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Boltzmann equation approach to anomalous transport in a Weyl metal
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Weyl metal is regarded as a platform toward interacting topological states of matter, where its topological
structure gives rise to anomalous transport phenomena, referred to as chiral magnetic effect and “negative”
magnetoresistivity, the origin of which is chiral anomaly. Recently, the negative magnetoresistivity has been
observed with the signature of weak antilocalization at x = 3–4% in Bi1−xSbx , where a magnetic field is
applied in parallel with an electric field (E ‖ B). Based on the Boltzmann equation approach, we find the negative
magnetoresistivity in the presence of weak antilocalization. An essential ingredient is to introduce the topological
structure of chiral anomaly into the Boltzmann equation approach, resorting to semiclassical equations of motion
with Berry curvature.
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I. INTRODUCTION

It is the endless mission of condensed-matter physics to
search novel quantum states of matter. Since the discovery of
the concept of topological insulators [1–5], the topological
structure of quantum matter lies at the center of research
for novel quantum matter. Recalling that electron correlations
have been playing an essential role in emergent phenomena of
quantum matter, a research on the interplay between topology
and interaction seems to drive the direction of condensed-
matter physics at present.

Weyl metal is regarded as a platform toward interacting
topological states of matter. Its metallicity allows us to
introduce electron correlations via doping, giving rise to
possible instabilities of their Fermi surfaces. Its topological
structure is encoded by chiral anomaly [6], responsible for
anomalous transport phenomena referred to as chiral magnetic
effect [7–12] and negative magnetoresistivity [13–15]. In this
respect we would like to propose as effective theories for Weyl
metal the topological Landau Fermi-liquid theory [16] and the
topological Landau-Ginzburg framework for phase transitions.
This direction of research is expected to lead a branch of
condensed-matter physics.

First of all, the characteristic feature of Weyl metal
originates from its band structure. Let us start from the band
structure of a topological insulator, described by an effective
Dirac Hamiltonian in momentum space [17]:

Z =
∫

Dψστ (k) exp

{
−

∫ β

0
dτ

∫
d3k

(2π )3
ψ†

στ (k)

× (
(∂τ − μ)Iσσ ′ ⊗ I ττ ′ + vk · σ σσ ′ ⊗ τ z

ττ ′

+m(|k|)Iσσ ′ ⊗ τ x
ττ ′

)
ψσ ′τ ′(k)

}
.

Here, ψστ (k) represents a four-component Dirac spinor, where
σ and τ are spin and chiral indexes, respectively. σ σσ ′ and τ ττ ′

are Pauli matrices acting on spin and “orbital” spaces. The
relativistic dispersion is represented in the chiral basis, where
each eigenvalue of τ z

ττ ′ expresses either positive or negative

chirality, respectively. The mass term can be formulated as
m(|k|) = m − ρ|k|2, where sgn(m)sgn(ρ) > 0 corresponds
to a topological insulating state while sgn(m)sgn(ρ) < 0
corresponds to a normal band insulating phase. μ is the
chemical potential, controlled by doping. One may notice that
this simplified effective model can be derived from a realistic
band structure in Bi1−xSbx , describing dynamics of electrons
near the L point in momentum space.

It has been demonstrated that the mass gap can be tuned
to vanish at x = 3–4% in Bi1−xSbx , allowing us to reach
the critical point between the topological and band insulating
phases [18–20]. It is straightforward to show that this gapless
Dirac spectrum splits into two Weyl points, breaking time-
reversal symmetry, for example, applying a magnetic field
into the gapless semiconductor:

HTRB = gψψ†
στ (k)(H · σ σσ ′ ⊗ I ττ ′)ψσ ′τ ′(k),

where gψ is the Landé g factor. The band touching point
(0,0,0) of the Dirac spectrum shifts into (0,0,gψH/v) and
(0,0,−gψH/v) for each chirality along the direction of the
magnetic field, given by

Ek + μ = ±
√

v2
[
k2
x + k2

y

] + [gψH ± vkz]2.

Now, each spectrum is described by a two-component Weyl
spinor with a definite chirality, referred to as Weyl metal
[21–23]. One can also find this type of spectrum breaking
inversion symmetry instead of time-reversal symmetry.

An interesting feature of Weyl metal results from the
fact that each Weyl point can be identified with a magnetic
monopole in momentum space. In other words, each ±
magnetic charge becomes “polarized” in momentum space,
applying the magnetic field. As a result, a Fermi arc, which
connects such magnetic monopole and antimonopole pairs in
the bulk, appears on the surface state [22], exactly analogous
to the Weyl point on the surface state of a topological insulator,
where each Fermi point of the Fermi arc corresponds to the
Weyl point of the case of the topological insulator. Unfortu-
nately, this spectroscopic fingerprint has not been observed yet.
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In our opinion the characteristic feature of Weyl metal is
beyond the Berry curvature given by the band structure. A
cautious person may point out that the band structure of Weyl
metal is essentially the same as that of graphene except for
the existence of the Fermi arc, where the positive chirality
Weyl spectrum at the K point and the negative chirality Weyl
spectrum at the −K point allow us to call graphene a two-
dimensional Weyl metal [24]. However, there is one critical
difference between Weyl metal and graphene. Weyl electrons
in the paired Weyl points are not independent in Weyl metal,
while they have “nothing” to do with each other in graphene.
It is true that Weyl points in graphene can be regarded as a
pair of Weyl points with opposite chirality according to the
no-go theorem by Nielsen and Ninomiya [25,26]. In addition,
they can be shifted and merged into one Dirac point, applying
effective “magnetic” fields to couple with the pseudospin of
graphene. However, there does not exist such an anomaly rela-
tion between the pair of Weyl points in graphene, which means
that currents are conserved separately for each Weyl cone in
contrast with the case of Weyl metal as long as intervalley
scattering can be neglected. A crucial different aspect between
two and three dimensions is that the irreducible representation
of the Lorentz group is a four-component Dirac spinor in three
dimensions while it is a two-component Weyl spinor in two
dimensions. As a result, the pair of Weyl points originates
from the Dirac point in three dimensions, where such a pair of
Weyl points is “connected” through the Dirac sea. On the other
hand, each Weyl point of the pair exists “independently” in two
dimensions. Chiral anomaly is the key feature of Weyl metal.

Suppose QED4 with a topological E · B term:

Z =
∫

Dψ exp

[
−

∫ β

0
dτ

∫
d3r

{
ψ̄(iγ μ[∂μ + ieAμ]

+μγ 0)ψ − 1

4
FμνF

μν + θ
e2

16π2
εμνρδFμνFρδ

}]
,

where ψ is a four-component Dirac spinor and Fμν =
∂μAν − ∂νAμ is an electromagnetic field-strength tensor with
electromagnetic field Aμ. Chiral anomaly means that the chiral
symmetry preserved in the classical level is not respected any
more in the quantum level due to the presence of special types
of quantum fluctuations, given by the triangle diagram [27].
As a result, the associated chiral current, the right-handed
chiral current minus the left-handed chiral current, is not
conserved in the quantum field theory, described by

∂μ(ψ̄γ μγ 5ψ) = − e2

16π2
εμνρδFμνFρδ,

where ψ̄γ μγ 5ψ = ψ̄+γ μψ+ − ψ̄−γ μψ− is the chiral current
with the ± chiral charge. Resorting to this chiral anomaly, we
can rewrite the above expression as follows [28]:

Z =
∫

Dψ exp

[
−

∫ β

0
dτ

∫
d3r

{
ψ̄(iγ μ[∂μ + ieAμ + icμγ 5]

+μγ 0)ψ − 1

4
FμνF

μν

}]
,

where the chiral gauge field is given by

cμ = ∂μθ.

