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Quantum phase transitions between bosonic symmetry-protected topological phases
in two dimensions: Emergent QED3 and anyon superfluid
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Inspired by the Chern-Simons effective theory description of symmetry protected topological (SPT) phases
in two dimensions, we present a projective construction for many-body wave functions of SPT phases. Using
this projective construction, we can systematically write down trial wave functions of SPT phases on a lattice.
An explicit example of SPT phase with U(1) symmetry is constructed for two types of bosons with filling
νb1 = νb2 = 1

2 per site on a square lattice. We study continuous phase transitions between different U(1)-SPT
phases based on projective construction. The effective theory around the critical point is an emergent QED3 with
fermion number Nf = 2. Such a continuous phase transition, however, needs fine tuning, and in general there
are intermediate phases between different U(1)-SPT phases. We show that such an intermediate phase has the
same response as an anyon superconductor, and hence dub it “anyon superfluid.” A schematic phase diagram of
interacting bosons with U(1) symmetry is depicted.
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I. INTRODUCTION

Topological insulators and superconductors [1–3], which
has drawn lots of interest recently, belong to a large class
of disordered gapped phases dubbed symmetry protected
topological (SPT) phases [4]. One definitive feature of an
SPT phase is the existence of gapless boundary excitations
that are protected by certain symmetries. In the absence
of any symmetry, without gap closing, these states can
always be continuously connected to a featureless gapped
state (called the trivial phase), which is a direct product
of local degrees of freedom. When symmetry is preserved,
however, these SPT phases are separated from the trivial
phase by a phase transition. Extensive studies of fermonic SPT
phases have been done based on free fermion band structures,
including the classification of noninteracting fermionic SPT
phases with various symmetries [5,6]. On the other hand,
bosonic SPT phases require strong interaction to realize and
are much less well understood [4,7–15], not to mention
the phase transitions between them. Since SPT phases are
gapped phases, which preserves the symmetry, the phase
transitions between different SPT phases are beyond the
description of Landau’s symmetry breaking theory [16,17].
Can there be any non-Landau-Ginzburg-Wilson type [18,19]
continuous quantum phase transition [20] between two dif-
ferent bosonic SPT phases? If not, what are the interme-
diate phases between two different bosonic SPT phases?
In this work, we will address these questions, focusing on
bosonic SPT phases protected by U(1) symmetry in two
dimensions.

In the presence of U(1) symmetry related to boson charge
conservation, there is an infinite number of distinct gapped
boson phases [4] labeled by an integer q ∈ Z in two space
dimensions. Each gapped bosonic phase is featured by its
quantized Hall conductance [9–11,14,15] σxy = 2q in units of
e2
b/h [eb is the unit U(1) charge carried by bosons]. The trivial

gapped boson phase corresponds to q = 0. For any q �= 0
phase, there are either gapless excitations at the boundary or the
symmetry is spontaneously broken. These U(1)-SPT phases

can be described by a U(1) × U(1) Chern-Simons theory
[9–11], where the physical U(1) symmetry is implemented by
a charge vector [21]. Based on such effective Chern-Simons
theory [10], we develop a projective construction [22] of the
ground state wave functions for bosonic U(1)-SPT phases
in 2 + 1D. This construction not only provides a systematic
way to write down trial wave functions for bosonic SPT
phases on lattices, but also enable us to study continuous
quantum phase transitions between different U(1)-SPT phases.
As a byproduct, it also provides a systematic way to write
down trial wave functions of bosonic SPT phases on a
lattice. For continuous transitions where the Hall conductance
changes by two units, we show that the critical theory
is QED3 with Nf = 2, i.e., two flavors of massless Dirac
fermions couple to a noncompact U(1) gauge field, where
the microscopic U(1) symmetry leads to the conservation of
U(1) gauge flux at the critical point. Such a critical theory
has been studied in the context of algebraic spin liquid
[23–29] and is known to describe an interacting conformal
fixed point [26] (beyond free quasiparticle descriptions).
However, this �σxy = 2 transition generically will break into
two consequently �σxy = 1 transitions in the absence of
extra symmetries. We show that the intermediate phase is
an anyon superfluid (aSF) [30–32] with spontaneous U(1)
symmetry breaking. Based on these results, a schematic phase
diagram of interacting bosons with U(1) symmetry is shown
in Fig. 1.

The outline of the paper is as follows. In Sec. II, we briefly
review the Chern-Simons effective theory of bosonic SPT
phases in 2 + 1D, with an emphasis on U(1)-symmetric SPT
phases. In Sec. III, we develop a projective construction of
the ground state wave functions for bosonic U(1)-SPT phases,
where an example of two species of half-filled bosons on a
square lattice is studied in detail. In Sec. IV, we study the
continuous phase transitions between two different U(1)-SPT
phases and derive the critical theory. We show that generically
there is an intermediate phase between two adjacent U(1)-SPT
phases. We conclude with some remarks in Sec. V.
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FIG. 1. (Color online) A schematic phase diagram of interacting
bosons with U(1) symmetry (associated with boson charge conserva-
tion) in two dimensions. It includes trivial boson insulator, bosonic
U(1)-SPT insulators and gapless anyon superfluid (aSF) phases.
Different bosonic insulators are featured by their Hall conductance
σxy = 2q,q ∈ Z, in the presence of U(1) symmetry associated
with boson number conservation. An aSF phase spontaneously
breaks U(1) symmetry and is featured by superfluid response and
a quantized Chern-Simons term in (40). θ = π/(1 − 2q) denotes the
statistical angle of anyon, in the aSF phase between two bosonic
U(1)-symmetric insulators with σxy = 2q and σxy = 2q − 2. Solid
lines denote phase boundaries between U(1)-SPT phases and anyon
superfluids, which are connected by a continuous phase transition
with effective theory (42). Each red circle denotes a tricritical point,
whose effective theory is described by emergent QED3 with fermion
number Nf = 2.

II. CHERN-SIMONS APPROACH TO SYMMETRY
PROTECTED TOPOLOGICAL PHASES: A BRIEF REVIEW

In this section, we briefly review the Chern-Simons ap-
proach to bosonic/fermionic symmetry protected topological
(SPT) phases [10]. The low-energy effective theory of SPT
phases is manifest in this approach, allowing us to study the
quantum phase transition between different SPT phases.

