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Energy functionals which depend explicitly on orbital densities, rather than on the total charge density, appear
when applying self-interaction corrections to density-functional theory; this is, e.g., the case for Perdew-Zunger
and Koopmans-compliant functionals. In these formulations the total energy is not invariant under unitary
rotations of the orbitals, and local, orbital-dependent potentials emerge. We argue that this is not a shortcoming,
and that instead these potentials can provide, in a functional form, a simplified quasiparticle approximation to the
spectral potential, i.e., the local, frequency-dependent contraction of the many-body self-energy that is sufficient
to describe exactly the spectral function. As such, orbital-density-dependent functionals have the flexibility
to accurately describe both total energies and quasiparticle excitations in the electronic-structure problem. In
addition, and at variance with the Kohn-Sham case, orbital-dependent potentials do not require nonanalytic
derivative discontinuities. We present numerical solutions based on the frequency-dependent Sham-Schlüter
equation to support this view, and examine some of the existing functionals in this perspective, highlighting the
very close agreement between exact and approximate orbital-dependent potentials.
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I. INTRODUCTION

Density-functional theory (DFT) is one of the most used
and most successful approaches to solve accurately and
inexpensively the electronic-structure problem for interacting
electrons [1]. Being exact in principle but approximate in
practice, it has seen much theoretical work spent in searching
for accurate approximations of the unknown total-energy func-
tional [2]. Some shortcomings identified early on stem from the
remnants of electronic self-interactions [3] in the functionals
used, leading to qualitative failures in describing fractional
occupations [4–7], and by extension dissociation processes,
charge-transfer excitations [8–10], and single-particle energy
levels [11,12]. Self-interaction-corrected (SIC) functionals
able to deal with these failures have been proposed [3,13–15];
these depend explicitly on individual orbital densities ρi(r),
and their direct minimization leads to local but orbital-
dependent Hamiltonians that are not invariant for unitary
rotations of the electronic wave functions. Such schemes have
been labeled orbital-density-dependent (ODD) functionals
[16], and Perdew-Zunger (PZ) [3] and Koopmans-compliant
(KC) [14,15,17] functionals belong to this class.

This loss of unitary invariance and the emergence of orbital-
dependent operators may hint at an intrinsic strength of ODD
functionals, rather than a shortcoming, which readily emerges
from a direct comparison with many-body formulations [18].
In fact, when solving orbital equations with frequency-
dependent (i.e., dynamical) potentials, such as the self-energy,
a simplified representation of the frequency space by means of
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discrete poles is often adopted, leading to the quasiparticle
(QP) approximation [18] and orbital-dependent potentials.
We suggest here that ODD nonunitary invariant schemes can
be seen as QP approximations to many-body potentials, and
argue that local and orbital-dependent Hamiltonians have the
flexibility to describe accurately not only total energies but also
orbital energies for the problem at hand. We also show how
orbital-dependent potentials naturally capture the physics of
electrons’ additions and removals, without requiring derivative
discontinuities in the potentials, as is otherwise the case
in density-functional theory. Accurate numerical solutions
of a one-dimensional (1D) model are presented, based on
Sham-Schlüter equations, to support these arguments and to
further illustrate the theory, followed by ODD calculations
of the electronic structure in realistic case studies, and their
comparison with experimental photoemission data. The central
message of this paper is that broken unitary invariance is indeed
not an accident, but rather a natural bridge to more general
frameworks that allow one to describe with functional theories
many-body spectral properties.

II. THEORETICAL FRAMEWORK

We briefly formulate the problem by considering an
expression for the total energy where the exchange-correlation
functional becomes explicitly dependent on orbital densities,
i.e., EOD

xc [{ρi}]. As alluded to above, this is, for instance, the
case for the PZ and KC functionals. Following this notation,
the total charge density ρ(r) is written in terms of the orbital
densities ρi(r) of the occupied orbitals φi(r):

ρ(r) =
occ∑
i

ρi(r) =
occ∑
i

|φi(r)|2. (1)
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These energy functionals are minimized with respect to the
above set of orbitals, together with the orthogonality constraint

