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Recent advances in quantum electronics have allowed us to engineer hybrid nanodevices comprising on chip
a microwave electromagnetic resonator coupled to an artificial atom, a quantum dot. These systems realize novel
platforms to explore nonequilibrium quantum impurity physics with light and matter. Coupling the quantum dot
system to reservoir leads (source and drain) produces an electronic current as well as dissipation when applying
a bias voltage across the system. Focusing on a standard model of biased quantum dot coupled to a photon mode
which gives rise to an Anderson-Holstein Hamiltonian, we elucidate the signatures of the electronic correlations
in the phase of the transmitted microwave signal. In addition, we illustrate the effect of the electronic degrees of
freedom on the photon field, giving rise to nonlinearities, damping, and dissipation, and discuss how to control
these effects by means of gate and bias voltages.
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I. INTRODUCTION

Recent years have seen tremendous experimental progress
in probing and controlling quantum mechanics at the level
of single constituents. A variety of physical systems, at the
interface between quantum optics and atomic and solid-state
physics, have emerged as natural platforms to store and process
information at the genuine quantum level. Examples include
systems of entangled atoms and photons [1,2] and their solid-
state analog [3–5] or systems of electrons and spins confined
in semiconducting nanostructures [6], to name a few.

More recently, the experimental effort moved toward
the realization of hybrid nanosystems obtained interfacing
different kinds of quantum information platforms, such as
quantum dots, ultracold atoms in cavities, mechanical res-
onators, or superconducting circuits [7–26]. These novel
hybrid architectures are not only of great practical relevance
for quantum information, but also of fundamental interest
as platforms to explore many-body physics in novel and
unconventional regimes, particularly away from thermal equi-
librium. Indeed, when small interacting quantum mechanical
systems involving inherently different degrees of freedom,
such as electrons and photons, are coupled to their fluctuating
quantum environments a plethora of interesting many-body
phenomena are expected to emerge [27–47]. For example, in
a recent pioneering experiment [48], the coupling between a
quantum dot, a microwave resonator, and two biased electronic
reservoirs was achieved on chip and signatures of many-
body correlations observed in the phase of the microwave
transmitted photon as a function of the voltage bias across
the leads. Motivated by these rapid developments [19,48], in
this paper we discuss the nonequilibrium physics of a hybrid
quantum impurity model made by electrons and photons.

The paper is organized as follows. In Sec. II, we introduce
our hybrid quantum impurity model. Section III is devoted to
study transmission of photons through the microwave cavity
and to elucidate the signature of many-body correlations in
the phase of the microwave signal. In Sec. IV, we derive an
effective theory for the cavity photon coupled to the density
fluctuations of the dot electron, while in Sec. V we present a
discussion of the results.

II. HYBRID IMPURITY MODEL WITH
ELECTRONS AND PHOTONS

We model our system as a single-level quantum dot tunnel
coupled to biased source-drain leads α = L,R and capacitively
coupled to a single-mode electromagnetic resonator (see
Fig. 1). The Anderson-Holstein type of Hamiltonian for the
system reads as (setting � = 1)

Hsys =
∑
kσ α

εkαc
†
kασ ckασ +

∑
kσ α

Vkα(c†kασ dσ + H.c.)

+ ε0 n + U n↑n↓ + λ x n + ω0 a† a, (1)

where ckασ ,dσ ,a are annihilation operators of, respectively,
leads electrons, correlated dot, and photon field, x = (a +
a†)/

√
2 and n = ∑

σ d†
σ dσ while εkα = εk ± eV/2. The

above Anderson-Holstein model [49,50] has been studied
extensively in the context of nonlinear electron transport, with
most of the emphasis focused on signatures of many-body
correlations through electronic properties such as current-
voltage characteristics and conductance [51–55]. Here, our
scope is to probe the many-body Kondo-type correlations of
this system through photon transport.

In order to probe this hybrid system, we capacitively couple
the resonator to two long transmission lines [56]. Without any
loss of generality, we consider a symmetric coupling to the
two bosonic baths, such that the Hamiltonian of the full system
takes the form

H =
∑
kl

ωk b
†
kl bkl + (a + a†)

∑
kl

gk (b†kl + bkl) + Hsys,

(2)

where bkl describes photonic modes of the transmission
lines (l = L,R) with dispersion ωk and spectrum J (ω) =
π

∑
k g2

k δ(ω − ωk) = 2παω e−ω/ωc , with ωc being a high-
energy cutoff. In the next section, using exact equations of
motion and the input-output relations [41,56], we will obtain an
expression for the transmission/reflection coefficients which
allows us to characterize photon transport in the system.
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FIG. 1. (Color online) Schematic figure of the hybrid quantum
impurity system consisting of a quantum dot hybridized to biased
metallic leads and capacitively coupled to an electromagnetic
resonator.

