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In rare-earth (R) ferroborates, RFe3(BO3)4 with R = Eu, Gd, and Tb, the magnetoelectric (ME) responses
appear to stem from both the antiferromagnetic order of the iron (Fe) spins and the magnetic moments on
the R ions. We measured the electric polarization (P ) along the a axis while rotating a magnetic field (H )
around the a axis and found that the target compounds show mutually distinctive H -direction dependencies.
EuFe3(BO3)4 (R = Eu) shows an almost constant spontaneous P with a slight modulation when H is slanted
from the c axis. The H -angle (θH ) dependence of the P can be described by a formula P = P0 − � sin2 θH . As
for GdFe3(BO3)4 and TbFe3(BO3)4, they show highly anisotropic θH dependence of P , which characterizes the
respective ME responses from their R magnetic moments. In certain regions of θH , the P can be described by
P = P0 − K sin 2θH and P = P0 ∓ � sin θH for R = Gd and Tb, respectively. We devised a theory for the ME
response of the individual magnetic ions in a RFe3(BO3)4 crystal and applied it to these compounds focusing on
their local symmetry and their ground-state multiplet structures. The above formulas successfully reproduce the
observed results as the summation of P from each magnetic subsystem, which in turn enables us to assign the first
and second terms to the spontaneous P due to a collinear antiferromagnetic ordering of the Fe spins and the ME
response of the R ion under H , respectively. The thermal and H -induced evolutions of the magnetic-ion resolved
P quantitatively agree with the theoretical predictions, ensuring the relevant microscopic ME mechanism for each
magnetic ion. The measurement of angular dependence of P is particularly useful to decompose the overlapped
ME responses into the respective origins in the system with multiple magnetic subsystems.
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I. INTRODUCTION

The physics of cross-correlated phenomena between mag-
netism and electricity in solids has a long history since the
theoretical and experimental studies on the linear magnetoelec-
tric (ME) effect [1–3]. Recent discoveries of multiferroicity
in frustrated magnets including helimagnetic ferroelectric
TbMnO3 [4] and the strong ME coupling in noncentrosym-
metric magnets [5] have stimulated revived interest on the
interrelation between ordered magnetic structure and dielectric
property [6,7]. While there were extensive studies on the
ME responses in solids, the understanding of the atomic
mechanism of spin-induced electric polarization (P ) has been
limited in compounds with 3d transition metals. The behavior
of the system with different kinds of magnetic ions coexisting
such as 3d and 4f elements has remained elusive.

One of the examples of such materials is the family of rare-
earth (R) ferroborates, RFe3(BO3)4, which have received much
attention because of the diverse ME responses with respect to
R ions such as R = Y, Pr, Nd, Sm, Gd, and Tb [8–11]. The
crystal structure of RFe3(BO3)4 is shown in Fig. 1(a). Iron
(Fe) ions are linked to form a helicoidal chain along the c

axis [Fig. 1(b)]. R ions are located between three equivalent
Fe chains [12,13]. Studies on specific heat [14], magnetization
(M) [10,15,16], magnetic resonance [17,18], and neutron/x-
ray scattering [19–22] have revealed that the Néel temperatures
(TN) are at 30 ∼ 40 K and their magnetic structure is basically
of two-sublattice type with Fe spins ferromagnetically aligning
in the ab plane and antiferromagnetically stacking along the c

axis. The R ion with a magnetic moment critically influences

the magnetic ground state, especially the direction of the Fe
spins through the f -d coupling.

In many cases of RFe3(BO3)4, the observation of a
spontaneous P under a magnetic field (H ) along the crystal
axes ascertains the ME nature of these compounds. However,
the P measurement alone provides only limited information
on the microscopic origins of the H -induced P because
the possibly two components of the ME responses from
the different magnetic subsystems are superimposed. While
there was a group theoretical approach to Fe-spin-induced
P or discussion about possible linear ME effect on R site
[8,23], the contribution from the other subsystem was ignored
in the respective considerations. In this work, we show the
effective methodology to solve such an issue, specifically
decomposition of P into components for each magnetic
subsystem. We measured P under rotating H in ferroborates
with various R ions and observed the mutually different
H -angle dependencies of P . We analyzed the ME responses
of the individual magnetic ions focusing on their quantum
mechanical features and found that the observed behaviors
are reasonably described by the summation of P from each
magnetic ion and that the magnetic anisotropy of the R ion
discriminates the respective ME responses. The evolution of
the magnetic-ion resolved P with temperature (T ) and H

quantitatively agree with the theoretical predictions, which
ensures the relevant ME mechanism for each magnetic ion.