The Chern-Simons approach was firstly introduced
[21,33–35] to classify and characterize Abelian fractional
quantum Hall (AFQH) states in two dimensions. To be specific,
the long-wavelength effective field theory describing a generic
(multicomponent) AFQH fluid is written in terms of compact
U(1) gauge fields {aI

μ}:

LCS = − 1

4π

N∑
I,J=1

εμνλaI
μKI,J ∂νa

J
λ , (1)

where KI,J is a symmetric N × N matrix with integer entries
(summing over repeated indices μ,ν,λ = t,x,y is always
assumed in the paper). There are N different types of conserved
“electron”1 currents {Jμ

I |1 � I � N} in such a AFQH liquid,
given by

J
μ

I = 1

2π
εμνλ∂νa

I
λ. (2)

AFQH liquids can be viewed as a condensate of “composite
bosons” [21,36,37] with various type of vortex (quasiparticle)

1Here the word “electrons” have a different meaning than the usual
one: we call every microscopic particle (physical degree of freedom)
in the system an “electron.” An “electron” in our context can be either
a boson or a fermion.

excitations. Equation (2) is the expression of composite
boson current after the standard nonrelativistic duality trans-
formation [21,38]. Each composite boson is a composite
of electrons and fluxes [39,40]) and hence has the same
density/current as electrons. In the dual theory, the vortex (or
quasiparticle) current j

μ

I (of the I th type) couples minimally
to U(1) gauge field aI

μ. In such a Chern-Simons theory, the
coupling of “electrons” (or composite bosons) to the physical
electromagnetic gauge field is specified by a charge vector [21]
t = (t1,t2, · · · ,tN )T . Including these features the low-energy
effective theory for a generic AFQH liquid (we set e = � = 1
in most of the paper) is given by

Leff = LCS −
∑

I

aI
μj

μ

I − εμνλ

2π

∑
I

tIAμ∂νa
I
λ. (3)

Writing j I
μ = lI jμ and integrating out aI

μ gauge fields one
immediately obtains all topological features of this AFQH
liquid:

L′
eff = εμνλ

4π
(tT K−1t)Aμ∂νAλ + (lT K−1t)Aμjμ

+π (lT K−1l)εμνλj
μ ∂ν

� jλ. (4)

Here, l = (l1, · · · ,lN )T is an integer2 vector characterizing a
quasiparticle in AFQH liquid, which is a conglomerate of lI

vortices of I th type. In the following, we will simply call it a
quasiparticle l. � represents the Laplace operator in 2 + 1D.
The first term in (4) is the Hall response of the AFQH liquid

σxy = e2

h
tT K−1t. (5)

The second term describes the electric charge of each quasi-
particle l:

Ql = −lT K−1t. (6)

The third term is a Hopf Lagrangian [41] describing the self-
exchange statistics of quasiparticle l. Its statistical angle is

θl = π lT K−1l mod 2π, (7)

which is 0 for bosons, π for fermions and otherwise for Abelian
anyons. One can further show that the mutual (braiding)
statistical angle for two quasiparticles l and l′ is

θl�l′ = 2π lT K−1l′ mod 2π. (8)

On an open manifold the gauge invariance of Lagrangian (1)
implies the existence of gapless edge excitations. The effective
edge theory (e.g., along x̂ direction) associated with the bulk
theory (3) is given by [42]

Ledge = 1

4π

∑
I,J

(KI,J ∂tφI ∂xφJ − VI,J ∂xφI ∂xφJ )

− 1

2π

∑
I

tI (A0∂xφI − Ax∂tφI ), (9)

2The requirement that a vector l must be an integer vector comes
from the fact that aI

μ are all compact U(1) gauge fields.
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where A0,x are the external U(1) electromagnetic gauge fields
and {φI } are chiral boson fields. VI,J is a positive-definite real
symmetric matrix.

An important feature of the topological order [43] (or long-
range entanglement [44–46]) in a FQH liquid is its ground-
state degeneracy (GSD) on a closed two manifold [47]. For
example, the GSD of the AFQH liquid described by effective
theory (1) is [48]

GSDg = | det K|g (10)

on a Riemann surface of genus g. One immediately notices that
when det K = ±1, the ground state described by (3) is always
nondegenerate on any closed manifold. Moreover, from (7)
and (8), one can see that all the quasiparticles (characterized by
an integer vector l) are either bosons or fermions with bosonic
(trivial) mutual statistics. In this case, the corresponding
2 + 1D gapped phase has no long-range entanglement and
no quasiparticles with fractional statistics, which are basic
features of symmetry protected topological (SPT) phases in
2 + 1D. Besides, the edge excitations of an SPT phase contain
an equal number of right and left movers, so that in the absence
of symmetry protection they can be all gapped out. From the
edge effective theory (9), it is straightforward to show that
the number of right and left movers (n+,n−) on the edge is
nothing but the signature of matrix K. In the simplest case of
a 1 × 1 matrix K = K ∈ Z the chirality of the edge mode is
determined by the sign of K . As a result, if effective theory (3)
describes an SPT phase in 2 + 1D, it must satisfy

det K = (−1)dim(K)/2 (11)

so the edge states have equal number of left and right movers.
When det K = ±1, it is easily seen that if at least one

diagonal element of K matrix is odd integer, there are fermionic
excitations (∃ls.t.θl = π ) and effective theory (3) describes a
short-range entangled (SRE) fermionic state in 2 + 1-D. If
all the diagonal elements of K matrix are even, on the other
hand, all the quasiparticles are bosonic (θl = 0,∀l) hence the
effective theory (3) describes an SRE bosonic state in 2 + 1D.
In Ref. [10], it was shown that many 2 + 1-D SPT phases (with
various unitary/antiunitary symmetries) can be described using
a 2 × 2 K matrix, i.e.,

K =
(

0 1

1 0

)
(12)

for bosonic SPT phases and

K =
(

1 0

0 −1

)
(13)

for fermionic SPT phases.
The key step from the Chern-Simons effective theory (3)

to classification and characterization of 2 + 1D SPT phases
is to incorporate symmetry into the effective theory. In the
study of AFQH liquids, the charge U(1) symmetry3 is already

3In fact, AFQH liquids also have other spatial symmetries such as
rotational symmetry on a sphere, which is characterized by a spin
vector [42] s. In this paper, we will focus on on-site symmetries such
as U(1) charge conservation.

taken into account by coupling the “electron” currents to an
external electromagnetic gauge field Aμ with a charge vector
t. The stability of corresponding edge states in the presence
of U(1) charge conservation is also studied [49]. In Ref. [10],
it was shown that under a generic unitary (antiunitary) onsite
symmetry h the chiral bosons {φI } in (9) transform as

φI → ηh

∑
J

Wh
I,J φJ + δφh

I , (14)

where ηh = ±1 for a unitary (antiunitary) symmetry h ∈ G (G
denotes the symmetry group). δφh

I ∈ [0,2π ) is a U(1) phase
shift for the chiral bosons and W ∈ GL(N,Z) is a N × N

unimodular matrix satisfying

K = ηh(Wh)T KWh. (15)