III. PHASE SPECTROSCOPY OF A CAVITY-EMITTED
MICROWAVE PHOTON

A. Input-output theory

Let us start by deriving an input-output relation for this
problem, following the treatment of Refs. [41,56]. We consider
the full Hamiltonian of the problem H and we write the
equation of motion of the operator bkl which reads as

ḃkl = i[H,bkl] = −iωk bkl − igk x. (3)

After integration, we get for t > t0

bkl(t) = e−iωk (t−t0) bkl(t0) − i gk

∫ t

t0

dτ e−iωk (t−τ ) x(τ ), (4)

while if we integrate backward in time from t1 > t we get

bkl(t) = e−iωk (t−t1) bkl(t1) − i gk

∫ t1

t

dτ e−iωk (t−τ ) x(τ ). (5)

We introduce the left input voltage at time t > t0:

V in
L (t) =

∑
k

gk(e−iωk (t−t0) bkL(t0) + H.c.) (6)

as well as the output voltage at time t < t1

V out
L (t) =

∑
k

gk(e−iωk (t−t1) bkL(t1) + H.c.). (7)

Using Eqs. (4) and (5) for bkL(t) we can express the average
output voltage in terms of the input field. Indeed, we have first

V out
L (t) = V in

L (t) − 2
∑

k

g2
k

∫ t1

t0

dτ sin [ωk(t − τ )] x(τ ),

(8)

then by taking the quantum average from both sides and
introducing a susceptibility χxx(t − t ′) defined as

〈 x(t)〉 =
∫

dt ′ χxx(t − t ′) 〈V in(t ′)〉, (9)

we end up with

〈V out
L (t)〉 =

∫
dt ′′ r(t − t ′′)〈V in

L (t ′′)〉, (10)
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FIG. 2. (Color online) Spectroscopy of a transmitted microwave
photon for a RLM coupled to a resonator U = 0. Real and imaginary
parts of the transmission coefficient as a function of the incoming
photon frequency for various voltage biases. Units are such that
� = ω0 = 1 and λ = 0.5�. A weak photon dissipation is modeled
by a spectral function J (ω) = 2παω e−ω/ωc with α = 0.001 and
ωc = 100ω0.

where we have introduced the reflection coefficient

r(t − t ′) =
(

δ(t − t ′) − i

∫
dτ J (t − τ ) χR

xx(τ − t ′)
)

(11)

with

J (t) =
∑

k

g2
k (e−iωk t − eiωk t ).

Using the same approach, we can obtain an analog result for
the transmission coefficient t(ω) defined as

t(ω) ≡
〈
V out

R (ω)
〉

〈
V in

L (ω)
〉 = i J (ω) χR

xx (ω) . (12)

The susceptibility χR
xx is nothing but the response of the

photon displacement to an input signal, carried by V in, and it
is given by the Kubo formula

χR
xx(t) = −iθ (t)〈 [x(t),x(0)]〉Hsys , (13)

where the average is taken over the system Hamiltonian with
no transmission line but fully including the fermionic leads.
As a result, the expression for the transmission and reflection
coefficients has to be interpreted as perturbative in the coupling
to the photonic bath (α 	 1). Indeed, parameters in Fig. 2 are
chosen such that the scattering matrix is almost unitary, i.e.,
the inelastic contribution to the transmission of light is small
compared to the elastic part.

B. Phase spectroscopy

Given the previous result for the transmission coefficient,
by defining t(ω) = | t | eiϕ(ω) we can obtain the phase of the
transmitted microwave signal

tan ϕ(ω) ≡ Im t(ω)

Re t(ω)
= Re χR

xx(ω)

Im χR
xx(ω)

. (14)
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The retarded photon Green’s function can be written in
Fourier space in terms of the photon self-energy �R(ω) as

χR
xx(ω) = ω0

ω2 − ω2
0 − ω0�R(ω)

, (15)

where �R(ω) includes both the effects of frequency renormal-
ization and the damping due to the fermionic environment.
From this expression, we immediately get the frequency
dependence of real and imaginary parts of the transmission
coefficient

Re t(ω) = J (ω)ω2
0 Im�R(ω)[

ω2 − ω2
0 − ω0Re�R(ω)

]2 + [ω0Im�R(ω)]2
,

Im t(ω) = J (ω)ω0
[
ω2 − ω2

0 − ω0Re�R(ω)
]

[(
ω2 − ω2

0 − ω0Re�R(ω)
]2 + [ω0Im�R(ω)]2

,

and from them we can extract the phase

tan ϕ(ω) = ω0
[
ω2 − ω2

0 − ω0Re�R(ω)
]

ω2
0 Im�R(ω)

. (16)

We start evaluating the phase to the lowest order in the
electron-photon coupling λ. To this extent, it is convenient
to compute directly the photon retarded self-energy �R(ω),
defined in Eq. (15). Within a Keldysh approach, this turns to be
related to the density response function of a purely electronic
Anderson impurity model (AIM),

�R(t,t ′) = �R(t,t ′) ≡ λ2χel(t − t ′) (17)

with χel(t − t ′) = −iθ (t − t ′)〈[n(t),n(t ′)]〉el the electronic
charge susceptibility. For an Anderson impurity model which
exhibits a Fermi-liquid type of ground state, this must satisfy
the Korringa-Shiba relation [57] which implies

Imχel(ω) = πω[[(Reχel ↑(0)]2 + [Reχel ↓(0)]2]. (18)

However, much less is known in general about this quantity at
finite frequency in presence of both strong interaction U and
finite bias eV (but, see Refs. [58–60] for recent developments).