In this work, we focus on the three kinds of R ferroborates
for R = Eu, Gd, and Tb. Their magnetic properties have been
extensively investigated by various experimental methods and
the P along the a axis under H ‖ c or H ⊥ c is observed
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FIG. 1. (Color online) (a) Crystal structure of RFe3(BO3)4 be-
longing to the space group R32 (boron ions are not shown). The b′

axis is defined for convenience, which intersects at right angles with
the one of the a axes and the c axis. A windmill-like triangle indicates
a threefold screw axis (31), which is one of the symmetry elements
for an Fe helicoid (Fe1 ∼ Fe3). (b) The schematic illustration of the
collinear antiferromagnetic structure on an Fe helicoid viewed from
the c axis. Red arrows are the spins at the Fe sites (S1 ∼ S3), and
small green arrows indicate the local spin-induced electric dipole
moments ( p1 ∼ p3). A large green arrow is the summation of them
(PFe). The C2 indicates the twofold rotation symmetry along the a

axis at the Fe2 site. (c) A RO6 polyhedron in the R32 structure. The
C2 and the C3 are symmetry elements at the R site: a twofold and
the threefold rotation axis, respectively. A large black arrow indicates
the R magnetic moment (SR). The spherical coordinates φ and θ are
defined as the polar and the azimuth angle, respectively.

[8–10,24,25], which characterizes their magnetoelectricity.
Figures 2(a)–2(h) reproduce the H-T phase diagrams and
the schematic illustrations of the magnetic structures of the
corresponding phases. We plot here the positions of anomalies
of M and P measured at various H and T with our own
samples, which are consistent with the previous reports
[8–10,15,16,25].

EuFe3(BO3)4 has an antiferromagnetic order below TN =
34 K [14,26]. The anisotropic magnetic susceptibilities suggest
the easy-plane magnetic ordering of Fe spins [10]. While the
magnetic structure in the low-H region (phase I) including the
ground state has not been clarified, nonmonotonic M-H curves
under H ⊥ c suggest that the in-plane H reorients the Fe spins
perpendicular to the H [Fig. 2(b)] to induce phase II.

GdFe3(BO3)4 undergoes successive antiferromagnetic tran-
sitions at TN = 37 K and TSR = 9 K with H = 0 [Fig. 2(f)]
[15,17,27]. In phase I, it is suggested that both Gd and Fe spins
lie almost in the ab plane [8,17], yet a recent x-ray scattering
study reported the incommensurability with a long wavelength
(∼370 nm) and the canting of the spins towards the c axis [19].

FIG. 2. (Color online) (a) The H -T phase diagram for
EuFe3(BO3)4 under H ‖ b′, determined by various T and H scans of
M . Open (filled) characters are taken from the T - or the H -increasing
(decreasing) scans. PM indicates the paramagnetic phase. (b) The
schematic illustration of the magnetic structure of phase II. Red �
(⊗) indicates that the Fe spin (SFe) is parallel (antiparallel) to the a

axis. (c)–(i) Corresponding H-T phase diagrams for GdFe3(BO3)4 and
TbFe3(BO3)4 under H ‖ b′ or H ‖ c and the schematic illustrations
of the magnetic structures. In (c), the black diamonds are taken from
Ref. [25]. In (f), the dashed lines are the presumed phase boundary
between the PM and the magnetic-ordered phase III. The right panel
of (i) indicates the side view of the Gd sites with magnetic moments.

Below TSR, the system goes to phase II [Fig. 2(f)], in which
both Gd and Fe spins are reoriented along the c axis [Fig. 2(g)].

In phase II, either in-plane or out-of-plane H drives spin-
flop transitions into phase III [Fig. 2(f)] and phase I′ [Fig. 2(h)],
respectively [15]. It is suggested that in both phases the Fe spins
flop to the ab basal plane with their moments perpendicular
to H [8,17,18,28]. The magnetic structure of phase I′ is
schematically illustrated in Fig. 2(i), which was theoretically
suggested in Ref. [17] with a simple spin Hamiltonian for Gd
and Fe ions. The Gd spins are noncollinear as illustrated in the
right panel of Fig. 2(i) due to the balance between the Zeeman
term and the in-plane f -d interaction, i.e., molecular field
from the Fe subsystem. While the relationship between phases
I and I′ is not clear because neither an incommensurability
under H ‖ c nor a phase boundary has been found as yet, we
use the term “phase I′” only when a crystal is under H .
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TbFe3(BO3)4 shows the antiferromagnetic order below
TN = 40 K, in which magnetic moments of both Fe and Tb ions
are parallel to the c axis [Fig. 2(d)] [16,20]. Metamagnetic-like
transition into phase II under H ‖ c [Fig. 2(c)] was also
reported. In this phase, it is suggested that the Tb subsystem
ferromagnetically polarizes along the c axis while the Fe
subsystem is reoriented to the ab basal plane [Fig. 2(e)]
[16,20,22].

