs increases
with δ2. However, as far as the off-diagonal parts of the Weiss
function vanish (i.e., [G̃0σ ]ij = 0 for i 
= j ), we need a nonzero
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δ2 value to satisfy the ergodicity. In the two-orbital case, we
can incorporate the last two terms in Eq. (33) more efficiently,
as we shall discuss in Sec. IIB2.

If we neglect the spin-flip and pair-hopping terms, which
correspond to the last two terms in Eq. (33), we only have
the density-density-type interactions and the symmetry of the
spin lowers from SU(2) to Z2. This mitigates the sign problem
considerably and hence often employed in literature though
the neglect has no physical ground [63–66]. Hereafter, we call
the Hamiltonian with the spin-flip and pair-hopping terms as
SU(2)-symmetric Hamiltonian, and the Hamiltonian without
them as Z2-symmetric Hamiltonian.

In the multiorbital case, we define a configuration as

Cn = {(κ1,s1,τ1), . . . ,(κn,sn,τn)}, (34)

where we introduce the index κ for the type of the interaction.
We also need to generalize the f and K functions: In the case
where κ designates a density-density interaction, we define f

as

fκσ (s) =
{

α1σ (s)
α1σ (s)−1 , s = ±1
1, s = 0

(35)

otherwise, it is defined as

fκσ (s) =
{

α2σ (s)
α2σ (s)−1 , s = ±1
1, s = 0.

(36)

Then, the K function is defined by

Kκ (s) = −βVκ

[fκ↑(s) − 1][fκ↓(s) − 1]
, (37)

for s = ±1 with Vκ = U,U ′,U ′ − JH,or JH.
With these functions, the partition function for the multior-

bital impurity problem is written in the form

Z

Z0
=

∞∑
n=0

∫ β

0

∑
κ1

∑
s1=±1

. . .

∫ τn−1

0

∑
κn

∑
sn=±1

×
[

n∏
i=1

Kκi
(si)dτi

2β

∏
σ

detAσ (Cn)

]
. (38)

The A matrix has a similar form as that in Eq. (13), but now we
have additional orbital indices for the G0 matrix and κ index for
the F matrix. When the interaction between the same spin [the
third term in Eq. (33)] is inserted, the size of the A matrix for
that spin increases by two, while no increase for the opposite
spin. Therefore, the size of the A matrix does not necessarily
agree with the number of the interaction vertices n, while (size
of A↑) + (size of A↓) = 2n holds.

Now, the application of the submatrix update to the
multiorbital case is straightforward. We only comment on
several important differences from the single-orbital one. (i)
We need to modify the definition of the γ function to have
κ index. (ii) As in the A matrix, the sizes of the �↑ and �↓
matrices do not necessarily agree. (iii) If the update is related
to the interaction between the same spin, we need to enlarge
or shrink the � matrix by two rows and two columns only for
the relevant spin components.

2. Efficient sampling scheme for the spin-flip
and pair-hopping terms: Double-vertex update

Here, we show, in the two-orbital Hubbard model with-
out a hybridization between the orbitals, that the spin-flip
and pair-hopping interactions can be treated efficiently by
incorporating the double-vertex insertion and removal pro-
cesses, on top of the standard single-vertex updates for the
density-density-type interactions. The double-vertex update
allows the spin-flip and pair-hopping interactions to appear
only at even perturbation orders, eliminating unphysical
odd-order terms, and thus suppresses the negative sign
problem coming from these interactions. In particular, in
the single-site DMFT, we find that the negative signs are
absent.