C. Resonant level model

To gain some analytical insight, we start evaluating the
response function for U = 0. In this noninteracting limit, the
dot electrons form a resonance of width � = ∑

kα V 2
kα δ (εk)

centered at ε0, their spectral function in the wide-band limit
becomes a simple Lorentzian, and the associated Green’s
functions read as

G
R/A

0 (ω) = 1

ω − ε0 ± i�
= Re GR

0 (ω) ∓ iπ A0(ω) (19)

and

G<
0 (ω) = 2π i

∑
α �αfα(ω)

�
A0(ω). (20)

Evaluating the density response function reduces then to a
convolution of single-particle Green’s functions

i�R(�) = λ2

2

∫
dω

2π

[
GR

0 (ω)G<
0 (ω − �)

+GA
0 (ω)G<

0 (ω + �)
]
, (21)
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FIG. 3. (Color online) Spectroscopy of a transmitted microwave
photon for a RLM coupled to a resonator U = 0. Phase of the
transmission coefficient respectively as a function of the photon
frequency (left panel) and on resonance ω = ω0 (right panel). In
all plots, units are such that λ = 0.5�.

which can be evaluated in closed form. Here, we discuss the
resulting behavior for the transmission coefficient. We remind
here that we are evaluating the transmission coefficient t(ω)
according to Eq. (12), which is valid in the linear response
regime with respect to the coupling to the photonic bath
(external transmission line).

In Fig. 2, we plot the behavior of the real and imaginary
parts of the transmission coefficient, as well as its phase, as
a function of incoming photon frequency ω and for different
bias voltages eV . The real part of t(ω) shows a peak at a
renormalized frequency ω� �= ω0, which shifts and sharpens at
large voltages. Electrons induce a renormalization of photon
frequency, which can be seen as a many-body light shift.

The imaginary part of the transmission vanishes at ω = ω�

and similarly does the phase ϕ(ω�), as it follows immediately
from Eq. (14). More interesting and rich is the behavior of
the phase at the bare resonator frequency ϕ(ω0), which is also
what is typically measured in experiments [48]. As we see from
Fig. 3 at large voltages the phase smoothly approaches π/2,
quite independently from photon frequency and other system
parameters and also from the coupling to the transmission line.
This universal behavior of the phase in the strongly nonlinear
regime can be understood at first by looking at the structure of
photon self-energy �R(ω0). Indeed, one can write the phase
of the transmission coefficient on resonance as

tan ϕ (ω0) = Re �R(ω0)

Im �R(ω0)
. (22)

We see how a phase of π/2 crucially requires the photon
damping induced by conduction electrons to vanish suffi-
ciently fast at large bias. Perturbatively, we find both the real
and the imaginary parts of the self-energy to vanish at voltages
larger than a crossover scale �(ω0) (see Fig. 4) as

Re �R(ω0) ∼ 1

V 2
, Im �R(ω0) ∼ 1

V 4
, (23)

hence, tan ϕ(ω0) ∼ V 2/�2. Corrections to the universal large-
bias limit depend from the photon frequency (bottom right
panel), stronger quantum effects (larger ω0/�) shift the
crossover scale �(ω0) to larger values, suggesting an effective
classical picture to explain this effect as we will see later in
the paper.
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FIG. 4. (Color online) Real and imaginary parts of photon self-
energy on resonance ω = ω0 as a function of bias voltage. Units are
such that � = ω0 = 1 and λ = 0.5�. At large biases, both quantities
go to zero with characteristic power laws.

D. Role of photonic dissipation

It is interesting to discuss at this point how the above
results change in the presence of an extra source of photonic
dissipation, such as for example that one coming from a small
coupling to the transmission lines. In order to include this effect
in our treatment, we modify the expression of the (bare) photon
Green’s function to include some coupling to a dissipative
bosonic bath

χR
0xx(ω) = ω0

ω2 − ω2
0 + iω0κ

, (24)

where κ = 2παω0 is the effective dissipation induced by a
coupling α to the modes bkl in Eq. (2). Here, we assumed
the photonic bath to be Markovian, with a cutoff frequency
ωc  ω0. In principle, the computation of the photon self-
energy to the lowest order is unchanged since it only involves
electronic propagators. As a result, we get for the phase of the
transmission coefficient the result

tan ϕ (ω0) = Re�R(ω0)

κ + Im�R(ω0)
. (25)

In Fig. 5, we plot the phase as a function of the bias voltage
for different values of the photonic dissipation. We see that at
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FIG. 5. (Color online) Phase of the transmission coefficient on
resonant versus voltage bias in presence of a finite photonic
dissipation α. Parameters are such that � = ω0 = 1, λ = 0.5�.

finite κ �= 0 the phase crosses over away from the value π/2 to
ϕ → 0. A simple calculation using the scaling of the photonic
self-energy (23) gives the crossover voltage scale V� ∼ κ−1/4.