For example, when G = U (1), i.e., with conservation of U(1)
boson charge [9,10], there are integer (Z) classes of different
bosonic SRE phases. They are described by the same 2 × 2
K matrix (12) and their edge chiral bosons have the following
symmetry transformations:

U�θ :

(
φ1

φ2

)
→

(
φ1

φ2

)
+ �θ

(
1

q

)
, �θ ∈ [0,2π ), (16)

where U�θ denotes an element of Abelian symme-
try group U (1) = {Uα|0 � α < 2π ; U0 = U2π = e; UaUb =
Ua+b mod 2π }. Here, e stands for the identity element of the
symmetry group. Different values of integer q ∈ Z lead to
distinct bosonic SRE phases, which preserve U(1) symmetry.
From edge theory (9), one can easily see that when q = 0,
the edge states can be gapped out without breaking the
U(1) symmetry [49]. More specifically, while preserving U(1)
symmetry, one can add a cos(φ2) term to (9) and pin the
chiral boson field φ2 to a classical value 〈φ2〉 = const. Hence
q = 0 corresponds to nothing but a trivial (Mott) insulator.
When q �= 0, however, the edge state cannot be gapped out
without breaking the U(1) symmetry. Hence each q �= 0
in (16) corresponds to a U(1)-SPT phase. From bulk-edge
correspondence between (3) and (9), it is easy to figure
out [10] that the global U(1) symmetry (16) corresponds to
charge vector t = (q,1)T in (3). The topological invariant
characterizing these bosonic U(1) SPT phases is an even-
integer Hall conductance [10,11,14,15]

σxy = tT K−1t = 2q (17)

in units of e2
b/h (eb is the unit charge carried by bosons).

Different U(1)-symmetric bosonic SPT phases are featured by
their different Hall conductances.

The bulk effective theory (3) for U(1)-SPT phases, however,
is not unique. In fact, two seemingly different bulk effective
theories with U(1) charge conservation, labeled by (K,t) and
(K′,t′), describe the same phase if they are related by the
following GL(N,Z) transformation [10,42]:

K′ = XT KX, t′ = XT t, X ∈ GL(N,Z). (18)

Therefore, for bosonic U(1)-SPT phases with K = (0 1
1 0) and

t = (q,1)T , we can choose the GL(N,Z) transformation

X =
(

1 0

−q 1

)
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to obtain an alternative description (3) of the same U(1)-SPT
phase where

K′ =
(−2q 1

1 0

)
, t′ =

(
0

1

)
, q ∈ Z. (19)

In this equivalent description, only the second type of bosons
(with currents J 2

μ) carry unit U(1) charge. And quantum phase
transitions between two different U(1)-SPT phases can be
conveniently discussed using this representation, similar to
quantum phase transitions between different FQH liquids in
the clean limit [50–52]. In the following, we use (19) to
describe bosonic U(1)-SPT phases.

III. PROJECTIVE CONSTRUCTION OF BOSONIC
SPT PHASES

A systematic way to connect a low-energy effective theory
to a many-body wave function is through the projective
(or slave particle/parton) construction [22,23,53–60]. In a
projective construction, usually the physical microscopic
degrees of freedom (e.g., spins or electrons) are written in
terms of “fractionalized” degree of freedom (DOF) called
“partons.” The Hilbert space of partons is larger than the
original physical Hilbert space, and a projection onto the
physical Hilbert space is needed to get rid of spurious DOF.
As a result, the low-energy theory involves partons coupled to
gauge fields. The gauge fields serve as the glue that binds
the partons together to form a physical microscopic DOF
(or to enforce the local constraints). First, one constructs
the mean-field state of partons in the enlarged Hilbert space
which determines the gauge structure [22,60]. The physical
many-body wave function is then obtained by projecting
the parton mean-field state onto the physical Hilbert space.
Projective construction is a powerful tool that allows one to
write down many-body wave functions for a quantum phase,
once we know its long-wavelength effective theory.

In a projective construction, each parton usually carries a
fraction of the physical quantum numbers, such as a fractional
charge [61] or fractional statistics [62] in 2 + 1D. Since there
are no fractional quasiparticles in SPT phases [4], at the first
sight it seems that projective construction will not be so useful.
However, this turns out to be not true. In the following, we
demonstrate the value of projective construction for describing
bosonic U(1)-SPT. This formalism can be easily generalized to
bosonic/fermionic SPT phases in two space dimensions with
other symmetries.

A. The projective construction and effective theory

The many-body wave function [61,63] for a AFQH liquid
described by effective theory (3) is

�K =
∏

i<j,I,J

(
z

(I )
i − z

(J )
j

)KI,J
e− ∑

i,I |z(I )
i |2/4. (20)

If all electrons stay in the lowest Landau level (LLL) on a
disk. zI

j = xI
j + iyI

j denotes the two-dimensional complex
coordinate of the j th electron of the I th type. It is easy
to check the anyonic excitations [33,61,62,64] on top of
such a ground-state wave function (20) are fully captured by
Chern-Simons theory (3). Notice that the wave function for a

filled LLL of spinless fermions {zi = xi + iyi} with charge Q

(in unit of electron charge e) is the following Vandermonde
determinant

�LLL{zi} = det
{
Mi,j = z

j−1
i e−Q|zi |2/4

}
=

∏
i<j

(zi − zj )1 · e−Q
∑

i |zi |2/4. (21)

The idea of projective construction is to split each electron
into several partons [65,66] (each carrying fractional charge
Qα with

∑
α Qα = 1), and each type of partons fill the LLL4

for the simplest case. Let us consider a Laughlin state as an
illustration [67]:

�Laughlin =
∏
i<j

(zi − zj )m e− ∑
i |zi |2/4

= 〈0|
∏

i

[
m∏

α=1

fα(zi)

]
|MF〉,

where |MF〉 is the mean-field state where each type of
fermionic partons fα fill a LLL. |0〉 is the parton vacuum and
each parton carries charge Qα = 1

m
. And the electron operator

c is the product of all parton operators fα as

c(z) =
m∏

α=1

fα(z).