In order to clue in our idea, let us look into Eq. (33)
again. Suppose that there is no hybridization between the two
orbitals, that is, [G̃0σ ]12 = [G̃0σ ]21 = 0. Then, we can easily
see that, without δ2, the thermal average of the products of
the Grassmann variables 〈V [ĉ†1σ ,ĉ

†
2σ ,ĉ1σ ,ĉ2σ ]〉0 can be finite

only when the equality (number of ĉ
†
iσ in V ) = (number of ĉiσ

in V ) holds for each i = 1,2 and σ =↑ , ↓. This condition
is always satisfied when only the density-type vertices come
in. However, a single non-density-type vertex (spin-flip or
pair-hopping) does not meet this condition, and therefore
it must always appear in pair with another corresponding
non-density-type vertex in order to have a finite contribution.
Nevertheless, when δ2 is nonzero, a configuration with the
odd number of the non-density-type vertices can have a
finite weight because of the constant α2σ . While the presence
of these odd-order terms is artificial, they are necessary to
keep the ergodicity within the single-vertex update processes
since in this case the number of the non-density-type vertices
can not be changed without passing through the odd-order
terms.

The above consideration motivates us to introduce double-
vertex insertion or removal processes for the spin-flip and pair-
hopping terms, where we insert or remove two non-density-
type vertices at different imaginary times simultaneously. With
the double-vertex update processes we can sample over only
the even-order terms with respect to the non-density-density
interactions so that we can avoid the negative signs coming
from the artificial odd-order terms. The idea can apply
to both the conventional and submatrix update algorithms.
While the double-vertex update dispenses with the additional
parameter δ2 in the conventional fast update scheme, in order
to apply the submatrix update, we introduce another type of
parameters

α3↑(s) = +sδ3,
(39)

α3↓(s) = −sδ3

and

α4↑(s) = +sδ3,
(40)

α4↓(s) = +sδ3

with s = ±1 and a positive real number δ3. These parameters
are needed to avoid the divergence of γ function in Eq. (23).
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We rewrite the action for the spin-flip and pair-hopping part as

Snon-dens.
int =

∫ β

0
dτ

∑
s=±1

[∑
l=3,4

JH

4
[ĉ†1↑(τ )ĉ2↑(τ ) − αl↑(s)][ĉ†2↓(τ )ĉ1↓(τ ) − αl↓(s)]

︸ ︷︷ ︸
κ = 7

+
∑
l=3,4

JH

4
[ĉ†2↑(τ )ĉ1↑(τ ) − αl↑(s)][ĉ†1↓(τ )ĉ2↓(τ ) − αl↓(s)]

︸ ︷︷ ︸
κ = 8

+
∑
l=3,4

JH

4
[ĉ†1↑(τ )ĉ2↑(τ ) − αl↑(s)][ĉ†1↓(τ )ĉ2↓(τ ) − αl↓(s)]

︸ ︷︷ ︸
κ = 9

+
∑
l=3,4

JH

4
[ĉ†2↑(τ )ĉ1↑(τ ) − αl↑(s)][ĉ†2↓(τ )ĉ1↓(τ ) − αl↓(s)]

︸ ︷︷ ︸
κ = 10

]
. (41)

The idea behind this form of the additional parameters α3σ

and α4σ is to eliminate the weight of the odd-order terms, as
one can easily verify it by seeing that the sum over s and l for
the each term on the right-hand side of Eq. (41) reproduces
the original action for the spin-flip and pair-hopping terms
without the additional constant. We use the same S0 and the
density-density part of Sint as those in Eqs. (32) and (33), where
we assign κ = 1–6 to the density-density interactions in Sint.
In the update, the κ = 7 vertex has to be paired with κ = 8
vertex. In the same way, the κ = 9 vertex has to be paired
with κ = 10 vertex. In principle, δ3 is arbitrary as far as it is
nonzero, however, a small value is preferable because in the
δ3 → 0 limit, we can prove mathematically that the negative
signs are absent (see Appendix B). We set δ3 to be ∼10−4, and
with this small value, we do not encounter the negative signs
as will be shown in Sec. III A. A large value of δ3 will increase
the matrix size and produce the negative signs.