E. Infinite-U Anderson impurity model

In this section, we briefly consider the U = ∞ limit of the
Anderson impurity model (AIM) and discuss in particular the
computation of the density-density response which is relevant
to obtain the photon self-energy. In the U = ∞ limit, we
can project out all the states with double occupancy of the
fermionic level. This can be done formally by introducing a
representation in terms of an auxiliary fermion and a slave
boson dσ = fσ b† living in a constrained Hilbert space∑

σ

f †
σ fσ + b†b = 1. (26)

In terms of these new degrees of freedom, the AIM Hamilto-
nian becomes [61,62]

HAIM = H0 + εd b†b +
∑
kασ

(Vkασ c
†
kασ b†fσ + H.c.) (27)

with H0 the Hamiltonian of a the two free leads. In order to
account for nonequilibrium effects due to the voltage bias, we
will use a Keldysh slave-boson approach [63,64] and consider
the noncrossing approximation (NCA), corresponding to
the lowest-order self-consistent perturbation theory in the
hybridization and an exact treatment of the constraint. While
in general the NCA equations have to be solved numerically,
the limit of large voltage biases has been studied in detail
in the context of quantum transport and it is now well
understood even at the analytical level [63]. Here, due to
bias-induced decoherence effects, the pseudofermion acquires
a finite damping ��, which is given for ln(eV/TK )  1 by [63]

�� ∼ V

ln2(V/TK )

[
1 + 2

ln(V/TK )
+ · · ·

]
, (28)

TK being the Kondo temperature. This immediately translates
into a narrow peak in the pseudofermion (fσ ) spectral function,
while the slave boson remains incoherent. Since we are
interested in computing the electron density response function,
which is directly related to the density response of the
auxiliary fermion [61,62], we can immediately borrow the
results obtained previously for the noninteracting case and
use them for the U = ∞ case as well, with the difference
that now the lifetime of the fermionic excitation �� is
strongly bias dependent. From this we conclude that since
for ln(eV/TK )  1 one has �∗ 	 eV , i.e., we are always in
the regime where the phase saturates to π/2.

IV. INTEGRATING OUT THE FERMIONS: EFFECTIVE
THEORY FOR THE PHOTON FIELD

To get a further insight, we now derive an effective theory
for the photon in the resonator after integrating out all
electronic degrees of freedom. We will show that (i) fermionic
correlations induce photon nonlinearities as well as noise and
dissipation and (ii) that the photon long-time dynamics can
be described effectively by a Langevin equation for a noisy
Duffing oscillator [65]. Finally, we will use this effective theory
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to interpret the result on the phase spectroscopy obtained in
the previous section.

In order to proceed, we formulate the problem in terms of
Keldysh action [66]. Let us start considering the photon in
the resonator that we describe as a harmonic oscillator with
coordinate and momentum x,p and with Keldysh action

Sph[x(t)] =
∫
K

dt

[
1

2
(∂t x)2 − ω0

2
x2

]
, (29)

where x(t) is a field defined on the two branches Keldysh
contour K or, equivalently, in the right-hand side we have
introduced the two components x± which are defined on the
forward/backward branches, respectively. It is useful for what
will follow to perform a change of variables and introduce the
classical and quantum components of the field x(t) defined as

xc = x+ + x−
2

, (30)

xq = x+ − x−
2

(31)

in terms of which the action becomes

Sph[xc,xq] =
∫

dt 2 xq (ẍc + ω0 xc) . (32)

A few things are worth to notice from this simple result. First,
the Keldysh action in this basis vanishes when evaluated at
xq = 0, i.e.,

Sph[xc,xq = 0] = 0.

This is a general result that is followed essentially by the
unitarity of the evolution and that will hold also for the
more complicated problem of electrons coupled to photons
we will consider now. A second important observation is that
performing the functional integral over the quantum field, we
obtain a functional Dirac delta which constrains the dynamics
on the classical trajectory

ẍc = −ω0 xc. (33)

This result is in general true only perturbatively, in other words,
expanding the Keldysh action to linear order in xq will gives
us the effective quantum dynamics. We will discuss later the
meaning of the higher powers of xq .

We now consider the full problem, including the fermionic
degrees of freedom, and we couple the photon field to the
electronic density so that the full Keldysh action reads as

S = Sph[xc,xq] + SAIM
el [dσ ,d†

σ ] + Sel-ph (34)

where Sph and SAIM
el are, respectively, the photon and the AIM

action while the last term describes electron-photon coupling

Sel-ph = 2λ

∫
dt [nq(t) xc(t) + nc(t) xq(t)]. (35)

Here, we introduced the so-called classical (c) and quantum (q)
basis for other operators as well, such as the electron density.

We can formally define an effective action for the photon
by averaging over electronic degrees of freedom

Seff[xc(t),xq(t)] = Sph[xc(t),xq(t)] + ϒ[xc(t),xq(t)] (36)

with

iϒ = ln

〈
exp

(
2iλ

∫
dt [nq(t) xc(t) + nc(t) xq(t)]

)〉
el

.

(37)

This effective theory describes a photon field coupled to the
nonequilibrium environment generated by the density fluctua-
tions of dot electrons. While the functional ϒ[xc(t),xq(t)] can
not be evaluated exactly, due to the form of the electron-photon
coupling, the theory admits a simple analytical description in
the large-bias regime eV  ω0 [67,68].