The above projective construction can be generalized to
an arbitrary K matrix with effective theory (3) and wave
function (20). The many-body wave function can be obtained
by the following projection of the parton mean-field state |MF〉:

�K
({

rI
j

}) = 〈0|
∏
I

∏
j

cI

(
rI
j

)|MF〉, (22)

where cI (r) is the annihilation operator for electrons of the
I th type at coordinate r = (x,y), written in terms of fermionic
parton operators {fα}. rI

j is the position of j th electron of the
I th type. Restricting ourselves to a generic 2 × 2 matrix K:

K =
(

n + l n

n n + m

)
, l,m,n ∈ Z. (23)

the two types of electron operators can be written as

c1(z) =
|n|∏

α=1

fα(z)
|l|∏

β=1

f↑,β(z),

(24)

c2(z) =
|n|∏

α=1

fα(z)
|m|∏
γ=1

f↓,γ (z),

where {fα|1 � α � |n|}, {f↑,β |1 � β � |l|} and {f↓,γ |1 �
γ � |m|} are the |l| + |m| + |n| different types of fermionic
partons. If n > 0, then each fα-parton fills a LLL with wave
function (21) in the mean-field state. If n < 0 on the other

4In more general cases, certain types of partons could form integer
quantum Hall liquids by filling several Landau levels.
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hand, each fα-parton fills a LLL under the opposite magnetic
field with wave function

� ¯LLL{zi} =
∏
i<j

(z̄i − z̄j )1 e−Q
∑

i |zi |2/4. (25)

Here, z̄ = x − iy represents complex conjugation of z. Sim-
ilarly, each type of f↑,β , f↓,γ partons fills a LLL, under a
magnetic field depending on the sign of l and m. Here, ↑,↓
have nothing to do with electron spins.

The local constraints that enforce the projection into the
physical Hilbert space are the following:

f
†
1 (z)f1(z) = f

†
2 (z)f2(z) = · · · = f

†
|n|(z)f|n|(z),

f
†
↑,1(z)f↑,1(z) = · · · = f

†
↑,|l|(z)f↑,|l|(z),

(26)
f

†
↓,1(z)f↓,1(z) = · · · = f

†
↓,|m|(z)f↓,|m|(z),

f
†
1 (z)f1(z) = f

†
↑,1(z)f↑,1(z) + f

†
↓,1(z)f↓,1(z).

This is straightforward to see from the parton construction (24),
since the physical excitations in the system are always
generated by electron operators {c1,2,c

†
1,2}. Apparently, when

both n + l and n + m are even integers, c1 and c2 are both
bosonic operators. On the other hand, if one of n + l and
n + m is an odd integer, there will be fermionic particles in
the system, as discussed earlier for effective theory (3).

In the following, we show that enforcing constraints (26) in
the aforementioned parton mean-field state indeed yields the
effective Chern-Simons theory (3) [68]. First, let us write the
dual form (2) of parton currents in 2 + 1D:

εμνλ

2π
∂νa

α
λ = Jμ

α ≡ currents of fα partons,

εμνλ

2π
∂νa

↑,β

λ = J
μ

↑,β ≡ currents of f↑,β partons,

εμνλ

2π
∂νa

↓,γ

λ = J
μ

↓,γ ≡ currents of f↓,γ partons.

In terms of U(1) gauge fields {aα
μ,a↑,β

μ ,a
↓,γ
μ } the effective

theory corresponding to the parton mean-field states of filled
LLLs is [42]

LMF = −Sgn(n)

4π
εμνλ

|n|∑
α=1

aα
μ∂νa

α
λ

− Sgn(l)

4π
εμνλ

|l|∑
β=1

a↑,β
μ ∂νa

↑,β

λ

− Sgn(m)

4π
εμνλ

|m|∑
γ=1

a↓,γ
μ ∂νa

↓,γ

λ .

This is the effective theory description of filled Landau
levels. The local constraints (26) now can be enforced by
introducing Lagrangian multipliers {bμ,bα

μ,b↑,β
μ ,b

↓,γ
μ } in a

covariant way [68]:

Leff = LMF + Lconstraint,

Lconstraint = εμνλ

4π

|n|−1∑
α=1

bα
μ∂ν

(
aα

λ − aα+1
λ

)

+ εμνλ

4π

|l|−1∑
β=1

b↑,β
μ ∂ν

(
a

↑,β

λ − a
↑,β+1
λ

)

+ εμνλ

4π

|m|−1∑
γ=1

b↓,γ
μ ∂ν

(
a

↓,γ

λ − a
↓,γ+1
λ

)

+ εμνλ

4π
bμ∂ν

(
a1

λ − a
↑,1
λ − a

↓,1
λ

)
.

After integrating out the gauge fields {bμ,bα
μ,b↑,β

μ ,b
↓,γ
μ } the

constraints5 are enforced:

J1 = · · · = J|n|, J1 = J↑,1 + J↓,1,

J↑,1 = · · · = J↑,|l|, J↓,1 = · · · = J↓,|m|.

Solving these constraints we obtain the Chern-Simons effec-
tive theory (3) with 2 × 2 K matrix (23):

Leff = −nεμνλ

4π

(
a↑,1

μ ∂νa
↓,1
λ + a↓,1

μ ∂νa
↑,1
λ

)
− (n + l)εμνλ

4π
a↑,1

μ ∂νa
↑,1
λ − (n + m)εμνλ

4π
a↓,1

μ ∂νa
↓,1
λ .

B. Constructing many-body wave functions of bosonic
SPT phases on a lattice

Based on general discussions in previous sections, now
we focus on bosonic U(1)-symmetric SPT phases in 2 + 1D.
They are described by Chern-Simons effective theory (3) with
2 × 2 matrix K = (−2q 1

1 0) and charge vector t = (0,1)T [see
Eq. (19)]. Following procedures discussed earlier, we can sys-
tematically write down their many-body wave functions. There
are two types of bosons in the system, whose annihilation
operators at position r = (x,y) are

b1(r) = f (r)
|2q+1|∏
α=1

dα(r), b2(r) = f (r)f1(r), (27)

where f,f1 and {dα,1 � α � |2q + 1|} are all fermionic
partons. Here “electron” operators b1,2 correspond to c1,2

in the general case (24), while the partons used in (27) and
previously (24) have the following correspondence:

f −→ fα, dα −→ f↑,β , f1 −→ f↓,γ .

Apparently, b1,2 are both bosonic operators since they contain
an even number of fermionic operators. In the mean-field state,
we require f partons fill a LLL with wave function (21) and f1

partons fill a LLL under an opposite magnetic field with wave
function (25). Meanwhile, each type of dα-partons will also fill
a LLL, under a magnetic field whose direction depends on the
sign of 2q + 1. If 2q + 1 > 0, then each type of dα partons fill
a LLL with wave function (25); if 2q + 1 < 0, each type fill a
LLL with wave function (21). Even if all partons are fermionic
in this projective construction (27), all physical excitations on
top of many-body ground state (22) are always bosonic. This
is because whenever a fermionic parton is excited, it is always
combined with certain U(1) gauge fluxes, which enforce the

5This is just a covariant form of constraints (26) shown earlier.
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constraints (26) in the physical spectrum. Therefore although
we build physical bosons out of fermionic partons, there is no
true fermion excitations or any fractionalization.