Representing the Dirac gamma matrix in the chiral basis,
it is straightforward to identify the chiral gauge field with
the applied magnetic field in the previous effective model
Hamiltonian. In other words, the Dirac point splits into one
pair of Weyl points, the origin of which is chiral anomaly
with breaking either time-reversal symmetry or inversion
symmetry, encoded in ∂μθ �= 0.

It turns out that the chiral anomaly is responsible for
anomalous transport phenomena in Weyl metal [7,8,11–15].
Recently, we could measure the negative magnetoresistivity
with the signature of weak antilocalization [15], regarded as
one transport fingerprint with the chiral magnetic effect. As
discussed before, a Weyl metallic state is expected to appear
applying a magnetic field into the Dirac metal, believed to
be realized at the topological critical point in Bi1−xSbx with
x = 3–4%. The negative magnetoresistivity has been observed
only when electric currents are driven along the direction of the
magnetic field, E ‖ B, where E is the electric field. Recalling
that electron correlations would be negligible in this metallic
phase, this strong anisotropy in magnetoresistivity has been
attributed to the topological E · B term.

In this study we discuss the origin of the negative magne-
toresistivity based on the Boltzmann equation approach. An
idea is to introduce the topological structure of chiral anomaly
into the Boltzmann equation approach [14], resorting to semi-
classical equations of motion which encode the information
of Berry curvature [29,30]. In addition to the introduction
of chiral anomaly with the Berry curvature, we incorporate
weak-antilocalization quantum corrections into the negative
magnetoresistivity phenomenologically [31], the original ex-
pression of which is to consider the Drude conductivity for
each Weyl fermion [14]. This theoretical framework allows us
to investigate another type of anomalous Hall effect in the case
of E ‖ B, which differs from the “conventional” anomalous
Hall effect [32,33] in the case of E ⊥ B. The former is based on
the presence of the topological E · B term, which plays the role
of an additional force in dynamics of Weyl fermions beyond
the conventional Lorentz force, while the latter originates from
the appearance of an anomalous velocity due to the Berry
curvature itself. It turns out that such an anomalous Hall effect
does not exist in contrast with the claim of Ref. [15].

II. REVIEW OF THE BOLTZMANN EQUATION
APPROACH FOR WEYL METAL

We would like to review the topological aspect of Weyl
metal based on the Boltzmann equation approach [14] for gen-
eral readership. First, we rederive the hydrodynamic equation
from the Boltzmann equation, where the E · B term encoded
by the semiclassical equation-of-motion approach breaks the
conservation law for the chiral current. Second, we rederive
the chiral magnetic effect from the Boltzmann equation, where
a subtle issue on the chiral magnetic effect, not transparent in
the Boltzmann equation approach, is also discussed.

A. Chiral anomaly

A phenomenological Boltzmann equation is(
∂

∂t
+ ṙ · ∇r + ṗ · ∇ p

)
f ( p; r,t) = Icoll[f ( p; r,t)], (1)
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which can be derived based on the Schwinger-Keldysh formulation, where f ( p; r,t) is the distribution function with the conjugate
momentum p of the relative coordinate and the center-of-mass coordinate (r , t) in the Wigner transformation of the lesser Green’s
function [34]. The right-hand side represents a collision term, incorporating electron correlations and impurity scattering effects.

An essential idea is to introduce the information of the topological structure into the Boltzmann equation via the semiclassical
equation-of-motion approach [14], given by

ṙ = ∂ε p

∂ p
+ ṗ × � p, ṗ = eE + e

c
ṙ × B, (2)

where � p = ∇ p × Ap is the Berry curvature and Ap = i〈u p|∇ pu p〉 is the Berry connection with the Bloch’s eigenstate |u p〉
[29,30]. It is straightforward to find the solution of these semiclassical equations of motion, given by

ṙ =
(

1 + e

c
B · � p

)−1
{
v p + eE × � p + e

c
� p · v p B

}
,

(3)

ṗ =
(

1 + e

c
B · � p

)−1{
eE + e

c
v p × B + e2

c
(E · B)� p

}
.

Here, v p = ∇ pε p with a band structure ε p. We would like to point out that this band structure need not be linear in momentum
strictly. It is important that a Fermi surface encloses a Weyl cone, while the structure of the Fermi surface needs not be limited to
the Weyl-band structure. Focusing on dynamics of electrons on the Fermi surface, it does not look much different from that on
a “normal” Fermi surface. However, these electrons experience effects of both Berry curvature and chiral anomaly on the Fermi
surface as long as the Fermi surface encloses the Weyl-type cone, regarded to be the characteristic feature toward a topological
Fermi-liquid theory [16]. As will be discussed below, the second term in the ṙ equation results in the anomalous Hall effect
[32,33] given by the Berry curvature [29,30] and the third term gives rise to the chiral magnetic effect [7–12] while the last term
in the ṗ equation is the source of chiral anomaly, responsible for the negative magnetoresistivity [13–15].

Applying this idea into Weyl metal, we can write down an effective theory in the Boltzmann equation approach:

∂f +( p; r,t)
∂t

+
(

1 + e

c
B · �+

p

)−1{
v p + eE × �+

p + e

c
�+

p · v p B
}

· ∇rf
+( p; r,t)

+
(

1 + e

c
B · �+

p

)−1{
eE + e

c
v p × B + e2

c
(E · B)�+

p

}
· ∇ pf

+( p; r,t) = I+
coll[f

+( p; r,t),f −( p; r,t)],

∂f −( p; r,t)
∂t

+
(

1 + e

c
B · �−

p

)−1{
v p + eE × �−

p + e

c
�−

p · v p B
}

· ∇rf
−( p; r,t)

+
(

1 + e

c
B · �−

p

)−1{
eE + e

c
v p × B + e2

c
(E · B)�−

p

}
· ∇ pf

−( p; r,t) = I−
coll[f

−( p; r,t),f +( p; r,t)], (4)

where the ± superscript represents the ± chirality. In other
words, we write down the Boltzmann equation near each Weyl
point, where inter-Weyl-point scattering is introduced into the
collision term. The information of a magnetic monopole and
antimonopole pair is encoded by the opposite sign of magnetic
charges:

∇ p · �+
p = δ(3)( p − gψ B), ∇ p · �−

p = −δ(3)( p + gψ B),

(5)

where 2gψ B corresponds to the distance between the paired
Weyl points, as discussed in the introduction.