We start noticing that, again, the effective action (36)
vanishes when evaluated at xq = 0. This is because by
construction

eiϒ[xc,xq=0] = 〈 ei
∫

dt (n+−n−)xc 〉el = 1, (38)

the last identity follows from the fact that in absence of any
quantum component for the field x we have by construction

〈 nq(t1) . . . nq(tn)〉 = 0 (39)

due to causality. Alternatively, this can be seen explicitly from
the expression of the effective action. This suggests to expand
the effective action in power of the quantum field around xq =
0, while keeping for the time being xc(t) still fluctuating and to
stop the theory to the lowest nontrivial orders. By proceeding
in this way, we obtain

Seff = Sloc + 1

2

∫
dt

∫
dt ′

∑
α=cl,q

xα(t) �αβ(t,t ′) xβ(t ′),

(40)

where Sloc is a term which is purely local in time while

�αβ(t,t ′) = 〈 nα(t)nβ(t ′)〉. (41)

In the next two sections, we will discuss separately the physical
meaning of both terms. We notice that there are no linear terms
nor quadratic terms in the classical field xc in this expansion
since

δSeff

δxc(t)

∣∣∣∣
xq=0,xc(t)

= 2λ 〈 nq (t)〉el = 0, (42)

δSeff

δxc(t)δ xc(t ′)

∣∣∣∣
xq=0,xc(t)

= 4iλ2〈 nq(t) nq(t ′)〉el = 0 (43)

again by construction due to the causality of the theory. As
we mentioned in the previous paragraph, the solution of this
noninteracting problem for a generic time dependent field xc(t)
is still a challenging task to be accomplished in full generality.
However, we can take advantage of the fact that for very
large bias eV  ω0, the dynamics of the electronic degrees
of freedom is much faster than the dynamics of the photon,
with typical time scales

tel ∼ 1/eV 	 tph ∼ 1/ω0.

As a result, we can to leading order assume an adiabatic
approximation and assume that the electronic degrees of
freedom just see a static classical field xc. In other words,
we can evaluate the coefficient of the effective action by
considering a AIM which is in its instantaneous ground
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state corresponding to the configuration of the classical field
xc ≡ xc(t).

A. Electron-induced photon nonlinearities

The first term is local in time and reads as

Sloc =
∫

dt 2 xq [ẍc + ω2
0 xc + F (xc)] (44)

with F (xc) = λ 〈nc〉el . We notice that, in absence of other
terms in Seff , the functional integral over xq would result in
the photon equation of motion ẍc + ω2

0 xc + F (xc) = 0 from

which we can interpret Veff(x) = ω2
0 x2

2 + ∫ x

0 dx ′ F (x ′) as an
effective potential for the photon, that renormalizes the bare
harmonic one. Expanding it around x = 0 we get the general
form

Veff(x) = λ x

2
+ ω2

∗ x2

2
+ η x3 + g x4, (45)

where ω∗, η, g represent, respectively, the renormalized fre-
quency, the anisotropy term, and the effective anharmonicity.
We can obtain analytical expressions for these coefficients in
terms of the parameters of the electronic problem, in particular,
the external gate and bias voltages. Their expressions can be
obtained by differentiating Veff(x) in Eq. (45) and read as for
U = 0, respectively,

ω2
∗ = ω2

0 − λ2

π

∑
α

�α

(ε0 − μα)2 + �2
(46)

and

η = 2λ3

π

∑
α

�α (ε0 − μα)

(ε0 − μα)2 + �2
(47)

and finally the anharmonicity

g = 2λ4 �α

π

∑
α

�2 − (ε0 − μα)2

[�2 + (ε0 − μα)2]3
. (48)

The anisotropy term η is particularly interesting to discuss.
As we see from Eq. (47), this term at zero gate voltage ε0 = 0
reduces to

η(ε0 = 0) = −2λ3

π

∑
α

�α μα

V 2/4 + �2
, (49)

namely, it vanishes for symmetric bias voltages μL + μR =
0. This is indeed not surprising since the anisotropy term
breaks the inversion symmetry x → −x, which is a direct
consequence of particle-hole symmetry of the Holstein model
that holds at ε0 = 0 and μL = −μR . The results discussed
here concern the noninteracting U = 0, but can be extended
to the interacting U = ∞ case in the large-bias regime, as
discussed in the previous section upon substituting � → �� in
Eqs. (46), (47), and (48).

B. Electron-induced photon damping and dissipation

Let us now consider the effects of the other terms in the
effective action which are nonlocal in time. We can distinguish
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FIG. 6. (Color online) Effective theory for the photon. Retarded
Im�R(ω) and Keldysh �K (ω) components of the fermionic-induced
environment (here for U = 0) giving rise to damping and dissipation
for the photon. In all plots (except the right bottom), units are such
that � = ω0 = 1, λ = 0.5�.

two contributions Sfrict and Snoise, which include retardation
effects and read as, respectively,

Sfrict =
∫

dt dt ′xc(t) Im �R
xc

(t − t ′) xq(t ′), (50)

Snoise =
∫

dt dt ′xq(t) �K
xc

(t − t ′) xq(t ′) (51)

with �R,K
xc

(t − t ′) = 2iλ2〈[n(t) ,n(t ′)]±〉el being, respectively,
the retarded (R) and Keldysh (K) components of the density-
density response function of the AIM. We now focus on the
low-frequency behavior of the kernels �R

xc
(ω),�K

xc
(ω).