The f function for the non-density-type vertices is
modified to

fκσ (l,s) =
{

αlσ (s)
αlσ (s)−1 , s = ±1
1, s = 0

(42)

for κ = 7–10 and l = 3,4. Correspondingly, we define Vκ =
JH/2, with which the partition function is given in the same
form as Eq. (38).

At the insertion update, we propose the double vertex with
a probability R, and the single vertex with 1 − R. When the
double-vertex update is selected, we randomly choose either
pair of (7,8) or (9,10). Then, we pick two imaginary times
from the range [0,β) and assign the l value (l = 3,4) and
auxiliary spin orientations (s = ±1) for each vertex in the
pair. Eventually, a proposal ratio for inserting a certain pair of
the non-density-type vertices is R/32 × (dτ/β)2. As for the
removal update, we first pick randomly one of the existing
vertices. If the chosen vertex is of density-density type, we
propose the single-vertex removal. Otherwise, we propose the
double-vertex removal: If the type of the chosen vertex is 7, for
example, we additionally choose one vertex from the existing
κ = 8 vertices with a probability 1/mκ=8 with mκ=8 being the

number of κ = 8 vertices in the configuration. Then, a proposal
ratio for removing a (7,8) pair is 2

nmκ=7
, where n is the number of

existing vertices of all kinds. The factor of 2 in the numerator
comes from the sum of probability for the case where the
first-chosen vertex is of κ = 7 and 8. Note that mκ=7 = mκ=8

and mκ=9 = mκ=10 always hold during the simulation. With

X = 16K2
κ=7

R(n+2)(mκ=7+1) , the acceptance ratio concerning (7,9)-pair
vertices is

P (Cn → Cn+2) = min

(
X

∏
σ

detAσ (Cn+2)

detAσ (Cn)
,1

)
(43)

for the addition process and

P (Cn+2 → Cn) = min

(
1

X

∏
σ

detAσ (Cn)

detAσ (Cn+2)
,1

)
(44)

for the removal process. The acceptance ratios for the insertion
and the removal of the other vertex pairs are calculated in the
same way.

Suppose a pair of the auxiliary spins (sk
p,sk

q ) is proposed to

change to (s ′k
p,s ′k

q) by the double-vertex update. As far as pth
and qth spins have not been changed in the previous (k − 1)
steps, the change of the type (0,0) → (±1,±1) (insertion) or
(±1,±1) → (0,0) (removal) will enlarge the � matrix by two
rows and two columns if accepted. If both the pth and qth spins
have already been flipped from 0 to ±1 (insertion), the change
at the kth step is of the type (±1,±1) → (0,0) (removal) and
the � matrix will shrink by two rows and two columns if
accepted since both the pth and qth spins return to the original
orientations (s = 0). Otherwise, one of the two spins, say the
pth spin, has been changed in the previous (k − 1) steps while
the other (the qth spin) has not. In this case, the change is of
the type (±1,±1) → (0,0) (removal) and in the � matrix one
row and one column will be added for the qth spin while one
row and one column concerning the pth spin will be removed
if accepted.

Finally, we comment on the three-orbital case. Suppose
that there is no hybridization among the orbitals. In this
case, on top of the double-vertex update, we will need the
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triple-vertex update, where three spin-flip interactions involv-
ing the orbital pairs (1,2), (2,3), and (3,1), for example, are
inserted or removed.

C. Multiorbital and multisite case

It is straightforward to extend the above-described algo-
rithm, both the single-vertex and double-vertex updates, to the
multiorbital and multisite impurity problem. We only need
to define a “generalized orbital” which specifies the site and
the orbital simultaneously. With these “generalized orbitals,”
we can employ the same method described in Sec. II B. For
example, when we consider two-orbital and two-site case, the
“generalized orbital” runs from 1 to 4: “generalized orbital”
1, 2, 3, and 4 denote the orbital 1 at the site 1, the orbital 2
at the site 1, the orbital 1 at the site 2, and the orbital 2 at the
site 2, respectively. The Weiss function becomes a matrix with
respect to the “generalized orbitals” and includes the off-site
processes, e.g., [G̃−1

0σ (τ − τ ′)]13. It also should be noted that,
for the multiorbital Hubbard model, the interactions exist only
within the “orbital” 1 and the “orbital” 2, and within the
“orbital” 3 and the “orbital” 4.