So far, we have been discussing many-body wave functions
of variables (x,y) in continuous two-dimensional space. Their
building block is the filled-LLL wave function (21) or (25).
A natural question is: how to construct a similar many-body
wave function whose variables live on a lattice? It turns out the
projective construction can be applied straightforwardly to the
lattice case [69,70]: the key change is to replace the filled LLL
by a filled band [71,72] with Chern number [73] ±1. Then
projective construction leads to the same low-energy effective
theory (3) in the long-wavelength limit.

The major complications for implementing projective
construction on a lattice are two-fold. Firstly, because of the
local constraints (27):

d
†
1(r)d1(r) = · · · = d

†
|2q+1|(r)d|2q+1|(r),

(28)
f †(r)f (r) = f

†
1 (r)f1(r) + d

†
1(r)d1(r),

where r denotes an orbital on a lattice site. Hence the filling
fractions (per unit cell, say) of fermionic partons satisfy

νd1 = νd2 = · · · = νd|2q+1| = νb1 ,
(29)

νf = νf1 + νd1 = νb1 + νb2 .

Notice that for a many-body wave function described by effec-
tive theory (3), its corresponding mean-field state requires each
type of partons to form a band insulator with desired Chern
number ±1. One has to choose the hopping parameters so that
the resultant state is an insulator with correct fillings (29) and
Chern numbers

Cd1 = Cd2 = · · · = Cd|2q+1| = −Sgn(2q + 1),
(30)

Cf1 = −1, Cf = +1.

Secondly, a lattice structure comes in together with certain
space group symmetries. In the presence of lattice symmetry,
effective theory (3) alone is not enough to fully characterize
all different topological phases from the projective construc-
tion [60,69]. Specifically, there can be many different phases
with the same effective theory (3), which carry different
quantum numbers of lattice symmetry. Different universality
classes of parton mean-field ansatz [60,69] (but with the same
effective theory), correspond to these different topological
phases distinguished by lattice symmetry. In this work,
however, we will not attempt to classify all the different
U(1)-SPT phases with certain lattice symmetries. Instead we
will show a simple parton mean-field ansatz on square lattice,
which gives rise to many-body wave functions of bosonic
U(1)-SPT phases by projective construction (22).

C. An example of bosonic U(1)-SPT phases on square lattice
at half-filling: νb1 = νb2 = 1/2

We use a simple example to illustrate the projective
construction of bosonic SPT phases on a lattice. We consider
bosonic U(1)-SPT phases, which is described by effective
theory (3) with K matrix (19). In this example, there are
two types of bosons {b1,b2} [see (27)] living on a square
lattice. We choose each type of bosons to have filling fraction

νb1 = νb2 = 1
2 , i.e., on average there are one boson (of each

type) per two sites. Since the charge vector is t = (0,1)T ,
each boson of the second type carries a unit of charge while
bosons of first type carry no charges. One can think that
the two types of bosons stay in two different orbitals (say,
labeled by pseudospin ↑/↓), respectively, on every lattice site.
In the corresponding projective construction (27), fermionic
partons {dα,1 � α � |2q + 1|} and f1 all have the same filling
fraction ν = 1

2 just as bosons b1 and b2. On the other hand,
as shown in (29) the filling fraction for fermionic f partons
is νf = νb1 + νb2 = 1, i.e., on average there is one f parton
per site on the square lattice. All dα partons stay on ↑ orbitals,
while all f1 partons stay on ↓ orbitals. Meanwhile, f partons
can hop on both orbits in every site, whose filling fraction is
twice as much as f1 and dα partons.

Since f1 and dα partons all have a filling fraction ν = 1
2 ,

we need to enlarge the unit cell in their mean-field hopping
Hamiltonians to guarantee that every type of partons can form
a band insulator. In the case of half-filling (ν = 1

2 ), a π flux
needs to be inserted into each plaquette on square lattice to
double the unit cell in the mean-field Hamiltonian, and in the
presence of a gap each type of f1, dα partons fill the lower
band. To construct a bosonic U(1)-SPT phase with (19), we
need their Chern numbers to satisfy condition (30). This can
be realized by the hopping Hamiltonian of spinless fermions
depicted in Fig. 2.

With the doubled unit cell for the mean-field hopping ansatz
shown in Fig. 2, one can label momentum k = k1 �b1 + k2 �b2

where �b1,2 are primitive reciprocal lattice vectors associated
with Bravais lattice vectors �a1,2 in Fig. 2. After a Fourier
transformation, the mean-field hopping Hamiltonian is a
functional of parameters (tx,ty,t ′y,t2):

Hk(tx,ty,t
′
y,t2) =

[
2tx cos k1 t ′y + tye

− i k2

t ′y + tye
i k2 −2tx cos k1

]

+ 2t2 sin k1

[
0 1 − e− i k2

1 − e i k2 0

]
, (31)

where the column and row indices label the two sites in each
unit cell (red circles and blue diamonds in Fig. 2) of Fig. 2.
The first line of (31) corresponds to real hoppings between
first NNs, while the second line is associated with imaginary
hoppings between second NNs. In the special case ty = t ′y
and t2 = 0, the band structure (31) has two Dirac nodes at
(k1,k2) = (±π/2,π ):

Hk ≈ ∓2txσzδk1 − tyσyδk2, δk = k ∓
(

π

2
,π

)
, (32)

where σx,y,z denote the three Pauli matrices. These Dirac
cones is a generic feature of first-NN-hopping-only π -flux
states [23,24] with magnetic translation symmetry [60]. Now
we can turn on perturbations to gap out the Dirac nodes by
allowing ty �= t ′y and t2 �= 0. The lowest-order effect of nonzero
t ′y − ty and t2 on Dirac fermions (32) is to add a mass term:

Mk=(±π/2,π) = (t ′y − ty ± 4t2)σx.
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FIG. 2. (Color online) An illustration of mean-field hopping
ansatz of f and dα partons on a square lattice. The magnetic unit cell
of the mean-field Hamiltonian contains two lattice sites (featured by
red circles and blue diamonds, respectively) of the original square
lattice, as indicated by the pink rectangle. The primitive vectors
�a1,2 for the magnetic unit cell are also shown. For simplicity, only
first- and second-nearest-neighbor (NN) hoppings are shown here.
Among horizontal hoppings between first NNs, solid lines denote
hopping parameter tx , while dashed lines denote −tx where tx > 0
is a real number. For vertical hopping between first NNs, solid lines
denote hopping parameter ty while dashed lines denote t ′

y (we choose
ty ,t

′
y > 0 for simplicity). The second-neighbor hopping parameters

are all imaginary and equals i t2 along the arrow directions (t2 > 0).
This hopping Hamiltonian in momentum space is given by (31).