δ

δ〈φi |
[
E −

∑
jk

�jk〈φk|φj 〉
]

= 0 (2)

yielding the Euler-Lagrange equations

hOD
i |φi〉 ≡ h0|φi〉 + vOD

xc,i |φi〉 =
∑

j

�ji |φj 〉, (3)

where h0 = T + vext + vH and vOD
xc,i(r) = δEOD

xc
δρi (r) . At the mini-

mum, the Pederson condition [19]

〈φi |hi |φj 〉 = 〈φi |hj |φj 〉 (4)

is satisfied and the � matrix becomes Hermitian [20,21]. As
was recognized long ago [19], as a consequence of Eq. (4)
the orbitals {φi} minimizing the ODD functional (henceforth
labeled variational orbitals) are usually localized. Neverthe-
less, � can be diagonalized via a unitary transformation (� =
U †λU ), allowing [19,22] to define canonical (delocalized)
orbitals |ψm〉 = ∑

i |φi〉U
†
im and to cast Eq. (3) as:[

h0 + v̄OD
xc,m

]|ψm〉 = λm |ψm〉. (5)

The canonical potentials v̄OD
xc,m(r) are related to the variational

ones vOD
xc,i(r) through the transformation

v̄OD
xc,m(r) ψm(r) =

∑
i

vOD
xc,i(r) U

†
im φi(r). (6)

A similar construction can be worked out also for empty states
[17,23]. While the interpretation of the eigenvalues of � as
(canonical) orbital energies according to Eq. (5) has been
recently questioned [24], it is common practice [19,22] and has
been clearly argued for in Ref. [21]. Our findings support such
interpretation, as shown by the numerical examples presented
below.

We point out first that similar equations, where each orbital
is related to a different Hamiltonian are routinely found
when dealing with frequency-dependent potentials. In order
to address this point, we refer to Green’s function theory
[18,25,26], one of the most well-known approaches involving
dynamical potentials [the nonlocal self-energy �(r,r′,ω)]. In
fact, when computing the interacting Green’s function (GF)
G, the full complexity of the many-body problem can be
embodied in the self-energy �, leading to a non-Hermitian
frequency-dependent operator. Once an approximate � is
defined (as it is done, e.g., in the GW approach), the interacting
GF can be obtained by inverting the Dyson equation

G(ω) = [ωI − h0 − �(ω)]−1 (7)

(here spatial indices are left implicit). The exact solution of
Eq. (7) can be written as [18,26]

[h0 + �(ω)]|ψsω〉 = Es(ω)|ψsω〉 (8)

G(ω) =
∑

s

|ψsω〉〈ψsω|
ω − Es(ω)

, (9)

showing that for each frequency ω a non-Hermitian eigenvalue
problem for h0 + �(ω) has to be solved, with complex

orbital energies Es(ω) and biorthogonal left-right eigenvectors
〈ψsω|ψs ′ω〉 = δss ′ (a covariant-contravariant notation has been
adopted). A common approach to obtaining the solution of
Eq. (9) is the quasiparticle (QP) approximation, whereby the
continuous index ω is dropped for E’s and ψ’s, and only some
relevant poles are retained. This can be done, e.g., according
to the condition

Es

(
zQP
m

) = zQP
m , (10)

using, if needed, an analytical continuation of Es(ω) out of
the real axis (see, e.g., Ref. [26] for the full mathematical
treatment). The quasiparticle approximation is equivalent to
representing the most relevant structures of G in Eq. (9) by
a finite number of poles. Setting �QP

m = �(zQP
m ), Eq. (8) then

becomes: [
h0 + �QP

m

] ∣∣ψQP
m

〉 = zQP
m

∣∣ψQP
m

〉
. (11)

While � here is non-Hermitian, and nonlocal, the similarity
between Eqs. (5) and (11) is apparent, and will be one of the
central points of this work.