III. RESULTS

Here, we show numerical results for the 2D two-orbital
Hubbard model. We consider two degenerate orbitals on
a square lattice with only the nearest-neighbor intraorbital
hopping t , which is used as the unit of energy, i.e., t = 1.
The electron density is set to be half-filling. We implement
the cellular DMFT with a four-site cluster, in which the
impurity problem has 2 × 4 = 8 degrees of freedom in total,
and compare the results with those of the single-site DMFT to
elucidate the effect of short-range spatial correlations.

The impurity problem is solved by the CT-INT method
described in the previous section, where the Legendre orthog-
onal polynomials expansion of the imaginary-time Green’s
function is employed as a “noise filter” [67]. We restrict
ourselves to the paramagnetic and paraorbital solution to
clarify the nature of the Mott metal-insulator transition. We
explicitly treat the spin-flip and pair-hopping terms [the
SU(2)-symmetric Hamiltonian] and compare the result with
that of the Z2-symmetric Hamiltonian.

For the SU(2)-symmetric Hamiltonian at T/t = 0.05 and
U/t = 5.4, where the calculation is severest in this study, the
average expansion order of the interaction vertices reaches
∼740 and we take 1 536 000 QMC steps to solve the impurity
problem. In this case, it takes about one hour with 512-core
parallelization (clock frequency: 2.90 GHz) to perform one
self-consistent loop.

A. Comparison between single-vertex
and double-vertex updates

Before going to the physical results for the 2D two-orbital
Hubbard model, we demonstrate how much the negative signs
are reduced by employing the double-vertex update for the
spin-flip and pair-hopping terms. The calculation is performed
at U = 6t , U ′ = 3t , and JH = 1.5t . Figure 1(a) shows the
single-site DMFT results of the average sign for the SU(2)-
symmetric Hamiltonian at several temperatures. As can be
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FIG. 1. (Color online) (a) The average sign for the SU(2)-
symmetric Hamiltonian obtained within the single-site DMFT. Filled
(open) symbols show the results with the double-vertex (single-
vertex) update for the spin-flip and pair-hopping terms. (b) The double
occupancy for each orbital for the SU(2)-symmetric Hamiltonian at
β = 20 as a function of the number of the self-consistent loops, where
we employ the single-site DMFT. For comparison, we also show the
results for the Z2-symmetric Hamiltonian. We start the self-consistent
loop from the noninteracting limit, and we fully update the Weiss
function at each loop. In the QMC simulation, 320 000 measurements
are done. The calculation is performed with U = 6t , and U ′ = 3t and
JH = 1.5t both for the panels (a) and (b).

seen, the double-vertex update always gives the average sign of
1, eliminating the negative signs completely. On the other hand,
the single-vertex update suffers from the negative signs, which
become severer as the temperature decreases. Since the slope in
Fig. 1(a) is more modest for the smaller value of δ2, one might
think that if we further decrease δ2, we can get rid of the sign
problem. However, if δ2 is too small, the calculation becomes
unstable, as seen in Fig. 1(b): The result with δ2 = 10−3

strongly fluctuates around the right value (red and blue curves)
∼0.08, and for δ2 = 10−4 even the average value of the solution
deviates from the right one. The result with δ2 = 10−4 is rather
close to the result with the Z2-symmetric Hamiltonian. This is
reasonable because the reduction of δ2 suppresses the flip to
the odd-order non-density-type terms: Since we start from the
noninteracting limit (zeroth order), the smaller δ2 lessens the
chance to have a finite-order non-density-type terms, resulting
in a double-occupancy value similar to the Z2-symmetric one.
Therefore, if we want an accurate and stable result with the
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single-vertex update, we need to use a substantial value for
δ2, which inevitably causes negative signs. On the other hand,
in the double-vertex update, the accuracy does not essentially
depend on the choice of δ3, and as far as we use a small
value for δ3, we see that the average sign is always one. The
computational time highly depends on the average sign: If
the average sign is 0.5, we need a twice larger calculation to
get the same effective sampling numbers as that of (average
sign) = 1 case. Therefore, the double-vertex update saves the
computational time significantly.