It is not that difficult to derive the hydrodynamic equation
from the Boltzmann equation, resorting to the coarse graining
procedure in the momentum space [14]. As a result, we reach
the following expression:

∂N±

∂t
+ ∇r · j± = k± e2

4π2
E · B, (6)

where N± =∫ ∞
−∞ dερ±(ε)f ±(ε; r,t) and j± =∫

d3 p
(2π)3 (1 +

e
c

B · �±
p )ṙf ±( p; r,t) =∫

d3 p
(2π)3 {v p + eE ×�±

p + e
c
�±

p · v p B}

f ±( p; r,t) are the density with the density of states ρ±(ε) =∫
d3 p

(2π)3 (1 + e
c

B · �±
p )δ(ε p − ε) and current, respectively,

around each Weyl point. k± = 1
2π

∫
dS p · �±

p = ±1 is a
magnetic charge at each Weyl point. It is clear that the current
conservation law around each Weyl point breaks down due
to the E · B term, introduced by the semiclassical equation
of motion, while the collision term does not play the role of
either a source or sink. Interestingly, the positive chiral charge
plays the role of a source in this hydrodynamic equation while
the negative chiral charge plays that of a sink. As a result, the
total current is conserved, given by

∂(N+ + N−)

∂t
+ ∇r · ( j+ + j−) = 0, (7)

while the chiral current is not, described by

∂(N+ − N−)

∂t
+ ∇r · ( j+ − j−) = e2

2π2
E · B. (8)

This is the chiral anomaly.
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We would like to emphasize that this Boltzmann equation
approach is applicable only when the chemical potential lies
away from the Weyl point, forming a pair of Fermi surfaces.
When the chemical potential touches the Weyl point, we
should rederive the Boltzmann equation from QED4. The
distribution function in this relativistic Boltzmann equation
will be expressed as a 4×4 matrix since the lesser Green’s
function consists of the four-component spinor. An interesting
and fundamental problem is the following question: Taking
the non-relativistic limit from the matrix Boltzmann equation
when the chemical potential lies above the Weyl point, can
we reproduce the present Boltzmann equation framework,
where effects of other components except for the Fermi-
surface component are ‘integrated out’ or ‘coarse grained,’
giving rise to such contributions as semi-classical equations of
motion? This research will give a formal basis to the present
phenomenological Boltzmann equation approach. Recently,
the Boltzmann equation framework has been derived from
QED4, based on the introduction of the Wigner function to
satisfy a quantum kinetic equation [35–37]. These derivations
imply that Lorentz symmetry, gauge symmetry, and quantum
mechanics are important ingredients for the existence of chiral
anomaly.

B. Chiral magnetic effect

There is an interesting transport signature in Weyl metal,
referred to as chiral magnetic effect [7–12], proposed to appear
in “equilibrium,” i.e., E = 0. The total electric current is given
by

j = j+ + j− = e

c

∫
d3 p

(2π )3
{(�+

p · v p)Bf +( p; r,t)

+ (�−
p · v p)Bf −( p; r,t)}, (9)

when E = 0, where the distribution function is an equilibrium
one. Considering �+

p ≈ −�−
p = � p from Eq. (5), we obtain

j = e

c

∫
d3 p

(2π )3
(� p · v p)[f +( p; r,t) − f −( p; r,t)]B

= C(e/c)(μ+ − μ−)B (10)

at zero temperature, where the constant coefficient is given
by C ≈ ∫

d3 p
(2π)3 (� p · v p). In spite of zero electric field, electric

currents turn out to flow along the direction of the magnetic
field in Weyl metal as long as the “chiral” chemical potential
(μ+ − μ−) is finite. Although this transport phenomenon is
beyond our imagination, there is a subtle issue, not transparent
in the Boltzmann equation approach. First of all, it looks
counterintuitive that the electric current can flow in equilibrium
since applying infinitesimal electric field to this current state
gives rise to power generation proportional to j · E, where
the Weyl metallic state is compressible. This implies that
energy can be extracted out from the ground state, causing
a paradox in the definition of the ground state [12,23]. It
has been discussed that the chiral magnetic effect depends
on the limiting procedure for the transferred momentum and
frequency [23]. If one sets frequency to be zero first, then the
system is in equilibrium and the chiral magnetic effect turns
out to vanish. On the other hand, if one chooses the limit of

q = 0 first, then the system is away from equilibrium and the
chiral magnetic effect does not vanish, given by the above
expression. Unfortunately, this subtle issue is hidden in this
Boltzmann equation approach.

III. ANOMALOUS TRANSPORT IN WEYL METAL

Another transport fingerprint is the negative magnetoresis-
tivity which occurs only when the electric current is driven
along the direction of the paired Weyl points, originating from
the topological E · B term. As discussed in the introduction,
our recent experiments measured this anomalous transport
phenomenon only when the electric field is applied in parallel
with the magnetic field [13–15]. In addition to this unusual
longitudinal transport, we also observed weak-antilocalization
corrections in the magnetoresistivity for both cases of E ‖ B
and E ⊥ B [15]. In this respect we need to introduce such
quantum corrections into the Boltzmann equation approach.
Unfortunately, this derivation has not been performed sys-
tematically as far as we know. Instead, there is a somewhat
phenomenological approach, where the introduction of a
nonlocal scattering term into the collision integral repro-
duces the weak-antilocalization correction in the electrical
resistivity [31].

A. Review of the Boltzmann equation approach with
weak-localization or weak-antilocalization quantum corrections

We start from an extended Boltzmann equation:(
∂

∂t
+ ṙ · ∇r + ṗ · ∇ p

)
f ( p; r,t)

= −�imp[f ( p; r,t) − feq( p)]

−
∫ t

−∞
dt ′α(t − t ′)[f (− p; r,t ′) − feq( p)]. (11)

The collision part consists of two scattering contributions. The
first is an elastic impurity-scattering term in the relaxation-
time approximation, where �−1

imp = (2πnI |Vimp|2NF )−1 with
an impurity concentration nI and its potential strength Vimp

corresponds to the mean free time, the time scale between
events of impurity scattering [34]. The second is a weak-
localization (weak-antilocalization) term, expressed in a non-
local way, which originates from multiple impurity scattering.
α(t − t ′) = ± �imp

πNF

∫
d3q

(2π)3 exp{−(Dq2 + τ−1
φ )(t − t ′)} may be

regarded as the diffusion kernel, which becomes more familiar,
performing Fourier transformation as follows [31]:

α(ν) = ±
∫ t

−∞
dt ′eiν(t−t ′)α(t − t ′)

= ± �imp

πNF

∫
d3q

(2π )3

1

Dq2 − iν + τ−1
φ

, (12)

where the sign of + (−) represents the weak localization
(weak antilocalization). D is the diffusion coefficient and NF

is the density of states at the Fermi energy. This expression is
supplemented by the upper cutoff in the momentum integral,
given by the reciprocal of the mean free path �imp/vF with
the Fermi velocity vF , and τφ corresponds to the lower cutoff,
identified with the phase-coherence lifetime.
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Let us confirm that this extended Boltzmann equation rec-
overs the well-known weak-localization (weak-
antilocalization) formula. For simplicity, we consider a simple
metal without the contribution of Berry curvature � p = 0. Per-
forming the Fourier transformation of f ( p; t) = ∫ ∞

−∞ dνe−iνt

f ( p; ν), the Boltzmann equation reads{
−iν +

(
eE + e

c
v p × B

)
· ∇ p

}
f ( p; ν)

= −�imp[f ( p; ν) − feq( p)] − α(ν)[f (− p; ν) − feq( p)].