Indeed, this similarity is not restricted to the special case
of the self-energy in GF theories, but it is general to any
frequency-dependent potential. An interesting case of such
potentials has been recently pointed out by Gatti et al. in
Ref. [27] (see also—closely related—Ref. [28]), where it is
shown that a local, Hermitian, dynamical potential vSP(r,ω)
[hereby referred to as the spectral potential (SP)] is flexible
enough to reproduce exactly the spectral density ρ(r,ω) (i.e.,
the local spectral function) of an interacting system described
by the many-body interacting Green’s function G:

ρ(r,ω) = 1

π
|ImG(r,r,ω)|. (12)

In other words, if instead of the true nonlocal, non-Hermitian
�(r,r′,ω) a suitable local, real vSP(r,ω) is used to construct
an auxiliary Green’s function1 GSP, the resulting GSP can
still reproduce the correct spectral density. Note this is not
otherwise possible with a local and static potential, such as
vKS(r) in KS theory, which can only provide the exact density
ρ(r). A frequency-dependent Sham-Schlüter-like equation can
be solved to explicitly determine the spectral potential vSP(r,ω)
by imposing that the local spectral functions of GSP and G are
the same [27]. Then, for each frequency we have∫

dr1 vSP(r1,ω) Im[GSP(r,r1,ω) G(r1,r,ω)]

= Im[GSP�G]r,r. (13)

We refer to this equation as the spectral-potential Sham-
Schlüter equation (SP-SSE), and we provide in Appendix A a
variational derivation of its linearized version, allowing us to
define the energy functional associated with the SP-SSE. Ap-
plying a discretization of the frequency to vSP(r,ω) (as is done
in QP approximations) we obtain a local and orbital-dependent
potential, exactly as in Eq. (5). Thus, orbital-dependent ODD

1Here vSP and vKS are defined as the xc contribution to the total
potential.
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Hamiltonians can be used to define quasiparticle approxima-
tions to vSP(r,ω), and are in principle able to reproduce orbital
energies (in this context, we identify orbital energies with the
quasiparticle excitations, i.e., the peaks in the spectral function
corresponding to the charged excitations of the system at N±1
particles; such peaks are usually divided [18,29] into main
peaks and satellites according to their intensities, and when
making a QP approximation only the main peaks are retained).

The frequency dependency (or orbital dependency within
the QP approximation) of � and vSP makes these methods
more general than KS-DFT. In principle, the standard Sham-
Schlüter equation (here referred to as KS-SSE) [30,31]

∫
dr1 vKS(r1)

∫
dω

2πi
eiω0+

GKS(r,r1,ω)G(r1,r,ω)

=
∫

dω

2πi
eiω0+

[GKS�G]r,r (14)

or the optimized-effective potential (OEP) technique [32]
could be used to bring a SP framework back to KS-DFT (GKS

here is the GF of the KS system), at the price of losing spectral
information, as will be argued in the next Sections; similar
OEP techniques [22] have also been proposed to bring ODD
formulations back into a proper KS framework.

While these approaches are appealing, in this work we argue
that orbital-dependent Hamiltonians [as in Eqs. (3) and (5)] can
be seen as functional formulations that go beyond DFT and
that can address both the total energy and the single-particle
spectrum of a given system. The actual accuracy in doing so
would depend on the details of the ODD functional, but it is
relevant to note that for Koopmans-compliant functionals one
can correct orbital energies (and obtain excellent agreement
with experiments [11]) while preserving the underlying DFT
potential energy surface either very accurately [14] or exactly
[33].