The format of this paper is as follows: Section II shows
theoretical studies on the ME couplings of an ordered Fe
subsystem and that of a R-site magnetic moment. We treat their
magnetic moments as operators to deduce the formulas of the
spontaneous or the H -induced P as functions of T and H .
Applications to the specific R ferroborates are also performed
focusing on the features of the ground-state multiplets of their
4f electrons. The experimental details and the results are
given in Secs. III and IV, respectively. Based on the preceding
microscopic theories, the observed P are decomposed into
components for respective magnetic subsystems and the
identifications of their origins are discussed. The conclusion
is given in Sec. V.

II. QUANTUM THEORY FOR MAGNETOELECTRIC
RESPONSE IN RFe3(BO3)4

Our basic idea is that the ME responses of these systems
can be expressed by the summation of the P from respective
magnetic subsystems. In this section, we theoretically consider
the ME coupling for each magnetic ion. Specific formulas for
the spin- or H -induced P are given as functions of T and H ,
which are used to reproduce the observed ME responses in the
respective compounds.

Note that our target compounds show structural phase
transitions at the temperature TS (TS = 58 K [26], 156 K [29],
and 192 K [16] for R = Eu, Gd, and Tb, respectively) with
a slight distortion of one of the three Fe helicoidal chains
and symmetry lowering of R sites from D3 into C2, which is
characterized by the changing of the space group from R32 to
P3121 [13,14,29]. In the present theory, we ignore the influence
of the transition for simplicity and treat the crystal in the high
symmetric space group R32; this will be justified because the
crystal keeps the same point group D3 through the structural
transition, which appears not to change the macroscopic model
parameters and hence not to alter the conclusion.

A. Electric polarization induced by Fe-spin ordering

First, we discuss the contribution of the Fe subsystem to
the spontaneous P . The emergence of P on the background
of the in-plane antiferromagnetic ordering of the Fe spins can
be justified from the viewpoint of symmetry. The magnetic
order of the Fe spins, for example, along one of the a axes
eliminates the threefold rotational symmetry from the set of the
D3 symmetry elements. As a result, the crystal goes to a polar
point group C2, which allows the P along the a axis [Fig. 1(b)].
While the same conclusion was obtained with the Landau’s
free-energy expansion by the antiferromagnetic order param-
eter L of the Fe spins [8], there has been less discussion on
the microscopic origin of the P . As for the candidates of
the microscopic origin for spin-induced P on transition-metal

ions, three different mechanisms are known: the exchange
striction mechanism [30], the inverse Dzyaloshinskii-Moriya
or spin-current mechanism [31,32], and the spin-dependent
metal-ligand (d-p) hybridization mechanism [33]. The first
two of them are involving the neighboring-spin correlation
through a magnetic order such as a four-sublattice (↑↑↓↓)
structure or a helimagnetic order, whereas the last one is
originating from a spin moment at a single site. In the present
case, the two-sublattice antiferromagnetic order with collinear
spin alignment cannot induce the P by the first two of them.
Thus, we only focus on the last one with taking account of its
quantum mechanical nature, which gives a theoretical formula
Eq. (8) for the Fe-induced P .

In the scenario of the d-p hybridization mechanism, the
hybridization among a transition metal d orbital and a ligand
p orbital is modulated by a d-spin through the spin-orbit
interaction. The existence of the spin-dependent electric
dipole moment p along the metal-ligand bond direction is
predicted as

p = t(e · S)2e, (1)

where S is a spin on the metal site, e a unit vector along
the bond, and t a coupling constant related with the d-p
hybridization and the spin-orbit interaction. Summation of p
should be taken for all relevant bonds surrounding the metal
ion site. Note that this summation remains finite only when
the site symmetry of the metal ion belongs to the class of the
piezoelectric point group. In the case of the present crystal, a
unit cell contains three types of Fe sites (Fe1 ∼ Fe3), which
are copies of each other in the threefold screw (31) symmetry
along the c axis [Fig. 1(a)]. The Fe ion is surrounded by an O6

octahedron and has a site symmetry of piezoelectric C2. Thus,
magnetic moments on the Fe sites are expected to induce local
p through the d-p hybridization mechanism.