B. Phase diagram

Figures 2(a) and 2(b) show the phase diagrams with
respect to the temperature T and the interaction U for the
SU(2)-symmetric Hamiltonian and the Z2-symmetric one,
respectively, where the ratio between Hund’s coupling JH

and the Hubbard interaction U is set to be JH/U = 1
6 and

U ′ = U − 2JH. The ratio JH/U = 1
6 is close to that of the

transition-metal oxides [68,69], typical multiorbital strongly
correlated materials. The color contour plot indicates the
double occupancy obtained by the solution approached from
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FIG. 2. (Color online) Phase diagrams obtained by the cDMFT
and single-site DMFT for (a) the SU(2)-symmetric Hamiltonian and
(b) the Z2-symmetric Hamiltonian with JH/U = 1

6 and U ′ = U −
2JH. Color contour plots show the double occupancy for each orbital,
where the data between the calculated points are estimated by a linear
interpolation. The solid lines show the phase boundary at which the
metallic solution becomes unstable, or the crossover line determined
by the maximal point of the first derivative of the double occupancy as
a function of U . Within the present resolution, we could not determine
the critical end point precisely.
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and (b) the Z2-symmetric Hamiltonian with JH/U = 1

6 and U ′ =
U − 2JH. The lines are guides to the eye. The sizes of the error bars
are slightly small compared to the sizes of symbols.

the metallic side. The raw data of the double occupancy are
shown in Fig. 3. The transition from a metallic state to the
Mott-insulating state can be identified by the abrupt change
in the double occupancy. As the temperature increases,
the change gets smoother and goes on to a crossoverlike
behavior, where we determine the crossover line by the
maximal point of the first derivative of the double-occupancy
curves as a function of U . In Figs. 2(a) and 2(b), we show
thus-estimated phase boundary Uc2 or the crossover line of
the Mott metal-insulator transition obtained by the single-site
and cellular DMFTs.

First, we comment on the single-site DMFT results. In
the SU(2)-symmetric case, the critical interaction strength
increases as the temperature decreases, which reflects the fact
that the paramagnetic insulating state has a larger entropy than
the metallic state, as in the single-orbital case. On the other
hand, Uc2 for Z2-symmetric Hamiltonian is almost unchanged
with respect to the temperature while in the crossover region
(T � 0.12t), the crossover line shifts to a larger U as the
temperature increases. The different slopes between SU(2)
and Z2 come from their different ground-state degeneracy in
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the atomic limit where each orbital has one electron with a spin
oriented to the same direction (S = 1). In the SU(2) case, the
ground state is triply degenerate (Sz = 1,0,−1), while in the Z2

case it is doubly degenerate (Sz = ±1). Hence, the insulating
state in the SU(2)-symmetric Hamiltonian has a larger entropy
than that in the Z2-symmetric Hamiltonian, accounting for
the tendency to have a negative slope of the phase boundary
in the SU(2) case. Furthermore, in the metallic region for the
Z2-symmetric Hamiltonian, since the system is locked into
the states with Sz = ±1 due to a strong Hund’s coupling,
the Kondo screening is inefficient [70], while it works in the
SU(2)-symmetric Hamiltonian as well as in the single-orbital
one. Therefore, the metallic state in the multiorbital Z2

case has a larger entropy than that in the multiorbital SU(2)
and single-orbital cases. Since in the atomic limit both the
single-orbital and multiorbital Z2 Hamiltonians have the
same ground-state degeneracy of two, which would give a

similar entropy in the insulating region, the above-mentioned
difference in the metallic state would explain the positive
slope in the Z2 case. Notice also that the Z2-symmetric
Hamiltonian significantly overestimates the tendency toward
the insulator compared to the SU(2)-symmetric one.