(13)

Consider the standard setup E = E x̂ and B = B ẑ for mag-
netoresistivity and Hall measurements. Then, the Boltzmann
equation is written as follows:{

�imp − iν + α(ν) − eB

c

(
vx( p)

∂

∂py

− vy( p)
∂

∂px

)}
f ( p; ν)

= [�imp + α(ν)]feq( p) − eE
∂

∂px

feq( p) (14)

in the linear response regime, where f (− p; ν) is replaced
with f ( p; ν) in the weak-localization (weak-antilocalization)
term. This interchange is allowed when both time-reversal
symmetry and inversion symmetry are preserved. Although
the time-reversal symmetry is not respected by the applied
magnetic field, we resort to their approximate correspondence.
Instead, the lower cutoff of the phase-coherence time is given
by a function of the external magnetic field. Then, it is
straightforward to show that the resulting weak-localization

(weak-antilocalization) correction in the magnetoresistivity
coincides with its well-known expression.

This Boltzmann equation leads us to propose the following
ansatz for the distribution function:

f ( p; ν) = �imp + α(ν)

�imp − iν + α(ν)
feq( p)

− 1

�imp − iν + α(ν)
eE

∂

∂px

feq( p)

+
(

− ∂

∂ε
feq(ε)

)
v p · �( p; ν), (15)

where �( p; ν) corresponds to a correction that arises from the
presence of the magnetic field.

Inserting this expression into the Boltzmann equation, we
obtain

eB

mc

eEvy( p)

�imp − iν + α(ν)
− eB

mc
(vx( p)�y( p; ν) − vy( p)�x( p; ν))

+ [�imp − iν + α(ν)]v p · �( p; ν) = 0, (16)

where m is a band mass of an electron on the Fermi surface
which encloses a Weyl point. It is defined from the Fermi ve-
locity of vF = pF

m
, where pF is a Fermi momentum. Since this

equation should be satisfied for any values of velocity, we find

�z( p; ν) = 0. (17)

Introducing V ( p) = vx( p) + ivy( p) and �( p; ν) = �x( p; ν) −
i�y( p; ν) into the above expression, we reach

�
{
−i

eEωc

�imp − iν + α(ν)
V ( p) + [�imp − iν − iωc + α(ν)]V ( p)�( p; ν)

}
= 0, (18)

where � represents a real part and ωc = eB
mc

is the cyclotron frequency. It is straightforward to solve this equation, the solution
of which is given by

�x( p; ν) = −eE
ωc(2ν + ωc)[�imp + α(ν)]

([�imp + α(ν)]2 − ν(ν + ωc))2 + (2ν + ωc)2[�imp + α(ν)]2
(19)

and

�y( p; ν) = −eE
ωc([�imp + α(ν)]2 − ν(ν + ωc))

([�imp + α(ν)]2 − ν(ν + ωc))2 + (2ν + ωc)2[�imp + α(ν)]2
. (20)

Then, we reach the following expression for the distribution function:

f ( p; ν) = �imp + α(ν)

�imp − iν + α(ν)
feq( p) + eEvx( p)

(
− ∂

∂ε
feq(ε)

)
1

�imp − iν + α(ν)

− eEvx( p)

(
− ∂

∂ε
feq(ε)

)
ωc(2ν + ωc)[�imp + α(ν)]

([�imp + α(ν)]2 − ν(ν + ωc))2 + (2ν + ωc)2[�imp + α(ν)]2

− eEvy( p)

(
− ∂

∂ε
feq(ε)

)
ωc([�imp + α(ν)]2 − ν(ν + ωc))

([�imp + α(ν)]2 − ν(ν + ωc))2 + (2ν + ωc)2[�imp + α(ν)]2
. (21)

Recalling the current formula j (ν) = e
∫

d3 p
(2π)3 ṙf ( p; ν), we find an optical magnetoconductivity and optical Hall coefficient,

given by

σxx(ν) = ne2

m

{
1

�imp − iν + α(ν)
− ωc(2ν + ωc)[�imp + α(ν)]

([�imp + α(ν)]2 − ν(ν + ωc))2 + (2ν + ωc)2[�imp + α(ν)]2

}
(22)
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and

σyx(ν) = −ne2

m

ωc([�imp + α(ν)]2 − ν(ν + ωc))

([�imp + α(ν)]2 − ν(ν + ωc))2 + (2ν + ωc)2[�imp + α(ν)]2
, (23)

respectively, where

n

m
=

∫
d3 p

(2π )3
[vx( p)]2

(
− ∂

∂ε
feq(ε)

)
(24)

with an electron density n contributed from a Fermi surface
and its band mass m.

The dc limit of the above formulas is given by

σxx = σimp
1 + α/�imp

(1 + α/�imp)2 + (ωc/�imp)2

= σimp

1 ± 1
πNF

∫
d3q

(2π)3
1

Dq2+τ−1
φ(

1 ± 1
πNF

∫
d3q

(2π)3
1

Dq2+τ−1
φ

)2
+ (ωc/�imp)2

(25)

and

σyx = −σimp
ωc/�imp

(1 + α/�imp)2 + (ωc/�imp)2

= −σimp
ωc/�imp(

1 ± 1
πNF

∫
d3q

(2π)3
1

Dq2+τ−1
φ

)2
+ ω2

c

/
�2

imp

, (26)

quite familiar except for the weak-localization (weak-
antilocalization) correction. Inverting the denominator with
the numerator in Eq. (25) and resorting to the Einstein relation
σimp = 2e2NF Dimp, we recover the well-known weak-
localization (weak-antilocalization) formula [38] for the
magnetoresistivity (ρxx ≈ 1

σxx
):

ρxx = ρimp ± Ce2NF ρ2
imp

∫ 1/limp

1/lph

dqq2 1

q2
, (27)

where ± corresponds to weak (anti)localization and the part
of the cyclotron frequency is neglected in the weak-field limit.
ρimp = 1

σimp
is a residual resistivity due to elastic impurity

scattering and C is a positive numerical constant. limp in
the upper cutoff is the mean free path and lph in the lower

cutoff is the phase-coherent length, as discussed before. If
one sets l−1

ph ∝ √
B in the lower cutoff, we reproduce the

magnetoresistivity with weak (anti)localization [38].
An interesting result is that the Hall conductivity encodes

the weak-localization (weak-antilocalization) quantum correc-
tion, not discussed before as far as we know. This correction
gives rise to an unexpected behavior for the Hall conductivity.
For example, we find that it vanishes with a logarithmic
correction in two dimensions as we approach zero magnetic
field, given by

σyx(B) ∝ B[ln(B/B0)]−2, (28)

where B0 is a scale of the magnetic field, coming from the
upper cutoff. In three dimensions, we may observe deviation
from the linear dependence of the magnetic field, expected to
cause confusion with an anomalous Hall signal. In spite of
this quantum correction, the Hall resistivity recovers the well-
known formula, given by ρyx = σyx/(σ 2

xx + σ 2
yx) = −1/(nec),

which seems to justify our derivation. We believe that this
subject needs to be investigated more sincerely for various
samples showing weak-localization (weak-antilocalization)
corrections.