III. NUMERICAL MODELS

In order to investigate numerically these ideas we study a 1D
model system for a diatomic molecule with eight interacting,
spin-unpolarized electrons, using soft Coulomb potentials
of the form v(r) = v0/cosh2(βr), as in Ref. [10] [the M1
parametrization is reported in Appendix B, and the external
potential for this model dimer is depicted in Fig. 1(a), thick
black line]. We first compute for this system the self-consistent
HF solution, and once the nonlocal HF exchange potential is
determined, we obtain from the KS-SSE the local Kohn-Sham
potential for which the DFT solution provides exactly the HF
ground-state density. Here the HF exchange potential has been
taken as the simplest approximation to the electron-electron
self-energy. The corresponding vKS(r) is then the KS exact-
exchange potential (EXX) (while EXX usually refers to the
solution of the linearized KS-SSE, we solve here the exact
KS-SSE). This local vKS(r) is plotted in Fig. 1(a) and, as is
well known, it reproduces exactly the HF ground-state charge
density, but not the eigenspectrum [which differs considerably
from the HF one, as shown in Fig. 1(c)]. Of course, the HOMO
eigenvalue is reproduced, since it determines the decay of the
charge density in the vacuum region [34].
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FIG. 1. (Color online) Comparison of the KS-SSE and SP-SSE
for an eight-electron, spin-unpolarized one-dimensional model of a
diatomic molecule (M1, discussed in Appendix B); the interacting
electronic structure is calculated at the HF level. (a) External potential
vext(r) and local KS-EXX potential vKS(r). (b) Dynamical potential
vSP(r,ω) from the SP-SSE. Potentials at the occupied HF energies are
highlighted (green). (c), (d) DOS corresponding to HF, KS-EXX, full
SP-SSE (numerically identical to HF, not shown), SP-SSE within the
QP approximation (SP-QP), and Hartree-SIC (discussed later in the
text).

We then use the SP-SSE to calculate the local and
dynamical vSP(r,ω), which reproduces exactly the HF spectral
function ρ(r,ω). We highlight in Fig. 1(b) (light green) the
potentials corresponding to the bound HF spectrum (labeled
vSP

1 , . . . ,vSP
4 ). We apply the QP approximation to these

potentials [i.e., we used vSP
1 , . . . ,vSP

4 to build an effective GF in
the spirit of Eq. (11); see Appendix B], and report the resulting
spectral function in Fig. 1(d). This is found to be in perfect
agreement with the exact solution of the SP-SSE (therefore,
identical by construction to the HF spectral function). Thus,
the spectral function of the nonlocal HF Hamiltonian has been
reproduced by a set of local and orbital-dependent potentials,
illustrating numerically the arguments presented above. In
the more general case of a genuinely frequency-dependent
self-energy, a similar picture would apply, the only difference
being that a QP approximation as the one adopted here would
fail to describe many-body features such as satellites and QP
lifetimes, but would still considerably improve over KS-DFT.

As a final remark, we note that in principle vSP is uniquely
defined only where the spectral function is not identically zero,
while infinitely many solutions can be obtained where the
spectral function is zero [27,35]. This indeterminacy makes
it numerically challenging to compute vSP in the regions
where it is irrelevant (e.g., where the spectral density is
practically zero). Moreover, spikes in the computed vSP(r,ω)
potential [Fig. 1(b)] appear where the spectral density has
a node or is very low, and are therefore harmless. In fact,
when multiplying the spectral potential (at a given energy)
by the spectral density (or by the relevant wave functions),
spikes are matched by nodes, and their product is perfectly
well behaved. This is shown in Fig. 2, where we plot (green
triangles) the bare spectral potentials for the four frequencies
of the HF bound spectrum (left panels) and compare these with
vSP(r,ω)ψm(r) (right panels), showing that the spikes in the
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FIG. 2. (Color online) Left: spectral potentials vSP(ωm) at the
four HF energies ω1−ω4 (green triangles). Right: vSP(ωm) times
ψm(r) (green triangles), where ψm are the eigenvectors corresponding
to the orbital energies ω1 = −4.42, ω2 = −4.28, ω3 = −1.78, and
ω4 = −1.03 a.u. We also compare to a simple, approximate ODD
(H-SIC, blue dashed lines). Since the product of potential and wave
function is the key physical quantity, the left panels highlight how
this simple ODD approximation is remarkably close, qualitatively
and quantitatively, to the exact solution.

potentials indeed cause no harm. The same picture holds when
multiplying vSP(r,ω) by the spectral density ρ(r,ω). These
considerations are particularly relevant when considering the
task of identifying functional approximations to the spectral
potential, since no ill-conditioned or nonanalytic features are
required (including no derivative discontinuities; see Sec. V).