We now turn to the cellular DMFT results. Due to the
short-range spatial correlations, the critical interaction strength
for the Mott transition considerably decreases. It is interesting
to note that the difference in the critical interaction strength
between SU(2)- and Z2-symmetric Hamiltonians is much
smaller than that in the single-site DMFT. By comparing
Figs. 3(a) and 3(b), we find that the Z2-symmetric Hamiltonian
overestimates the tendency toward the insulator, while the
difference of the critical interaction is less than 0.1t . In contrast
to the single-site DMFT results, the slopes of the phase
boundary in Fig. 2 are also similar between the SU(2)- and
Z2-symmetric Hamiltonians: the critical interaction strength
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FIG. 4. (Color online) (a)–(c) The cDMFT results for the self-energies at T = 0.05t . The panels (a), (b), and (c) show the data for
the real part of the self-energy at the (0,0) momentum Re
00(iωn) = −Re
ππ (iωn), its imaginary part Im
00(iωn) = Im
ππ (iωn), and
the imaginary part of the self-energy at the (π,0) momentum Im
π0(iωn) = Im
0π (iωn), respectively. Due to the particle-hole symmetry,
Re
π0(iωn) = Re
0π (iωn) = 0. The inset of the panel (a) shows the real part of the self-energy for the (0,0) momentum at the first Matsubara
frequency Re
00(iω0) = −Re
ππ (iω0), as a function of the Hubbard interaction U . The data for Im
π0(iωn) = Im
0π (iωn) at U/t = 4.5,4.8
are zoomed in the inset of the panel (c). (d)–(f) The same as (a)–(c) but at T = 0.15t . The sizes of the error bars for the data for the Z2-symmetric
Hamiltonian are within those of the symbols. The lines are guides to the eye.
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decreases as the temperature decreases in both cases. In the
SU(2)-symmetric Hamiltonian, in analogy with the single-
orbital case [71], this would be attributed to the entropy
reduction of the insulating phase by the formation of the
intersite singlets within the cluster. In the Z2-symmetric case,
the Ising-type antiferromagnetic spin alignment would be
favored in the cluster and thus the insulating phase has a smaller
entropy than that in the single-site DMFT. To confirm these
scenarios, it would be interesting to see the intersite spin-spin
correlation functions, which is however beyond the scope of
this study.

C. Self-energy

To investigate the nature of the transition, we plot in
Figs. 4(a)–4(c) the raw data of the intraorbital self-energy
against the Matsubara frequency ωn = (2n + 1)πT for U/t =
4.5, 4.8, 5.1, and 5.4 at the temperature T = 0.05t . The self-
energy is diagonal with respect to the orbital and two orbitals
give the same self-energy, while it has a momentum depen-
dence. Figures 4(a), 4(b), and 4(c) show the real part of the self-
energy at the (0,0) momentum Re
00(iωn) = −Re
ππ (iωn),
its imaginary part Im
00(iωn) = Im
ππ (iωn), and the imagi-
nary part of the (π,0) component Im
π0(iωn) = Im
0π (iωn),
respectively. Note that the real part of the (π,0) and (0,π )
components vanish due to the particle-hole symmetry.