It is straightforward to obtain the optical magnetocon-
ductivity and the optical Hall coefficient with the weak-
localization (weak-antilocalization) quantum correction. Al-
though we do not discuss these aspects more, it will be
interesting to observe the regime that shows such quantum
corrections clearly in optical responses.

B. Formulation

Introducing both weak-antilocalization quantum correc-
tions through the collision term and topological structures
through the semiclassical equation of motion into the
Boltzmann equation framework, we reach our starting point
for anomalous transport phenomena in Weyl metal, where an
effective theory is given by

{
−iν +

(
1 + e

c
B · �χ

p

)−1(
eE + e

c
v p × B + e2

c
(E · B)�χ

p

)
· ∇ p

}
fχ ( p; ν)

= −�imp[fχ ( p; ν) − feq( p)] − �′
imp[fχ ( p; ν) − f−χ ( p; ν)] − αχ (ν)[fχ (− p; ν) − feq( p)], (29)

where χ = ± represents each chirality. An important point, not discussed explicitly in the introduction, is to introduce an
inter-Weyl-point scattering term into the Boltzmann equation phenomenologically, where the relaxation rate for the internode
scattering is �′

imp. The weak-antilocalization kernel is given by

αχ (ν) = −�imp + �′
imp

πNF

∫
d3q

(2π )3

1

Dχ q2 − iν + τ−1
φ

, (30)

where Dχ is the diffusion coefficient for each Weyl point, assumed to be identical, i.e., D+ = D− = D.
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Solving these coupled Boltzmann equations, we obtain the expression for an electric current, given by

j (ν) = e

∫
d3 p

(2π )3

{(
1 + e

c
B · �+

p

)
ṙ+f+( p; ν) +

(
1 + e

c
B · �−

p

)
ṙ−f−( p; ν)

}

= e

∫
d3 p

(2π )3

{
v p + eE × �+

p + e

c
�+

p · v p B
}
f+( p; ν) + e

∫
d3 p

(2π )3

{
v p + eE × �−

p + e

c
�−

p · v p B
}
f−( p; ν). (31)

C. E = Ex̂ and B = Bẑ

In order to clarify the role of the “topological” E · B term, it is necessary to evaluate transport coefficients in the normal setup
of E = E x̂ and B = B ẑ. Here, quotation marks are utilized to mean that this E · B term is not topological any more since it is
introduced in the equation of motion, originating from the space-time dependence of the θ (r,t) coefficient, where the origin of
this term is topological.

We start from the following coupled Boltzmann equations in the linear-response regime and the dc limit:{
�imp + �′

imp + α −
(

1 + eB

c
�χ

z ( p)

)−1
eB

c

(
vx( p)

∂

∂py

− vy( p)
∂

∂px

)}
fχ ( p)

= [�imp + �′
imp + α]feq( p) −

(
1 + eB

c
�χ

z ( p)

)−1

eE
∂

∂px

feq( p) + �′
imp[f−χ ( p) − feq( p)], (32)

where the E · B term disappears. These equations lead us to consider the ansatz below:

fχ ( p) = feq( p) −
(
1 + eB

c
�

χ
z ( p)

)−1

�imp + �′
imp + α

eE
∂

∂px

feq( p) +
(

− ∂

∂ε
feq(ε)

)
v p · �χ ( p). (33)

It is natural to assume

|�′
imp| � �imp, (34)

where the distance between paired Weyl points gives rise to a smaller relaxation rate for the internode scattering than that for
the intranode one in the case of charged impurities. However, it is straightforward to consider δ(3)(r)-type potentials in this
Boltzmann equation framework. In this paper we focus on the case of charged impurities for simplicity. Then, these coupled
Boltzmann equations become simplified as follows:

−
(

1 + eB

c
�χ

z ( p)

)−1
eB

mc

(
vx( p)�χ

y ( p) − vy( p)�χ
x ( p)

) + [�imp + α]v p · �χ ( p)

+
(

1 + eB

c
�χ

z ( p)

)−2
eB

mc

eEvy( p)

�imp + α
− �′

imp

�imp + α

(
1 + eB

c
�−χ

z ( p)

)−1

eEvx( p) ≈ 0, (35)

where only the linear order in �′
imp/�imp is kept, allowing us to decouple these equations.

The solution of �χ ( p) is determined from the condition that these Boltzmann equations must be satisfied for any values of
velocity. It is convenient to rewrite such Boltzmann equations as follows:

�
{(

�imp − i�χ
c ( p) + α

)
V ( p)�χ ( p) − i

(
1 + eB

c
�χ

z ( p)

)−1
eE�

χ
c ( p)

�imp + α
V ( p) − �′

imp

�imp + α

(
1 + eB

c
�−χ

z ( p)

)−1

eEV ( p)

}
= 0,

(36)

introducing V ( p) = vx( p) + ivy( p) and �χ ( p) = �
χ
x ( p) − i�

χ
y ( p) into them, where �

χ
c ( p) = (1 + eB

c
�

χ
z ( p))−1 eB

mc
is an

effective cyclotron frequency around each Weyl point. Then, we find

�χ
x ( p) = −eE

1

�imp + α

(
1 + eB

c
�

χ
z ( p)

)−1[
�

χ
c ( p)

]2 − (
1 + eB

c
�

−χ
z ( p)

)−1
�′

imp[�imp + α]

[�imp + α]2 + [
�

χ
c ( p)

]2 (37)

and

�χ
y ( p) = −eE

1

�imp + α

(
1 + eB

c
�

χ
z ( p)

)−1
�

χ
c ( p)[�imp + α] + (

1 + eB
c

�
−χ
z ( p)

)−1
�

χ
c ( p)�′

imp

[�imp + α]2 + [
�

χ
c ( p)

]2 . (38)
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As a result, each distribution function is given by

fχ ( p) = feq( p) +
(

− ∂

∂ε
feq(ε)

)(
1 + eB

c
�χ

z ( p)

)−1 1

�imp + α
eEvx( p)

−
(

− ∂

∂ε
feq(ε)

)
1

�imp + α

(
1 + eB

c
�

χ
z ( p)

)−1[
�

χ
c ( p)

]2 − (
1 + eB

c
�

−χ
z ( p)

)−1
�′

imp[�imp + α]

[�imp + α]2 + [
�

χ
c ( p)

]2 eEvx( p)

−
(

− ∂

∂ε
feq(ε)

)
1

�imp + α

(
1 + eB

c
�

χ
z ( p)