It then follows that the Chern number CHk of the lower band
in (31) is

CHk =
{

0, |t ′y − ty | > 4|t2|
−Sgn(t2), |t ′y − ty | < 4|t2|, (33)

and the band gap of mean-field hopping Hamiltonian (31) is
of the order �MF ∼ min{|t ′y − ty + 4t2|,|t ′y − ty − 4t2|}.

To realize the Chern numbers (30) for filled parton bands,
one can simply choose the following mean-field hopping
Hamiltonians for dα , f1 partons:

H
dα

k = Hk
(
tαx ,tαx ,tαx ,|t2| Sgn(2q + 1)

)
,

1 � α � |2q + 1|;
H

f1
k = Hk(tx,tx,tx,|t2|).

Here we can choose different first NN hopping parameters tαx
for different dα partons.6 At the mean-field level, both dα and

6This choice can break the original SU(|2q + 1|) × U(1) gauge
structure of projective construction (27) down to U(1)|2q+1|. However,
this detail is not important for topological properties [68] of many-
body wave function (22) obtained from projective construction (27).

f1 partons fill the lower band of their hopping Hamiltonian.
Note that dα partons only hop on ↑ orbitals and f1 partons on
↓ orbitals. On the other hand, f partons hop on both orbitals,
and its hopping Hamiltonian H

f

k is the following 4 × 4 matrix
in momentum space:

H
f

k =
[

〈↑|Ĥ f

k |↑〉 〈↑|Ĥ f

k |↓〉
〈↑|Ĥ f

k |↓〉† 〈↓|Ĥ f

k |↓〉

]
.

The f partons should fill the two lower bands, with filling
fraction νf = 1 per site. Therefore we choose the following
hopping parameters to satisfy total Chern number Cf = 1 for
the two filled f -parton bands:

〈↑|Ĥ f

k |↑〉 = Hk(tx,tx,tx, − |t2|),
〈↓|Ĥ f

k |↓〉 = Hk(tx,ty,ty + |t2|,0),

〈↑|Ĥ f

k |↓〉 = t0 I2×2.

We choose a simplest form of uniform on-site hopping between
↑ and ↓ orbitals, with amplitude t0. As long as |t0| � |t2|, it is
straightforward to show that total Chern number of two filled
f -parton bands is Cf = 1 + 0 = 1.

The above mean-field ansatz |MF〉 for dα , f1, and f partons
yields a many-body wave function of bosonic U(1)-SPT phase
with Hall conductance σxy = 2q, after projection (22) is
applied. Notice that the position r in projection (22) in this case
corresponds to the lattice site position r = x�a1 + y�a2/2 ≡
(x,y). The many-body wave function with two-types of bosons
{b1(r1

i )} and {b2(r2
j )} is given by

�SPT
({

r1
i

}
;
{
r2
j

}) = 〈0|
∏
i,j

(|2q+1|∏
α=1

dα

(
r1
i

))
f1

(
r2
j

)
× f

(
r1
i ,↑

)
f

(
r2
j ,↓

)|MF〉. (34)

Can we find out a microscopic model of interacting bosons,
which realizes the above many-body wave function (34) as its
ground state? The answer is yes. In fact, there is a systematic
way to reverse engineer the interacting boson model from the
parton band structure [70,74]. The strategy is to enforce the
“hard” on-site constraint (28) by “soft” energy penalty such as

ĤU = U
∑

r

[f †(r)f (r) − f
†
1 (r)f1(r) − d

†
1(r)d1(r)]2,

e.g., in the case of q = 0. Since the physical Hilbert space
for hard-core bosons b1,2 is nothing but the ground states
manifold of ĤU , we can obtain a boson Hamiltonian by
degenerate perturbation theory in t/U expansion [75], where
parton hopping terms (31) serve as perturbations to ĤU . In
particular, the leading order terms [75] are boson hoppings
between first and second NNs, as well as first/second NN
repulsive interactions between bosons. For example, the
hopping amplitudes of boson b1 are proportional to the product
of parton hopping amplitudes of f and d1.

IV. QUANTUM PHASE TRANSITIONS BETWEEN
BOSONIC SPT PHASES

The projective construction (27) not only provides the
variational many-body wavefunction (34), but also allows
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us to study the phase transitions between different SPT
phases in two dimensions. Here, we will again focus on
U(1)-symmetric SPT phases of bosons b1,2, featured by Hall
conductance σxy = 2q.

A. Continuous quantum phase transitions between two
different bosonic U(1)-SPT phases: emergent QED3 with N f = 2

In deriving of effective theory (3) from projective con-
struction (27), it is straightforward to see that whenever the
total Chern number Cd ≡ ∑|2q+1|

α=1 Cdα
of partons {dα,1 � α �

|2q + 1|} changes by 2p in the parton mean-field state |MF〉,
the Hall conductance σxy would accordingly change by 2p.
This is because the K matrix in effective theory (3) is changed
from K = (−2q 1

1 0) to K′ = (2(−q ± p) 1
1 0). Meanwhile, the charge

vector t = (0,1)T in (3) remains the same. Therefore the
quantum phase transitions between different U(1)-SPT phases
are realized by the change of Chern number

Cd ≡
|2q+1|∑
α=1

Cdα
= odd integer, (35)

by an even integer in the dα-parton mean-field state. Such
a Chern number changing process can happen when certain
fermion mass terms change sign at several quadratic band
touching (QBT) points or Dirac points. At the critical point,
these parton bilinear mass terms vanish, and the system is
described by gapless fermions (either at QBT points or Dirac
points) coupled with emergent gauge fields. However, a QBT
point is known [76] to be marginally unstable against four-
fermion repulsive interaction. Therefore a stable critical point
between two different U(1)-SPT phases are described by mass
changing sign at an even number of Dirac nodes in the presence
of dynamical gauge fields.

Let us first look at a simplest example where q = 0 in
projective construction (27). Still we keep Cf1 = −1 and
Cf = +1 in the parton mean-field state. If the Chern number
of the filled d1-parton band is Cd1 = ±1, the corresponding

effective theory (3) has K = (1 ± 1 1
1 0). To be specific, in the

mean-field Hamiltonian H
d1
k = Hk(tx,tx,tx,t2) for d1-parton,

when the second NN hopping parameter t2 in Fig. 2 changes
sign from positive to negative, the Chern number of the filled
lower band of d1 partons will change from −1 to +1. And
this realizes a continuous quantum phase transition between
the trivial boson insulator (σxy = 0) and a bosonic U(1)-SPT
phase with σxy = −2 (in unit of 1/2π ). The effective theory
describing the above continuous phase transition is

Lqpt =
2∑

s=1

ψ̄sγ
μ( i∂μ + bμ)ψs + m

2∑
s=1

ψ̄sψs

× εμνλ

4π

[
2bμ∂ν

(
a

f

λ − a
f1
λ

) + af1
μ ∂νa

f1
λ − af

μ∂νa
f

λ

]
− 1

2π
εμνλAμ∂νa

f1
λ (36)

as indicated by the Dirac spectrum7 (32) of H
d1
k when

t2 = 0. Here, ψ̄s = ψ
†
s σx and γ 0 = σx,γ

x = −σy,γ
y = σz.