IV. ODD POTENTIALS AS A REPRESENTATION OF vSP

So far we have highlighted a formal analogy between the
framework of ODD functionals and that of the discretized
spectral density, both leading to local and orbital-dependent
potentials. This analogy suggests that ODD functionals could
be used to derive useful approximations to the exact vSP,
and we argue this point both with model calculations, in this
section, and later by comparing experimental photoemission
data with the density-of-states (DOS) of Koopmans-compliant
functionals. For the model calculations, we consider the
self-Hartree correction (H-SIC) [the Hartree part of the PZ
correction, given by the first term in the last expression of
Eq. (15)], and show that not only it trivially provides a good
approximation to the nonlocal HF exchange operator when
calculated in a localized representation, but that in particular
its potentials match qualitatively and quantitatively the exact
(numerical) SP-SSE ones.

Due to the unitary invariance of � = vHF
x , we can choose

for the HF Hamiltonian a representation in which the orbitals
are as localized (and nonoverlapping) as possible. The full

exchange potential can then be approximated by the H-SIC
(which provides localized orbitals) just by neglecting the off-
diagonal contributions:

〈r|vHF
x |φi〉 = −

occ∑
j

∫
dr1

〈r|φj 〉〈φj |r1〉
|r − r1| 〈r1|φi〉

� −vH(r; [ρi])〈r|φi〉. (15)

The eigenvalues of the ODD � matrix obtained from Eqs. (3)
and (5) reproduce very closely the HF eigenvalues, as can be
seen by examining the HF and H-SIC DOS in Fig. 1.

We next compare the H-SIC ODD potentials with the
exact spectral potentials obtained for this HF model. We
show the H-SIC canonical potentials (i.e., those corresponding
to the canonical orbitals, obtained by diagonalizing the �

matrix, as opposed to those corresponding to the variational
orbitals, obtained by minimizing the ODD functional) in
Fig. 2. These display very similar features to the exact ones,
and, most importantly, when multiplied by the corresponding
wave functions (the product of the two is the only relevant
quantity for the calculations) show a remarkable qualitative
and quantitative agreement. These findings highlight how
potentials derived from ODD functionals can approximate
accurately exact spectral potentials, a statement that will also
be supported in the last section by the study of photoemission
spectra in realistic cases.

V. DERIVATIVE DISCONTINUITY

As is also apparent from the numerical example of Fig. 1,
while the KS-HOMO energy level correctly reproduces the
HF target, this is not the case for the KS-LUMO, nor in
general for all other orbitals. This behavior of the KS theory is
well known and arises from the requirement of an exchange-
correlation (XC) derivative discontinuity in the exact KS
potential [4,36,37]; the addition of an infinitesimal fraction of
an electron to a system may generate a finite discontinuity in
the KS potential, so that the new infinitesimally filled HOMO is
positioned correctly. Such discontinuity �xc is the quantity to
be added to the exact KS gap to retrieve the exact fundamental
(transport) gap (since the position of the HOMO is correct in
exact DFT, �xc restores the physical position for the LUMO).

Recently, an expression for �xc has been derived by
Hellgren and Gross [38] using the Klein functional EK [39]
and the resulting linearized SSE for the KS potential [Eq. (A1)
in Appendix A]. Across the discontinuity, the KS potential
varies as

vKS+(r) = vKS−(r) + �xc, (16)

where the indexes ± refer to a number of particles N ± 0+.
The derivative discontinuity is then given by

�xc = 〈φL|�+(ε+
L )|φL〉 − 〈φL|vKS−|φL〉. (17)

Here, φL is the lowest unoccupied orbital that changes with
continuity upon charge addition and removal, and εL is its
(discontinuous) KS eigenvalue. � has also a discontinuity at
integer particle numbers because in the linearized SSE we
have � = �[GKS]. Inspecting Eq. (17) one can immediately
see that �xc accounts for the shift between the exact KS LUMO
and the physical LUMO.
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The presence of such derivative discontinuity is also at the
origin [9,10,38,40–43] of the formation of steps and peaks in
the KS potential of donor-acceptor (D-A) systems undergoing
dissociation. This is in particular the case when the KS-HOMO
level of one of the subsystems is higher in energy than the
KS-LUMO of the other, and the potential step can prevent an
incorrect D-A charge transfer.