)−1
�

χ
c ( p)[�imp + α] + (

1 + eB
c

�
−χ
z ( p)

)−1
�

χ
c ( p)�′

imp

[�imp + α]2 + [
�

χ
c ( p)

]2 eEvy( p). (39)

Inserting these formulas into the current formulas, we obtain the magnetoconductivity

σχ
xx = e2

∫
d3 p

(2π )3
[vx( p)]2

(
− ∂

∂ε
feq(ε)

)(
1 + eB

c
�χ

z ( p)

)−1
{

1

�imp + α
− 1

�imp + α

[
�

χ
c ( p)

]2

[�imp + α]2 + [
�

χ
c ( p)

]2

}

+ e2
∫

d3 p
(2π )3

[vx( p)]2

(
− ∂

∂ε
feq(ε)

)(
1 + eB

c
�−χ

z ( p)

)−1 �′
imp

[�imp + α]2 + [
�

χ
c ( p)

]2 (40)

and the Hall conductivity

σχ
yx = −e2

∫
d3 p

(2π )3
�χ

z ( p)feq( p) − e2
∫

d3 p
(2π )3

[vy( p)]2

(
− ∂

∂ε
feq(ε)

)(
1 + eB

c
�χ

z ( p)

)−1
�

χ
c ( p)

[�imp + α]2 + [
�

χ
c ( p)

]2

− e2
∫

d3 p
(2π )3

[vy( p)]2

(
− ∂

∂ε
feq(ε)

)(
1 + eB

c
�−χ

z ( p)

)−1 �′
imp

�imp + α

�
χ
c ( p)

[�imp + α]2 + [
�

χ
c ( p)

]2 (41)

around each Weyl point.
The momentum integral can be performed in a formal way, resorting to �+

p ≈ −�−
p = � p, which gives rise to cancellation

for linear terms in Berry curvature. Then, the magnetoconductivity is given by

σxx ≈ 2σ
1 + α/�imp + �′

imp/�imp

[1 + α/�imp]2 + ω2
c

/
�2

imp

, (42)

where the Drude conductivity σ is defined in a similar way as the previous section, while 2 comes from two Weyl cones. This
expression reads

ρxx ≈
(

1 − �′
imp

�imp

)
ρimp − Ce2NF ρ2

imp

∫ 1/limp

1/lph

dqq2 1

q2
(43)

in the leading order for magnetic field, where l−1
ph ∝ √

B as discussed before.
The Hall conductivity is

σyx = −e2
∫

d3 p
(2π )3

[�+
z ( p) + �−

z ( p)]feq( p) − 2σ
ωc/�imp

(1 + α/�imp)2 + (ωc/�imp)2

1 + α/�imp + �′
imp/�imp

1 + α/�imp
, (44)

where the first term is an anomalous contribution resulting from the Berry curvature [29,30]. Inserting �
χ
p ∝ χ

p̂
| p−χgψ B|2 with

B = B ẑ and χ = ± into the expression of the anomalous Hall coefficient and performing the momentum integration, we find
that it is proportional to the momentum-space distance between the pair of Weyl points, i.e., gψB, consistent with that based
on the diagrammatic analysis [32,33]. For the normal contribution, the presence of the internode scattering modifies the Hall
coefficient as follows:

ρyx = σyx

σ 2
xx + σ 2

yx

= − 1

nec

(
1 + �′

imp

�imp

1

1 + α/�imp

)
, (45)

which turns out to be not a constant but a function of the magnetic field, combined with the weak-antilocalization correction.
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D. E = Ex̂ and B = Bx̂

Our main problem is to investigate both the magnetoconductivity and Hall conductivity when the electric field is applied in
parallel with the magnetic field, i.e., the case of E = E x̂ and B = B x̂. Coupled Boltzmann equations are given by

{
�imp + �′

imp + α −
(

1 + eB

c
�χ

x ( p)

)−1
eB

c

(
vy( p)

∂

∂pz

− vz( p)
∂

∂py

)}
fχ ( p)

= [�imp + �′
imp + α]feq( p) −

(
1 + eB

c
�χ

x ( p)

)−1(
eE

∂

∂px

feq( p) + e2

c
(EB)�χ

p · ∇ pfeq( p)

)
+ �′

imp[f−χ ( p) − feq( p)].

(46)

An essential aspect is the existence of the E · B term, which plays the role of an additional force beyond the Lorentz force,
giving rise to not only an additional drift along the direction of the electric field but also a transverse motion along the y direction
associated with the direction of Berry curvature. The former results in negative magnetoresistivity, while the latter causes an
anomalous Hall effect that has nothing to do with the “conventional” anomalous Hall effect [29,30] in the previous section.
However, this novel anomalous Hall effect turns out to be canceled when each Weyl-point contribution is summed.

Following the previous strategy, we take the ansatz

fχ ( p) = feq( p) −
(
1 + eB

c
�

χ
x ( p)

)−1

�imp + �′
imp + α

(
eE

∂

∂px

feq( p) + e2

c
(EB)�χ

p · ∇ pfeq( p)

)
+

(
− ∂

∂ε
feq(ε)

)
v p · �χ ( p), (47)

where the E · B term exists. Resorting to �′
imp � �imp and keeping the linear order for �′

imp, we obtain

−
(
1 + eB

c
�

χ
x ( p)

)−2

�imp + α

e2

c
(EB)

eB

mc

(
�χ

z ( p)vy( p) − �χ
y ( p)vz( p)

) −
(

1 + eB

c
�χ

x ( p)

)−1
eB

mc

(
vy( p)�χ

z ( p) − vz( p)�χ
y ( p)

)

+ [�imp + α]v p · �χ ( p) − �′
imp

�imp + α

(
1 + eB

c
�−χ

x ( p)

)−1(
eEvx( p) + e2

c
(EB)�−χ

p · v p

)
≈ 0, (48)

which allows us to decouple the Boltzmann equations for �±( p).
It is easy to find �

χ
x ( p) since they are not coupled with �

χ
y,z( p), given by

�χ
x ( p) = �′

imp

[�imp + α]2

(
1 + eB

c
�−χ

x ( p)

)−1(
eE + e2

c
(EB)�−χ

x ( p)

)
. (49)

On the other hand, �
χ
y ( p) are coupled with �

χ
z ( p), giving rise to complications. Introducing complex notations

V ( p) = vy( p) + ivz( p), �χ ( p) = �χ
y ( p) − i�χ

z ( p), �χ ( p) = �χ
y ( p) − i�χ

z ( p), (50)

we rewrite the above expression as follows:

�
{(

�imp − i�χ
c ( p) + α

)
V ( p)�χ ( p) − i

(
1 + eB

c
�χ

x ( p)

)−1 e2

c
(EB)�χ

c ( p)

�imp + α
V ( p)�χ ( p)

− �′
imp

�imp + α

(
1 + eB

c
�−χ

x ( p)

)−1
e2

c
(EB)V ( p)�−χ ( p)