Two-component Dirac spinor ψs with s = 1,2 are low-energy
d1-parton modes around the two Dirac cones at k = (±π/2,π )
in band structure (32). Notice that only f1 partons (or b2

bosons) carries U(1) charge and couples to the external U(1)
gauge field Aμ. Here, bμ is the gauge field which enforces the
constraint (28). The currents of f and f1 partons are written
in terms of dual U(1) gauge fields a

f
μ and a

f1
μ by (2). We can

integrate out gauge fields a
f
μ and a

f1
μ in (36) and obtain the

simplified low-energy effective theory:

Lqpt =
2∑

s=1

ψ̄sγ
μ( i∂μ + bμ)ψs + m

2∑
s=1

ψ̄sψs

+ 1

g
(εμνλ∂νbλ)2 − εμνλ

4π
Aμ∂ν(Aλ + 2bλ). (37)

At a critical point, the parton bilinear mass m = 0 and this is
nothing but the QED3 with fermion number Nf = 2. In other
words, the critical theory here is described by two flavors of
Dirac fermions coupled to a noncompact U(1) gauge field bμ.
g is a coupling constant determined by microscopic details.
The noncompactness of gauge field bμ is guaranteed by U(1)
symmetry of b2 bosons (and f1 partons), which forbids any
monopole event of bμ gauge fields. In other words, there is a
U(1) conservation of bμ gauge flux.

Such a critical theory has been studied extensively in the
context of algebraic spin liquids [23–29,59,60,77,78]. It has
been shown that the long-distance, low-energy physics of (37)
is controlled by an interacting, conformally invariant fixed
point [26]. At asymptotically low energy, there are no free
quasiparticle excitations. Notice that such a critical theory,
i.e., QED3 with Nf = 2 is equivalent [79] to a O(4) sigma
model with a topological � term at � = π .

In a more general case, the critical theory for continuous
quantum phase transitions between a bosonic U(1)-SPT phase
with σxy = −2p and one with σxy = −2q, can be similarly ob-
tained in the projective construction. The low-energy effective
theory describing the phase transition is

Lqpt =
|p−q|∑
n=1

2∑
s=1

ψ̄n,sγ
μ
(

i∂μ + bn
μ

)
ψn,s

+m
∑
n,s

ψ̄n,sψn,s +
∑

n

1

gn

(
εμνλ∂νb

n
λ

)2

− εμνλ

4π
Aμ∂ν

[
(p + q)Aλ + 2

∑
n

bn
λ

]
. (38)

There are 2|p − q| flavors of Dirac fermions {ψn,s |1 � n �
|p − q|,s = 1,2}, coupled to |p − q| different dynamic U(1)
gauge fields {bn

μ|1 � n � |p − q|}, which enforce the con-
straints (28) in projective construction. The U(1) conservation
of b2 bosons leads to the conservation of total flux of bn

μ fields.
The parton bilinear mass m changes sign across this continuous

7The Fermi velocity anisotropy (vx = 2|tx | and vy = |ty |) is ignored
in the effective theory here. Reference [29] shows that the velocity
anisotropy is actually irrelevant for (37).

195143-8



QUANTUM PHASE TRANSITIONS BETWEEN BOSONIC . . . PHYSICAL REVIEW B 89, 195143 (2014)

phase transition. At a critical point, m = 0 and (38) is nothing
but |p − q| copies of QED3 with Nf = 2, in the presence of a
total U (1)flux symmetry.

We want to emphasize that the above critical point,
described by QED3 with fermion flavor number Nf = 2|p −
q|, is the minimal description for continuous quantum phase
transitions between two bosonic U(1)-SPT phases with Hall
conductance σxy = −2p and −2q. More generally, there can
be more flavors of massless Dirac fermions (i.e., Nf > 2|p −
q|) at the critical point. Take p = 1,q = 0, for example, the
“minimal model” for a critical point between the trivial Mott
insulator (σxy=0) and σxy = −2 bosonic U(1)-SPT phase is
QED3 with Nf = 2 flavors of Dirac fermions, as shown in (37).
In a generic critical point between these two phases, the flavor
number could be more, i.e., Nf /2 > 1, and all these Dirac
fermions are low-energy modes at the band touching points
of d1 partons in (27). Let us consider, say, Nf = 4 in effective
theory (37) so that s = 1,2,3,4 in the summation. This
actually describes a multicritical point, whose neighboring
phases include not only asuperfluid, trivial Mott insulator
(σxy = 0), and bosonic U(1)-SPT phases (σxy = −2), but also
AFQH states of bosons with σxy = −1/2 and σxy = −3/2.

B. Intermediate phases between two different bosonic
U(1)-SPT phases: spontaneous U(1) symmetry breaking

and anyon superfluid

The continuous phase transition between different bosonic
U(1)-SPT phases, however, is not generic and needs fine tuning
to be reached. This is simply because in (38) and (37) the
parton masses m for different branches of Dirac cones always
change sign simultaneously. Usually, such a continuous phase
transition, which requires Chern number changing by two,
needs to be fine tuned in the absence of extra symmetries.
Certain extra symmetries, such as C4 and the translational
symmetry of square lattice in our lattice model (31), can
guarantee that tx = ty = t ′y and hence the mass terms change
sign simultaneously at the two Dirac cones k = ±(π/2,π ).
In the absence of extra symmetries, however, generically
there will be intermediate phases between different U(1)-SPT
phases, instead of a direct phase transition.

Again, let us first look at the simplest case, i.e., what
intermediate phase would emerge between a trivial boson
insulator (σxy = 0) and a bosonic U(1)-SPT phase with σxy =
−2. Note that if one integrates out a Dirac fermion with
mass m coupled to U(1) gauge field aμ, a Chern-Simons term
Sgn(m)

2
εμνλ

4π
aμ∂νaλ is obtained. Hence if the mass term changes

sign for only one flavor of Dirac fermions (37), we will obtain
the following effective theory for the intermediate phase:

LaSF = 1

g′ (ε
μνλ∂νbλ)2 − εμνλ

4π
Aμ∂ν(Aλ + 2bλ). (39)

This intermediate phase is gapless, featured by photon excita-
tions of dynamical bμ gauge fields. In fact, integrating out bμ

fields, one can obtain the electromagnetic response of such a
state:

Lresponse = g̃Aμ

(
δμ,ν − ∂μ∂ν

�

)
Aν

− εμνλ

4θ
Aμ∂νAλ + · · · , (40)

where · · · denotes higher-order terms. Characterized by a
superfluid response together with a quantized Chern-Simons
term, this is nothing but the electromagnetic response theory of
an anyon superconductor [30–32], where the anyon statistical
angle is θ = π .