We show here that spectral potentials do not require these
derivative discontinuities, and do not express them, making
them much better conditioned and easier to approximate than
the exact KS potential. For this, we again solve numerically
a model 1D dimer with eight electrons, but heteroatomic and
with a different parametrization (M2, see Appendix B) to target
the challenge of charge transfer discussed above. We address
in Fig. 3(a) the KS-EXX potential for this asymmetric double
well at two different distances; the emergence of a potential
step (at 10 a.u.) for the almost-dissociated distance of 16 a.u.
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FIG. 3. (Color online) Dissociation of an eight-electron, spin-
unpolarized one-dimensional heteroatomic dimer (M2, discussed in
Appendix B); the interacting electronic structure is calculated at the
HF level. (a) shows the KS-SSE (EXX) potentials vKS(r) for the
two atomic distances of 8 a.u. (dashed line) and 16 a.u. (solid line).
The latter distance corresponds to an almost dissociated dimer and
the finite step (δ) duly arising in the exact potential is highlighted.
(b) shows the local spectral potential vSP(r,ω) as a function of
frequency, calculated for this dissociation nuclear distance of 16 a.u.,
highlighting how no discontinuity is present at any frequency. The
potentials corresponding to the HF eigenvalue energies are reported
in green. (c): HF and KS-EXX energy levels of the full system (D-A)
at the distance of 16 a.u. and those of the isolated D and A subunits,
showing that the KS LUMO of the acceptor is below the KS HOMO
of the donor. For the case of Unit A, the derivative discontinuity shift
of the KS potential is highlighted (�A

xc). As usual, results from a QP
approximation to SP-SSE (SP-QP) are found to be virtually identical
to the HF target.

between the two atoms is clearly evident. In Fig. 3(c) we
show the DOS for the isolated subunits (D and A) and for
the complete system (D-A) at d = 16 a.u., corresponding to
the solid curve in Fig. 3(a). We also highlight the derivative
discontinuity term (�A

xc) corresponding to the A subsystem.
The potential step δ in Fig. 3(a) is needed to avert a spurious
charge transfer from D to A since, at variance with HF, the
KS-EXX LUMO of the isolated A system is lower than the
HOMO of the D system. This is in qualitative agreement with
existing literature [38]. The different local potentials for each
orbital (coming from the QP approximation to SP-SSE) allow
us instead to describe the entire DOS correctly.

The nonanalytic features of the exact KS potential make
it challenging to approximate, even more so because they
can appear exactly where the charge density goes to zero. In
contrast, this is not the case for the vSP(r,ω) potential, where
a derivative discontinuity is neither expected nor needed, as
numerically confirmed in Fig. 3(b) where the spectral-function
potential and its QP approximations are shown.

VI. COMPARISON WITH UPS DATA

Having established that canonical ODD potentials v̄OD
xc,m(r)

can represent a QP approximation to the contraction vSP(r,ω)
of a self-energy operator �(r,r′,ω) [note that vSP(r,ω) differs
from �(r,r,ω), see Eq. (13)], it remains to exploit the
analytical freedom offered by this generalized formulation
to propose explicit ODD functionals able to capture QP
properties. To derive explicit vOD

xc,i(r), one could ideally proceed
by applying the SP-SSE to existing approximations for �.
Although this direct approach is appealing theoretically, it has
to cope with the complexity involved in realistic cases. A
very successful alternative has emerged [11,14] that purifies
approximate KS functionals with orbital-dependent terms
restoring desirable physical constraints, and in particular
piecewise linearity, as suggested in Refs. [5–7] building
on the ideas of Perdew and coworkers [4]. Following this
route, one can impose a generalized Koopmans’ condition,
crucial for the interpretation of electronic spectra as ionization
energies, to DFT approximations, thereby obtaining the ODD
Koopmans-compliant functionals [11,14,17,23]. Even in their
simplest screened form, namely the K0[LDA] correction,
orbital energies improve drastically. We note that similar
approaches have also been recently proposed [12,51–53]. To
illustrate this, we compare K0[LDA] and LDA results to recent
accurate photoemission data for thiophene, pentacene, and
fullerene [44,46–48].