First, we remark several features common to both SU(2)
and Z2 results. At the noninteracting limit U/t = 0, the
Fermi surface exists at the (π,0) momentum while the (0,0)-
[(π,π )-]momentum state is occupied (unoccupied). In the
Mott-insulating state, this Fermi surface disappears at the (π,0)
momentum due to the divergence of Im
π0(ω → 0), as can
be seen from Fig. 4(c). In the metallic region close to the
Mott transition, the (π,0)-momentum self-energy does not go
to zero but to a finite value as ω → 0, which is a sign of a
bad metal. To investigate whether this bad metallic behavior
is intrinsic or it becomes a good metal at lower temperatures
requires a huge computational cost and is intractable at present.
At the Mott transition, we see an abrupt change in Re
00(iωn)
and Re
ππ (iωn) [the inset of Fig. 4(a)], which can also be
used to determine the transition point. The similar change in
Re
00(iωn) and Re
ππ (iωn) is also seen in the cellular DMFT
results for the 2D single-band Hubbard model on the square
lattice [71]. On the other hand, through the Mott transition, we
do not find any anomaly in the imaginary part of the self-energy
at (0,0) and (π,π ) momentum [Im
00(iωn) and Im
ππ (iωn)],
where the Fermi surface does not exist even in the metallic
state at small U .

We now turn to the comparison of the self-energy at T =
0.05t between SU(2) and Z2 cases at U/t = 4.5, 4.8, 5.1,
and 5.4. For these values of interaction, the both types of
Hamiltonian give a solution on the same side of the metal-
insulator transition [see Fig. 3 and the inset of Fig. 4(a)], and
the difference in the resultant self-energies is at most ∼20%.
A qualitative difference between SU(2) and Z2 results can be
seen only in the vicinity of the transition point: For example, for
U/t = 4.875 the SU(2)-symmetric Hamiltonian still remains
to give the metallic state while the Z2-symmetric Hamiltonian
incorrectly gives an insulating solution.

Finally, we show the self-energy at T = 0.15t in Figs. 4(d),
4(e), and 4(f), where the crossover behavior from the metal to

the insulator is seen. As is expected, the diverging behavior
of Im
π0(iωn) and Im
0π (iωn) is much more moderate
compared to that at T = 0.05t [Figs. 4(a)–4(c)]. As for the
difference between the results for the SU(2)-symmetric Hamil-
tonian and those for the Z2-symmetric Hamiltonian, generally
the self-energies for the SU(2)-symmetric Hamiltonian are
larger in magnitude, except for Re
00(iω0) and Im
π0(iω0).
However, the difference is at most ∼20 %. Similarly, we do
not find any significant differences between the two types of
Hamiltonian for the other parameter sets which have been stud-
ied in this paper. We, however, expect that these terms will give
a substantial difference in two-particle quantities such as spin
susceptibility (Ref. [65]), which is left for future investigations.

IV. CONCLUSION

We have incorporated the submatrix update into the
CT-INT method and also developed the efficient sampling
scheme, the double-vertex update, for the spin-flip and
pair-hopping terms. Using the developed method, we have
performed the cellular DMFT study for the 2D two-orbital
Hubbard model on the square lattice. We have shown that
the short-range spatial correlations significantly reduce the
critical interaction strength for the Mott transition. The
transition is induced by the divergence of the imaginary part
of the (π,0)-momentum self-energy and simultaneously we
see the abrupt change in Re
00(iωn) = −Re
ππ (iωn). While
we see the overestimate of the tendency toward the insulator
in the Z2-symmetric Hamiltonian, the difference in the critical
interaction value between SU(2) and Z2 cases is smaller for
the cDMFT results than that in the single-site DMFT case
in the parameter region we have studied. When JH is larger
or a frustration is introduced, the difference might be more
significant even in the cDMFT, which is an open problem.

The present scheme has established a firm starting point
for the multiorbital cDMFT study. Calculations at away from
half-filling and/or for more than two orbitals are feasible.
It is also interesting to study magnetism, superconductiv-
ity, orbital order, and so on, which we leave for future
issues.

ACKNOWLEDGMENTS

We would like to thank P. Werner, G. Sangiovanni, and
N. Parragh for fruitful discussions. This work was supported
by Funding Program for World-Leading Innovative R&D
on Science and Technology (FIRST program) on “Quantum
Science on Strong Correlation.” Y.N. is supported by the Grant-
in-Aid from JSPS (Grant No. 12J08652). The calculations
were performed at the Supercomputer Center, ISSP, University
of Tokyo.