We start from the retarded component, encoding the
spectrum of density fluctuations. At low frequency ω → 0,
its imaginary part vanishes linearly (see Fig. 6)

Im �R(ω) = γ (xc) ω, (52)

where the low-frequency slope can be computed analyti-
cally for the resonant level model (RLM) case U = 0 and
reads as

γ (xc) = 2 λ2 �

π2

∑
α

�α

[(μα − ε0 − λ xc)2 + �2]2
. (53)

More generally, this result can be also understood by noticing
that, upon integrating out the driven cavity, the problem
becomes reminiscent of an ac driven quantum dot coupled
to fermionic leads [69–71,73] which has been recently
shown to possess an effectively Ohmic dynamical charge
response [57,72,74–79]. A finite-bias voltage does not change
qualitatively this linear behavior and only renormalizes slightly
the slope.

In contrast, the Keldysh component is strongly affected
by a finite-bias voltage which turns the characteristic linear
in frequency equilibrium behavior, imposed by fluctuation-
dissipation theorem at T = 0, into a finite value at zero
frequency (see Fig. 6). We can obtain a full analytical
understanding of this in the case of a biased RLM. Using the
expression for the lesser and greater RLM Green’s function,
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we can write the Keldysh component as

�K (ω; xc) = i
8πλ2

�2

∑
αβ

�α�β

∫
d�A0(�)

× [A0(�+ ω) fα(�)fβ(−�− ω) + (ω ↔ −ω)].

(54)

The low-frequency behavior of this kernel controls the nature
of the noise. It is easy to see already from this expression that
for � → 0, the behavior of �K depends strongly from the bias
voltage. While at zero bias the kernel vanishes as a power law
(see Fig. 2), a finite voltage acts as an infrared cutoff and results
into a finite value at zero frequency �K (ω → 0; xc) ≡ iD(xc),
with

iD(xc) = i
8πλ2

�2
�L �R

∫ eV/2

−eV/2
dω A0(ω) A0(ω), (55)

which plays the role of an effective diffusion coefficient D for
the dynamics of the photon. A simple calculation gives

D = 4λ2 �L�R

π�3

∑
a=±

arctan

(
eV/2 − aε0 − aλ xc

�

)

+ 4λ2 �L�R

π�3

∑
a=±

� (eV/2 − aε0 − aλ xc)

(eV/2 − aε0 − aλ xc)2 + �2
.

Quite interestingly, we see that the diffusion coefficient
vanishes linearly with the bias voltage as eV → 0:

D(xc; V ) ∼
(

8λ2�L�R

π�2
(
(ε0 + λ xc)2 + �2

)
)

eV, (56)

which suggests in some sense that the bias voltage is playing
the role of an effective temperature Teff ∼ eV . For larger values
of the applied bias, the diffusion coefficient saturates to a
constant value, independent on the oscillator position xc, which
reads as

D(xc) ∼ 4λ2�L�R

�3
. (57)

Again, as in the previous section, one can extend the above
discussion to the interacting U = ∞ case in the large-bias
regime upon substituting � → �� in the above results.

Finally, if we translate the above results back in the time
domain, we can write the effective action as

Seff = Sloc +
∫

dt γ (xc) xq ẋc + i

2

∫
dt D(xc)x2

q (t). (58)

This immediately shows that the retarded component of the
electron density fluctuation gives rise to a friction term in
the photon effective action with damping coefficient γ (xc),
while the Keldysh term plays the role of a noise source with
effective diffusion coefficient D(xc). To make explicit the
connection with a classical stochastic Langevin dynamics, we
introduce the noise field ξ (t) through a Hubbard-Stratonovich
decoupling [66] and then perform the integral over the quantum
component which gives the classical dynamics

ẍc = −ω0 xc − F (xc) − γ (xc)ẋc + ξ (t) (59)

with 〈ξ (t) ξ (t ′)〉 = D(xc)δ(t − t ′) a white multiplicative noise.
If now one couples this system to a coherent mode of the

photonic transmission line playing the role of an explicit
driving term [see Eq. (2)], and with the force field F (x) de-
riving from the effective anharmonic potential in Eq. (45), the
above dynamics describes a Duffing oscillator [65] driven by
noise [80], which has recently attracted interest in the context
of circuit QED [81,82] and nanomechanical systems [83].