The comparative assessment of Fig. 4 highlights salient
trends. First, we observe that LDA (purple empty triangles)
does not accurately capture the onset of photoemission, with an
overestimation of the first peak energy of several eV. Similarly,
LUMO levels are typically found to be too low in LDA (this
would be the case also for the exact KS functional, because
of the missing derivative discontinuity term). At variance with
LDA, K0[LDA] reduces the error for the highest orbital to less
than a few tenths of an eV. Moreover, K0[LDA] photoemission
peaks are found to be in excellent quantitative agreement with
experiments, without requiring any shift to align the orbitals.
The overall accuracy of Koopmans-compliant functionals on
molecular orbital energies is found to be comparable and to
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FIG. 4. (Color online) ODD (K0[LDA]) density of states (thick
green line) compared to ultraviolet photoemission experiments (thick
black line) for (a) thiophene [44], (b) C60, [45], and (c) pentacene
[46–48]. Filled (black) and empty triangles indicate respectively the
experimental [49,50] and theoretical (LDA, purple, and K0[LDA],
green) HOMO, LUMO levels. The K0[LDA] and LDA levels have
not been aligned to any experimental data.

improve on even highly accurate methods, such as the GW
approximation, at a fraction of the cost (see Ref. [11] for
organic photovoltaics, and Ref. [33] for the G2 set). The
above computational benchmark lends weight to the practical
benefit of simple inexpensive ODD functionals for the reliable
description of photoemission spectra [11].

VII. CONCLUSIONS

In conclusion, we have shown how nonunitary-invariant
orbital-density-dependent functionals and potentials can be
interpreted within the framework of many-body dynamical
methods, where the orbital dependency originates from a
suitable quasiparticle approximation. This feature has been
linked to the local dynamical potentials introduced in Ref. [27],
showing that orbital dependency can be used to reproduce
spectral properties. This picture leads to ODD potentials
that are more general than local KS potentials and have the
flexibility to describe both total energies and orbital energies.
They naturally incorporate features that otherwise require a
derivative discontinuity in the Kohn-Sham theory and act as
an intermediate framework between density-functional theory
and many-body formulations.
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APPENDIX A: VARIATIONAL DERIVATION OF SP-SSE

In this Appendix we derive a variational formulation of the
linearized SP-SSE [27], as is usually done in the context of the
OEP method for KS-DFT. Though similar formulations based
on the spectral density exist [28], here an energy functional
corresponding to the linearized SP-SSE is obtained.

As is well known [32], the linearized version of the SSE
[Eq. (14)] ∫

dω

2πi
eiω0+[

GKSvKSGKS
]

r,r

=
∫

dω

2πi
eiω0+ [

GKS�[GKS]GKS]
r,r

can be obtained by making the Klein functional EK[GKS]
[39] stationary with respect to variations of the local potential
vKS(r) used to build GKS = G[vKS]:

δ EK[GKS]

δ vKS(r)
= 0. (A1)

This is the proper generalization of the OEP technique to cases
involving a dynamical �-derivable self-energy. Instead of the
exact KS-SSE of Eq. (14), the above procedure leads to its
linearized version because the domain of the Klein functional
has been restricted to those GF’s coming from a local and static
potential.

In a similar way, we can take the variation of the Klein
functional with respect to a local and dynamical potential
v(r,ω) used to construct the GF Gv in EK[Gv]. Here Gv is
assumed to belong to the domain of EK. The variation gives:

δEK

δ v(r,ω)
=

∫
dω′ dr1dr2

δEK

δ Gv(r1,r2,ω′)
δGv(r1,r2,ω

′)
δ v(r,ω)

= 1

2πi
[Gv (� − v) Gv]r,r,ω, (A2)

where the integration over spatial coordinates is left implicit
and we have used the relation GvG

−1
v = I to derive

δGv(r1,r2,ω
′)

δ v(r,ω)
= Gv(r1,r,ω)Gv(r,r2,ω) δ(ω − ω′). (A3)

Setting δEK
δ v(r,ω) = 0 we obtain a SP-SSE expression for v(r,ω):∫

dr1v(r1,ω)
[
Gv(r,r1,ω)Gv(r1,r,ω)

] = [
Gv�[Gv]Gv

]
r,r.