Anyon superconductivity was proposed as the ground state
of high-Tc cuprate superconductors [80], where it was conjec-
tured that each hole (“holon”) doped into the antiferromagnetic
parent compound has sermionic statistics [81] θ = π/2.
Since single holons cannot condense due to their fractional
statistics, they form Cooper pairs due to attractive “statistical”
interactions [82], which obey Bose-Einstein statistics. An
anyon superconductor is the Bose-Einstein condensate of
bosonic bound states formed by a multiple of anyons: it not
only exhibits Meissner effect but Hall effect as well, as a
manifestation of P,T symmetry breaking [30–32].

Therefore we dub this intermediate phase an “anyon
superfluid” (aSF). It spontaneously breaks the global U(1)
symmetry associated with b2-boson conservation, and the
gapless photon excitation in (39) corresponds to the Goldstone
mode (phonon) of U(1) symmetry breaking [83] in aSF.

Such an intermediate phase indeed happens in lattice
model (31) for d1-parton mean-field hoppings. Once lattice
translation and C4 symmetry of square lattice is broken, we can
choose |t ′y − ty | > 4|t2| in the mean-field ansatz for d1 partons,
according to (33) and the discussions above, the system
immediately enters an anyon superfluid phase. Notice we
always keep Cf = +1 and Cf1 = −1 in the process. A phase
diagram of the ground state by projective construction (27)
and (34), as a function of hopping parameters in mean-field
anstaz (31) for d1 partons, is shown in Fig. 3. It is easy to figure
out that there is generically an intermediate aSF phase between
U(1)-SPT phase with σxy = 2q and with σxy = 2q − 2, where
anyons have a statistical angle

θ = π

1 − 2q
. (41)

A schematic phase diagram of interacting bosons with U(1)
symmetry in two dimensions, containing bosonic U(1)-SPT
phases and aSF phases, is shown in Fig. 1.

The continuous phase transition between an aSF with
θ = π

1−2q
and a bosonic U(1)-SPT phase with Hall conduc-

tance σxy = 2q − 1 ± 1, can also be easily studied based on
the projective construction. The low-energy effective theory
describing such a phase transition is a single Dirac fermion
coupled with a U(1) gauge field bμ with a Chern-Simons term:

LaSF−SPT = ψ̄γ μ( i∂μ + bμ)ψ + mψ̄ψ ∓ εμνλ

8π
bμ∂νbλ

+ εμνλ

4π
Aμ∂ν[(2q − 1)Aλ + 2bλ]. (42)

Again the gauge field bμ is noncompact due to the U(1)
symmetry. Critical exponents of this theory has been calcu-
lated [84] in the large-Nf (flavor number of Dirac fermions)
expansion.

The main difference between aSFs here and conventional
superfluids is their symmetry: a conventional superfluid
preserves P,T symmetries, while the aSF breaks them. In fact
due to breaking of U(1) charge conservation and associated
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′

FIG. 3. (Color online) Mean-field phase diagram of hopping
ansatz (31) for d1 partons in projective construction (27) with q = 0.
Solid lines |t ′

y − ty | = ±4t2 denote the phase boundary between
trivial boson insulator with σxy = 0, bosonic U(1)-SPT phase with
σxy = −2 and anyon superfluid (aSF) with anyon statistical angle
θ = π , where continuous phase transitions happen. Chern numbers
Cf = +1 and Cf1 = −1 are chosen for f and f1 partons in projective
construction (27). Notice that only when t ′

y = ty , there is a direct
continuous phase transition between bosonic U(1)-SPT phase and the
trivial boson insulator. The effective theory describing the tricritical
point at t ′

y − ty = t2 = 0 is QED3 with Nf = 2.

gapless Goldstone modes, the θ angle in EM response (40) is
not quantized in a superfluid and can be tuned continuously.
Therefore a continuous transition between bosonic U(1)-SPT
phases and a conventional superfluid is possible.

At last, we comment on the physical meaning of fermionic
partons introduced in (27). Putting f partons in an insulating
band structure with Chern number Cf = −1 plays the role of
attaching a unit flux quantum to each boson [36,85]. As a result,
bosons b1 and b2 together with the attached flux form compos-
ite fermions [86]: they are nothing but d1 and f1 in (27). Since
the total boson density is bound to the U(1) flux density seen
by composite fermions, conservation of boson number leads to
conserved total flux number. In both the trivial Mott insulator
and U(1)-SPT phase, composite fermions f and f1 both form
an insulator and there is a finite energy gap for all excitations

in the bulk. The boson density fluctuation, i.e., the U(1) gauge
field aμ in (37) is also gapped. At the critical point, similar to
the superfluid-Mott transition [87], boson density fluctuations
are gapless and hence gauge field aμ also becomes gapless.

V. CONCLUDING REMARKS

In this work, we study the continuous quantum phase
transitions between different bosonic U(1)-SPT phases in
two dimensions. A projective construction is developed for
U(1)-SPT phases of bosons in two dimensions. The projective
construction not only provides a straightforward view to the
quantum phase transition between different SPT phases, but
also allows one to write down many-body wave functions
for bosonic SPT phases on a lattice. Although we focus on
bosonic SPT phases with U(1) symmetry in this work, the
projective construction can be easily generalized to other
symmetry groups such as Zn. We show that the continuous
quantum phase transitions between two different U(1)-SPT
phases is captured by emergent QED3 with Nf = 2. In other
words, in low-energy long-wavelength limit the critical point
is described by two flavors of Dirac fermions coupled to
a dynamical noncompact U(1) gauge field. However, such
a continuous phase transition is not generic and needs fine
tuning in the absence of extra symmetries. We show that
there is an intermediate phase between two U(1)-SPT phases
whose Hall conductance differing by 2. This intermediate
phase has the same electromagnetic response as an anyon
superconductor, and is hence dubbed “anyon superfluid.” Such
an anyon superfluid can be connected to a bosonic U(1)-SPT
phase with proper σxy by a continuous phase transition. Based
on these results, a generic phase diagram of interacting bosons
with U(1) symmetry in two dimensions is sketched.

Upon completion of this work, we noticed an independent
work by Tarun Grover and Ashvin Vishwanath who studied
similar problems.
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