C. Effective temperature, photon occupation,
and dissipated electronic power

We conclude this analysis by discussing in this section
the nature of the environment generated by fermionic density
fluctuations. In order to do so, we start recalling that for a
generic bosonic Green’s function g(�) in thermal equilibrium
the following fluctuation-dissipation relation (FDR) holds
between the Keldysh and the retarded/advanced components:

gK (�) = coth
β�

2
[gR(�) − gA(�)], (60)

where β = 1/T is the temperature of the system. In a generic
out-of-equilibrium condition, this relation does not hold,
however, it is still interesting to define an effective distribution
function

f (�) = gK (�)

gR(�) − gA(�)
(61)

and to discuss its frequency dependence. In particular, a
singular behavior at low frequency � → 0,

F (� → 0) = 2Teff/�, (62)

it is often used to define an effective temperature for the out-
of-equilibrium system, a concept that has emerged in many
different contexts both classical and quantum [84–89]. In the
case of interest here, the photon resonator is coupled to the
effective bath induced by the electronic density fluctuations,
encoded in the functions �K (ω),�R(ω). We define therefore
a photon effective distribution function as

F (ω) = �K (ω)/Im �R(ω). (63)

We plot in Fig. 7 the behavior of this distribution function.
It is easy to check analytically that, at zero bias eV = 0, the
bosonic self-energy satisfies the FDR, i.e.,

�K (�) = coth
β�

2
[�R(�) − �A(�)], eV = 0. (64)

However, at finite bias, a characteristic bosonic 1/ω singularity
emerges at low frequency, that allows us to define a bias-
dependent effective temperature Teff . In particular, using the
definition (62) and the results for the diffusion coefficient and
the damping

�K (� → 0) = iD(V ), (65)

Im�R(� → 0) = γ (V )�, (66)

we obtain an effective equilibrium result for the effective
temperature

Teff(V ) = D(V )

4γ (V )
(67)

that we plot in the inset of Fig. 7 as a function of the bias
voltage. We see the small- and large-bias behaviors (compared
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FIG. 7. (Color online) Effective theory for the photon. Low-
frequency behavior of the distribution function and voltage-induced
effective temperature (left), giving rise to an effective thermal
occupancy for the photon at large bias (right, inset), compared to
the electronic dissipated power Wel = IelV . In all plots (except the
right bottom), units are such that � = ω0 = 1, λ = 0.5�.

to the electronic lifetime �) are characterized by two different
power laws Teff ∼ V at small bias when Teff is almost set by the
noise D(V ) ∼ V , while Teff ∼ V 4 at large voltage when the
noise as we have seen saturates while the dissipation decays
fast γ (V ) ∼ 1/V 4.

Quite interestingly, not only the bath distribution function,
but also the photon occupation 〈Nph〉 is effectively thermal at
large voltages (see right panel). In order to clarify this point, we
now compute the photon occupation as a function of the bias
voltage. Let us start considering the photon occupation Nph =
〈 a† a〉. This can be obtained from the Keldysh component of
the photon Green’s function as

1 + 2 Nph = 〈 x2〉 = i

2π

∫
dω χK (ω). (68)

In absence of electron-photon interaction λ = 0, we have

χK
0 (ω) = −π i [δ(ω − ω0) − δ(ω + ω0)] coth

ω

2T
(69)

from which we immediately get the thermal occupation Nph =
[exp(ω0/T ) − 1]−1.

In presence of a finite interaction λ �= 0, the expression for
the Keldysh component generally reads as

χK (�) = χR(�)
[(

χR
0

)−1
χK

0 (�)
(
χA

0

)−1 + �K (�)
]
χA(�),

(70)

where the retarded/advanced component reads as

χR,A(�) = 1(
χ

R,A
0

)−1 − �R,A(�)
, (71)

while �R,A,K are, respectively, the retarded, advanced, and
Keldysh components of the photon self-energy, which we
computed to lowest order in perturbation theory in λ as already
discussed in previous sections.

It is now easy to see that for finite λ the first term in Eq. (70)
gives a vanishing contribution to the photon occupation.
Therefore, for the sake of computing the photon occupation,

we may write

1 + 2 Nph = i

2π

∫
dω χR(ω) �K (ω) χA(ω). (72)

For weak coupling, the retarded photon Green’s function
is significantly different from zero only close to ω = ±ω0

(neglecting small-frequency renormalization effects), while
the Keldysh component of the self-energy varies smoothly
around ω = ±ω0. This suggests to write the retarded and
advanced photon Green’s function as

χR(ω) = ω0(
ω2 − ω2

0

) + iω0 �R
im(ω0)

(73)

and to evaluate the above integral to get

1 + 2 Nph ∼ �K (ω0)

�R
im(ω0)

. (74)

In Fig. 7, we plot the behavior of the photon number as a
function of the voltage bias, respectively, for weak and large
biases and for different photon frequencies ω0. We see that
the small-bias regime features a clear threshold behavior, in
accordance with previous results [51], namely, the photon
occupation sets in only as V ∼ ω0. This has to be understood
in terms of energetic balance to excite a photon in the resonator
by means of conduction electrons with energy eV above the
Fermi sea. In contrast, the large-bias regime shows a steep
increase of the photon number, with a power-law behavior
that can be understood in terms of an effective temperature
description. Indeed, as we have seen, �K (ω0) can be identified
with the noise (or diffusion coefficient) D(V ) while �R

im(ω0) ∼
γ (V ) ω0 so that we have

Nph ∼ D(V )