}
= 0, (51)

where �
χ
c ( p) = (1 + eB

c
�

χ
x ( p))−1 eB

mc
is an effective cyclotron frequency. Actually, the structure of this equation is quite similar

to that of the previous section, where eE is replaced with e2

c
(EB) with the Berry curvature �χ ( p). It is straightforward to find

the solution, given by

�χ
y ( p) = −e2

c
(EB)

(
1 + eB

c
�χ

x ( p)

)−1 1

�imp + α

[
�

χ
c ( p)

]2
�

χ
y ( p) − (�imp + α)�χ

c ( p)�χ
z ( p)

[�imp + α]2 + [
�

χ
c ( p)

]2

+e2

c
(EB)

(
1 + eB

c
�−χ

x ( p)

)−1 �′
imp

�imp + α

(�imp + α)�−χ
y ( p) + �

χ
c ( p)�−χ

z ( p)

[�imp + α]2 + [
�

χ
c ( p)

]2 (52)
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and

�χ
z ( p) = −e2

c
(EB)

(
1 + eB

c
�χ

x ( p)

)−1 1

�imp + α

(�imp + α)�χ
c ( p)�χ

y ( p) + [
�

χ
c ( p)

]2
�

χ
z ( p)

[�imp + α]2 + [
�

χ
c ( p)

]2

− e2

c
(EB)

(
1 + eB

c
�−χ

x ( p)

)−1 �′
imp

�imp + α

�
χ
c ( p)�−χ

y ( p) − (�imp + α)�−χ
z ( p)

[�imp + α]2 + [
�

χ
c ( p)

]2 . (53)

An interesting point is that these corrections are proportional to E · B. As discussed before, such an E · B term gives rise to an
additional forcelike term besides the Lorentz force.

Inserting these corrections into the ansatz of the distribution function, we obtain

fχ ( p) = feq( p) +
(

− ∂

∂ε
feq(ε)

)(
1 + eB

c
�χ

x ( p)

)−1 1

�imp + α

(
eEvx( p) + e2

c
(EB)�χ

p · v p

)

+
(

− ∂

∂ε
feq(ε)

)(
1 + eB

c
�−χ

x ( p)

)−1 �′
imp

[�imp + α]2

(
eEvx( p) + e2

c
(EB)�−χ

x ( p)vx( p)

)

−
(

− ∂

∂ε
feq(ε)

)(
1 + eB

c
�χ

x ( p)

)−1

vy( p)
e2

c
(EB)

1

�imp + α

[
�

χ
c ( p)

]2
�

χ
y ( p) − (�imp + α)�χ

c ( p)�χ
z ( p)

[�imp + α]2 + [
�

χ
c ( p)

]2

+
(

− ∂

∂ε
feq(ε)

)(
1 + eB

c
�−χ

x ( p)

)−1

vy( p)
e2

c
(EB)

�′
imp

�imp + α

(�imp + α)�−χ
y ( p) + �

χ
c ( p)�−χ

z ( p)

[�imp + α]2 + [
�

χ
c ( p)

]2

−
(

− ∂

∂ε
feq(ε)

)(
1 + eB

c
�χ

x ( p)

)−1

vz( p)
e2

c
(EB)

1

�imp + α

(�imp + α)�χ
c ( p)�χ

y ( p) + [
�

χ
c ( p)

]2
�

χ
z ( p)

[�imp + α]2 + [
�

χ
c ( p)

]2

−
(

− ∂

∂ε
feq(ε)

)(
1 + eB

c
�−χ

x ( p)

)−1

vz( p)
e2

c
(EB)

�′
imp

�imp + α

�
χ
c ( p)�−χ

y ( p) − (�imp + α)�−χ
z ( p)

[�imp + α]2 + [
�

χ
c ( p)

]2 . (54)

Although these expressions look complicated, an essential modification compared with those of the previous normal setup lies
in the E · B term. In particular, the contribution of the E · B term results in an additional change in the distribution function,
given by eEvx( p) + e2

c
(EB)�χ

p · v p. In addition, the E · B term is also responsible for the transverse deflection, forbidden as
long as only the Lorentz force and Berry curvature are concerned. We emphasize that the topological E · B term is beyond the
contribution of the Berry curvature only. In other words, such a term will not arise in the graphene structure.

1. Longitudinal magnetoconductivity

It is straightforward to find the “longitudinal” magnetoconductivity, given by

σχ
xx = e2

∫
d3 p

(2π )3

(
− ∂

∂ε
feq(ε)

)(
1 + eB

c
�χ

x ( p)

)−1{
vx( p) + eB

c
(�χ

p · v p)

}2 1

�imp + α

+ e2
∫

d3 p
(2π )3

(
− ∂

∂ε
feq(ε)

)(
1 + eB

c
�−χ

x ( p)

)−1{
vx( p) + eB

c

(
�χ

p · v p
)}{

vx( p) + eB

c
�−χ

x ( p)vx( p)

}
�′

imp

[�imp + α]2

−e2

(
eB

c

)2 ∫
d3 p

(2π )3

(
− ∂

∂ε
feq(ε)

)(
1 + eB

c
�χ

x ( p)

)−1(
�χ

p · v p
) {

vy( p)
1

�imp + α

×
[
�

χ
c ( p)

]2
�

χ
y ( p) − (�imp + α)�χ

c ( p)�χ
z ( p)

[�imp + α]2 + [
�

χ
c ( p)

]2 + vz( p)
1

�imp + α

(�imp + α)�χ
c ( p)�χ

y ( p) + [
�

χ
c ( p)

]2
�

χ
z ( p)

[�imp + α]2 + [
�

χ
c ( p)

]2

}

−e2

(
eB

c

)2 ∫
d3 p

(2π )3

(
− ∂

∂ε
feq(ε)

)(
1 + eB

c
�−χ

x ( p)

)−1(
�χ

p · v p
)

×
{

−vy( p)
�′

imp

�imp + α

(�imp + α)�−χ
y ( p) + �

χ
c ( p)�−χ

z ( p)

[�imp + α]2 + [
�

χ
c ( p)

]2 + vz( p)
�′

imp

�imp + α

�
χ
c ( p)�−χ

y ( p) − (�imp + α)�−χ
z ( p)

[�imp + α]2 + [
�

χ
c ( p)

]2

}
. (55)
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Taking square-dependent terms for both the velocity and the Berry curvature as the leading order, we simplify these formulas as
follows:

σχ
xx ≈ e2

∫
d3 p

(2π )3

(
− ∂

∂ε
feq(ε)

)(
1 + eB

c
�χ

x ( p)

)−1{
[vx( p)]2 +

(
eB

c

)2([
�χ

x ( p)
]2

[vx( p)]2 + [
�χ

y ( p)
]2

[vy( p)]2

+ [
�χ

z ( p)
]2

[vz( p)]2
)} 1

�imp + α
+ e2

∫
d3 p

(2π )3

(
− ∂

∂ε
feq(ε)

)
[vx( p)]2

�′
imp

[�imp + α]2

− e2

(
eB

c

)2 ∫
d3 p

(2π )3

(
− ∂

∂ε
feq(ε)

)(
1 + eB

c
�χ

x ( p)