(A4)

If the potential v(r,ω) in Eq. (A2) is real, the derivative of
EK with respect to such a potential may become complex. This
means that the EK[G] functional may be complex when G is
built from a real v(r,ω) potential. In order to circumvent this
problem, when restricting the potential v(r,ω) to be real we
work with a modified version of the Klein functional, ẼK =
ReEK. By using this expression and the derivative in Eq. (A2)
we can finally obtain the linearized version of the SP-SSE
[Eq. (13)]. This completes the proof of the variationality of
Eq. (13). The reason for having derived the linearized version
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of the equation instead of the full one is due, as for the case of
KS-OEP, to the fact that the GF has been obtained by using a
local dynamical potential [vSP(r,ω)].

APPENDIX B: TECHNICAL DETAILS

1. Numerical models

Model M1. The external potential is the superposition of
two soft-core ions [10] of the form v(r) = v0/cosh2(βr). We
have used v0 = 9.0 a.u. for both ions. The ion-ion distance
has been set to 2.5 a.u. The electron-electron interaction is
modeled by the same potential form, but using v0 = 1.5 a.u.
The parameter β is set to be 1.0 a.u. in all cases. The system
contains eight interacting, spin-unpolarized electrons and is
represented on a real-space grid of 600 points spanning 30 a.u.

Model M2. As above but heteroatomic and using a different
parametrization of the external potential to discuss derivative
discontinuity effects. We have set v0 = 9.0 and 13.5 a.u. The
dimer bond length d has been varied in the range 6–16 a.u.
(only two distances shown in Fig. 3). The real-space grid is
made of 700 points spanning 35 a.u.

HF and Sham-Schlüter equation. The HF and Sham-
Schlüter problems are solved on a real-space grid. The
kinetic energy operator is expressed by finite differences. All
calculations are spin unpolarized. A symmetric and diagonal
preconditioning of the linear systems has been used for
both KS- and SP-SSE. The SP-SSE has been solved on a
frequency grid of 180 (250) points in the range [−6.0,0.2] a.u.
([−8.5,0.2] a.u.), for M1 and M2 respectively.

In order to compute the Green’s functions, a finite iδ term
(0.05 au) is added to the denominators to shift the poles off
of the real axis, thereby leading to a Lorentzian broadening
of the spectral functions. We note that the size of the spikes
in the vSP(r,ω) potential depends on the smearing scheme
adopted. Nevertheless, such a dependency is not a numerical
instability. In fact it is related to the fact that the local spectral

function itself changes in shape when a different smearing
scheme is adopted. All the SSE calculations reported have been
performed without linearization (but no relevant differences
have been found during testing).

QP approximation to vSP . Once vSP(r,ω) has been com-
puted for each frequency, we select the frequencies ωm

(here m = 1, . . . ,4) corresponding to the (occupied) spectrum
to be described. For each vSP

m = vSP(ωm) we compute the
eigenvalues and eigenvectors and select the orbital whose
energy matches best the original ωm eigenvalue. We then
compute the overlap matrix of the orbitals coming from
different potentials (in principle not orthogonal) and build the
SP-QP Green’s function as:

GSP−QP(ω) =
∑

i

|ψi〉〈ψi |
ω − εi − iδ

. (B1)

A suitable extension to include also empty states can be
formulated along the same lines.

2. Koopmans-compliant calculations

ODD Koopmans-corrected calculations have been per-
formed at the K0[LDA] level, according to Refs. [11,14]
(referred there as αNK0). We have implemented the method
in the plane-wave code CP.X, from the QUANTUM-ESPRESSO

distribution [54]. Standard norm-conserving pseudopotentials
have been used and a kinetic energy cutoff of 40 Ry has been
adopted. Periodic replica have been separated by at least 9 Å of
vacuum and regularizing functions have been used to avoid the
singularities in the reciprocal space summation of electrostatic
terms [55]. Damped electronic dynamics has been used to
optimize the electronic degrees of freedom. The scaling factor
α has been computed self-consistently and nonempirically by
imposing the HOMO energies for the neutral molecules to
match the LUMO energies for the cations [14] (Koopmans’
condition).
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