γ (V )ω0
∼ Teff

ω0
∼ V 4 (75)

as we discussed in the previous section. Finally, we would
like to clarify the relation between the photon occupation as
a function of the bias voltage and the dissipated electronic
power. In order to do this, we consider the weak coupling
case and proceed by perturbative evaluation of the photon
and electron Green’s functions. It is tempting to compare the
photon-dissipated power Wph = ω0 Nph with the electronic
power due to the current flow, that generally reads as Wel =
IV . However, this identification reveals a rather different
behavior both at small- and at large-voltage biases. Indeed,
for vanishing bias eV → 0 we expect

Wel ∼ G0 V 2, V 	 � (76)

while for large biases, when the current saturates we would
expect

Wel ∼ I∗ V, V  �. (77)

These different power laws, that should survive also in
presence of electron-photon coupling, are difficult to reconcile
with the result for the photon occupation. We finally remark
that at higher frequencies, departures from this effective
equilibrium appear and the resulting semiclassical stochastic
dynamics in this nonequilibrium environment [90] deserves
further investigations.
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V. DISCUSSION

We can finally interpret the phase spectroscopy in light of
the effective photon model valid at large bias. In this regime,
the nonlinearity is only subleading and the main effects due to
fermions are a many-body light frequency shift and a damping,
so that one can write the photon propagator as

χR
xx(ω) = 1

ω2 − ω2∗ − iω0γ
(78)

resembling the spin susceptibility of an Ohmic spin-boson
model for ω ∼ ω� [41]. This renormarlized frequency ω�

can be identified with a many-body Lamb shift. The crucial
observation is now that, quite differently from conventional
regimes, a large bias pushes the system into the regime
|ω0 − ω∗|  γ , from which a phase of π/2 immediately
follows on resonance.

We stress that this result is sensitive to external sources
of decoherence for the photonic system, such as for example
those provided by the auxiliary transmission lines. Indeed, the
presence of a finite dissipation κ would contribute to the photon
damping with a finite value even in the large-bias regime
and then diminish the phase of the transmitted photon. As
a result, one should expect the phase to reach a maximum
close to π/2 and then to cross over to zero for sufficiently
large-voltage biases V  V�(κ). Yet, for small values of the
photon dissipation, we expect a sizable window of voltages
where the phase stays close to π/2, as confirmed by a

direct evaluation of the transmission coefficient in presence
of dissipation.

VI. CONCLUSIONS

In this paper, we discussed the physics of a hybrid quantum
impurity model with interacting electrons and photons. We
have shown that the phase of the transmitted photon at large-
voltage biases approaches the value of π/2 and we interpreted
this result in light of an effective photon theory obtained
integrating out the electronic degrees of freedom. It would be
interesting to explore the connection between this result and
the electronic (Friedel) phase shift at low bias, related to the
Kondo effect. Finally, we have discussed the robustness of the
above result with respect to photon dissipation and shown that
this hybrid system can be used as a simulator of the stochastic
Duffing oscillator in relation with chaos.
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A. Browaeys, L. Henriet, C. Mora, J. Petta, P. Dutt, M.
Filippone, L. Messio, O. Parcollet, Z. Ristivojevic, P. Simon,
J. Gabelli, J. Esteve, and H. Tureci for interesting discussions
and comments related to this work. This work has been funded
by the LABEX PALM Paris-Saclay, grant Quantum Dyna and
by DOE through Grant No. DE-FG02-08ER46541 (K.L.H.).

[1] J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73,
565 (2001).

[2] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons
and Atoms: Introduction to Quantum Electrodynamics (Wiley,
Hoboken, NJ, 1997).

[3] Y. Yamamoto, F. Tassone, and H. Cao, Semiconductor Cavity
Quantum Electrodynamics, 1st ed. (Springer, Berlin, 2000).

[4] R. J. Schoelkopf and S. M. Girvin, Nature (London) 451, 664
(2008).

[5] E. Akkermans and G. Montambaux, Mesoscopic Physics of
Electrons and Photons, 1st ed. (Cambridge University Press,
New York, 2007).

[6] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby,
M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard,
Science 309, 2180 (2005).

[7] I. B. Mekhov, C. Maschler, and H. Ritsch, Nat. Phys. 3, 319
(2007).

[8] J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson,
J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A.
Wallraff et al., Nature (London) 449, 443 (2007).

[9] J. Suffczynski, A. Dousse, K. Gauthron, A. Lemaitre, I. Sagnes,
L. Lanco, J. Bloch, P. Voisin, and P. Senellart, Phys. Rev. Lett.
103, 027401 (2009).

[10] M. R. Delbecq, L. E. Bruhat, J. J. Viennot, S. Datta, A. Cottet,
and T. Kontos, Nat. Commun. 4, 1400 (2013).
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A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko et al., Phys. Rev.
Lett. 105, 140502 (2010).

[17] Y. Dumeige, R. Allaume, P. Grangier, F. Treussart, and J.-F.
Roch, New J. Phys. 13, 025015 (2011).

[18] K. D. Petersson, L. W. McFaul, M. D. Schroer, M. Jung, J. M.
Taylor, A. H. Houck, and J. R. Petta, Nature (London) 490, 380
(2012).

[19] T. Frey, P. J. Leek, M. Beck, J. Faist, A. Wallraff, K. Ensslin,
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