APPENDIX A: CALCULATION OF THE
GREEN’S FUNCTION MATRIX G

The Green’s function matrix G (or G̃) in Eq. (22)
is related to the A matrix by Gσ = A−1

σ G0σ . When the
configuration C ′

n = {(s ′
1,τ1), . . . ,(s ′

n,τn)} differs from Cn =
{(s1,τ1), . . . ,(sn,τn)} in only the spin orientation, A′

σ (C ′
n) is
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related to Aσ (Cn) via the Dyson equation

A′−1
σ = A−1

σ + (Gσ − I )σA′−1
σ . (A1)

Here, I is an n × n identity matrix and

[σ ]ij = δij

fσ (s ′
i) − fσ (si)

fσ (si)
. (A2)

By setting s ′
i = 0 for all i in Eq. (A1), we obtain

[fσ (sj ) − 1][Gσ ]ij = fσ (sj )
[
A−1

σ

]
ij

+ δij . (A3)

If sj 
= 0, we can use this efficient formula to calculate [Gσ ]ij ,
otherwise, we need to compute [Gσ ]ij directly by

[Gσ ]ij = [
A−1

σ

]
ik

[G0σ ]kj . (A4)

APPENDIX B: ABSENCE OF THE SIGN PROBLEM
WITHIN THE DOUBLE-VERTEX UPDATE

Here, we prove that the negative signs are absent within
the double-vertex update in the two-orbital systems, in a way
similar to that employed in Ref. [61] for the single-orbital
Hubbard model. We first consider the case of δ3 = 0 in
Eq. (41). Following Refs. [61,72], we introduce a chain
representation for the noninteracting part of the impurity
Hamiltonian,

H̃0 =
∑
i,σ

∞∑
r=0

[
ε̃ir d̂

σ†
i,r d̂

σ
i,r − tir

(
d̂

σ†
i,r+1d̂

σ
i,r + d̂

σ†
i,r d̂

σ
i,r+1

)]
, (B1)

where d̂
σ†
i,r (d̂σ

i,r ) is the creation (annihilation) operator for the
orbital i and the site r . r = 0 denotes the impurity site, and

hence d̂σ
i,0 = ĉiσ and ε̃i0 = −μ̃. r � 1 denotes an infinite chain

of the bath sites attached to the impurity site. With a proper
choice of the gauge, all the hopping parameters tir can be taken
to be non-negative, i.e., tir � 0. The weight for a configuration
Cn is

W (Cn) = Tr[e−(β−τn)H̃0V (κn,sn)e−(τn−τn−1)H̃0

×V (κn−1,sn−1) . . . e−τ1H̃0 ], (B2)

where V (κp,sp) represents a vertex of the type κp and of
the auxiliary spin sp, which is inserted at the imaginary time
τp: For example, for one of the spin-flip terms (κp = 7) with
δ3 = 0, it is written as

V (κp,sp) = −JHdτ

4
ĉ
†
1↑(τp)ĉ2↑(τp)ĉ†2↓(τp)ĉ1↓(τp). (B3)

On the chain basis, it has been shown that all the elements of
the e−τH̃0 matrix are non-negative, which is also true for the
density-type vertices V (κ,s) irrespective to the spin orientation
s = ±1 [61,72]. On the other hand, for the non-density-type
vertex, it is easy to see that all the elements of the −V (κ,s)
matrix are non-negative. Since the non-density-type vertices
always appear in pair within the double-vertex update, the
product involving the pair of the vertices V (κ,s) is always
non-negative. Then, the weight W (Cn) turns out to be the trace
of the product of the matrices with non-negative elements, and
therefore it is non-negative. Although we need a finite δ3 for the
submatrix update, a similar pair cancellation of the negative
factors of the vertices will work as far as δ3 is small.
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