)−1([
�χ

y ( p)
]2

[vy( p)]2 + [
�χ

z ( p)
]2

[vz( p)]2
)

× 1

�imp + α

ω2
c

[�imp + α]2 + ω2
c

+ e2

(
eB

c

)2 ∫
d3 p

(2π )3

(
− ∂

∂ε
feq(ε)

)(
1 + eB

c
�−χ

x ( p)

)−1(
�χ

y ( p)�−χ
y ( p)[vy( p)]2

+�χ
z ( p)�−χ

z ( p)[vz( p)]2) �′
imp

[�imp + α]2 + ω2
c

. (56)

Performing the momentum integral and summing contributions of both chiralities with �+
p ≈ −�−

p = � p, we reach the following
expression:

σxx = 2σ

{
1 + CABJ

(
eB

c

)2

+ �′
imp

�imp

1

1 + α/�imp

}
1

1 + α/�imp

−4

3
σCABJ m2ω2

c

(
ω2

c

/
�2

imp

1 + α/�imp
+ �′

imp

�imp

)
1

[1 + α/�imp]2 + ω2
c

/
�2

imp

, (57)

where undefined conductivities are given by

σ ≈ e2

�imp

∫
d3 p

(2π )3

(
− ∂

∂ε
feq(ε)

) |v p|2
3

, σCABJ ≈ e2

�imp

∫
d3 p

(2π )3

(
− ∂

∂ε
feq(ε)

) |v p|2
3

|� p|2. (58)

In order to simplify the expression, we assumed a simple Fermi

surface, given by [vx( p)]2 = [vy( p)]2 = [vz( p)]2 = |v p|2
3 and

[�x( p)]2 = [�y( p)]2 = [�z( p)]2 = |� p|2
3 . If we take the limit

of �′
imp/�imp → 0, this expression is further simplified as

σxx = 2σ

{
1 + CABJ

(
eB

c

)2} 1

1 + α/�imp

− 4

3
σCABJ m2ω2

c

1

1 + α/�imp

× ω2
c

/
�2

imp

[1 + α/�imp]2 + ω2
c

/
�2

imp

.

Focusing on the low-field region, we obtain

σxx = 2σ

{
1 + CABJ

(
eB

c

)2} 1

1 + α/�imp
,

referred to as the “positive” magnetoconductivity, where the
B2 contribution results from the E · B term. Inserting the
weak-antilocalization correction into the above formula and
considering l−1

ph = (C ′/C)
√

B with a positive constant C ′, we
find

σxx = 2

ρimp

{
1 + CABJ

(
eB

c

)2}

× 1

1 − Ce2NF ρimpl
−1
imp + C ′e2NF ρimp

√
B

, (59)

which turns out to fit the experimental data well
[15].

In order to explain the experimental data of Ref. [15], we
introduced two contributions for magnetoconductivity, where
one results from Weyl electrons near the L point of the momen-
tum space and the other comes from normal electrons near the
T point. Subtracting out the cyclotron contribution of normal
electrons in the transverse setup (B ⊥ E), we could fit the data
based on the three-dimensional weak-antilocalization formula,
given by Weyl electrons, where the weak-antilocalization
correction has been Taylor expanded for the weak-field region
below 1.2 T. On the other hand, the cyclotron contribution
around the T point almost vanishes for the longitudinal setup
(B ‖ E) as it must be, and the residual resistivity for normal
electrons is almost identical with that of the transverse setup.
Subtracting out the T -point contribution, we could fit the
data with Eq. (59) in the regime of the weak magnetic field
below 1.2 T, where the weak-antilocalization correction has
been also Taylor expanded. Again, the weak-antilocalization
correction turns out to be almost identical with that of the
transverse setup while we have an additional constant CABJ

in the longitudinal setup, the origin of which is the chiral
anomaly.

2. Hall conductivity

Following the same strategy as that of the magnetoconduc-
tivity, it is straightforward to find the Hall conductivity around
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each Weyl point, given by

σχ
yx = −e2

∫
d3 p

(2π )3
�χ

z ( p)feq( p)

+ e2

(
eB

c

)∫
d3 p

(2π )3

(
− ∂

∂ε
feq(ε)

)
[vy( p)]2

(
1 + eB

c
�χ

x ( p)

)−1

�χ
y ( p)

1

�imp + α

− e2

(
eB

c

)∫
d3 p

(2π )3

(
− ∂

∂ε
feq(ε)

)
[vy( p)]2

(
1 + eB

c
�χ

x ( p)

)−1 1

�imp + α

[
�

χ
c ( p)

]2
�

χ
y ( p) − (�imp + α)�χ

c ( p)�χ
z ( p)

[�imp + α]2 + [
�

χ
c ( p)

]2

+ e2

(
eB

c

)∫
d3 p

(2π )3

(
− ∂

∂ε
feq(ε)

)
[vy( p)]2

(
1 + eB

c
�−χ

x ( p)

)−1 �′
imp

�imp + α

(�imp + α)�−χ
y ( p) + �

χ
c ( p)�−χ

z ( p)

[�imp + α]2 + [
�

χ
c ( p)

]2 . (60)

Here, we keep only [vy( p)]2-dependent terms except for the
Berry-curvature term, consistent with the strategy of the case
of the normal setup. The first term is the anomalous Hall effect
resulting from the Berry curvature, while all other terms are
of another type of the anomalous Hall effect originating from
the chiral anomaly, where the topological E · B term gives rise
to an additional force beyond the conventional Lorentz force.
However, we find that the anomaly-induced anomalous Hall
effect does not exist, inserting �

χ
p ∝ χ

p̂
| p−χgψ B|2 with B = B x̂

into the above expression and performing the momentum
integration. In other words, we have σ

χ
yx = 0.

IV. PERSPECTIVES

The Boltzmann equation approach describes anomalous
transport phenomena of Weyl metal such as the chiral magnetic
effect and negative magnetoresistivity quite successfully,
where the topological structure of Weyl metal can be intro-
duced via the semiclassical equation-of-motion approach with
Berry curvature. However, we believe that our microscopic
understanding on these phenomena is incomplete in the respect
that we do not know how to evaluate such transport coefficients
based on the diagrammatic approach. For example, we specu-
late that a conventional diagrammatic approach will not allow
the B2 contribution in the longitudinal magnetoconductivity,

giving rise to only the Drude part (with weak-antilocalization
corrections). First of all, an effective field theory has not
been proposed yet, which must incorporate both the Berry
curvature and chiral anomaly [39]. The chiral anomaly has to
be introduced explicitly into the effective field theory as a local
curvature term because such a term is not purely topological
any more as the case of axion electrodynamics [40]. Of
course, this effective field theory must reproduce essentially
the same Boltzmann equation framework investigated in the
present paper. In addition, both the chiral magnetic effect and
negative magnetoresistivity should be recovered within the
conventional diagrammatic approach, based on this effective
field theory. We expect that this theoretical framework takes
the first step toward “topological” Landau Fermi-liquid the-
ory, incorporating both electron correlations and topological
aspects.
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