The actual functional form of the pn for the Fe nth site
(n = 1, 2, and 3) with respect to the Sn can be obtained by
calculating Eq. (1) with the structural information of an FeO6

octahedron. We skip this cumbersome process and instead
introduce a modified form as follows:

pni =
∑

j,k=x,y,z

τ n
ijk〈Ŝnj Ŝnk〉 − p′

ni . (2)

We retained the quadratic form of the Sn as Eq. (1), but the
structural detail is embedded in the tensor τn

ijk . Moreover,

we treat the spin moment as an operator (Ŝn). By taking
the statistical average with a single-site spin Hamiltonian Ĥn

of the nth Fe ion as indicated by the brackets 〈 〉, the T

dependence of P can be deduced. The constant value p′
ni is

needed because Eq. (2) should be zero in a paramagnetic state
under H = 0. Let us now take Ĥn = gμBHmolŜnx , that is,
the spin Hamiltonian under a molecular field Hmol (∝〈Ŝnx〉)
for the antiferromagnetic order with the Fe spins along the
a (x) axis [Fig. 1(b)]. We neglect the single-site anisotropy
and the dipole-dipole interaction because they give anisotropy
fields at most 103 Oe, which are negligibly small compared
with the exchange field (Hmol ∼ 105 Oe) [17,18]. We also
omitted the f -d coupling with the R moment and Zeeman
term, for simplicity of calculation. Actually, its magnitude is
at most 70 000 Oe [28] in GdFe3(BO3)4 and 38 000 Oe [26]
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in TbFe3(BO3)4, which is not so serious as the predominant
Fe-Fe coupling.

Since the Ĥn is cylindrically symmetric around the x axis,
only the x component of the pni of the following form remains,

pnx = τn
xxx

〈
Ŝ2

nx

〉 − p′
nx. (3)

For a crystal of volume V containing 3N Fe ions, the
macroscopic P derived from the Fe subsystem (PFe) is
represented by PFe = N

V
( p1 + p2 + p3), being parallel to the

x axis, and given as

P Fe
x = N

V

∑
n=1,2,3

(
τn
xxx

〈
Ŝ2

nx

〉 − p′
nx

)
. (4)

For the computation of the statistical average, we use the
formula [34] 〈

Ŝ2
nx

〉 = S2
[
B2

S(u) + B ′
S(u)

]
, (5)

where BS(u) is the Brillouin function for the spin quantum
number S = 5

2 . The variable u is related with TN(∝Hmol)
and is computable by solving the following equations self-
consistently at each T [35]:

u = 3TN〈Ŝx〉
T (S + 1)

, (6)

〈Ŝnx〉 = SBS(u). (7)

Substituting Eq. (5) into Eq. (4), the formula for the T

dependence of the spontaneous P induced by the collinear
antiferromagnetic order of the Fe subsystem is deduced as

P Fe
x = τ

(
S2

[
B2

S(u) + B ′
S(u)

] − S + 1

3S

)
, (8)

where τ ≡ N
V

∑
n τ n

xxx . The factor S+1
3S

is necessary for the
same reason for the introduction of p′

ni . Note that PFe ‖ a is
consistent with the above discussion on the symmetry of the
magnetic structure. We will apply this formula for the interpre-
tation of the following experimental results. Practically, TN in
u is set for each RFe3(BO3)4 and only the unknown parameter
τ will be adjusted so as to reproduce the experimental data.

B. ME coupling at the R site

The variation in the magnitude of the observed P among
various RFe3(BO3)4 indicates that the magnetic moment at
the R site as well as the magnetic order of the Fe subsystem
contributes to the ME response. While the possible ME
properties of R ions were previously discussed in the studies
of the conventional linear ME effect by Rado [36], the detailed
understanding remains elusive. In this section, the general
formula for the R-induced P and its applications to specific
ions (R = Eu, Gd, and Tb) in RFe3(BO3)4 under H are given.

The total angular momentum J (= L + S) becomes a good
quantum number for the electronic structure of a 4f element
within the LS coupling scheme. When the R ion is in a crystal,
the electrostatic potential from the surrounding ions splits
and shifts the degenerate 2J + 1 levels and only a few of
these levels often remain nearly degenerate as the ground-state
multiplet. In such a case, we use pseudospin operators (ŜR

x ,ŜR
y ,

and ŜR
z ), which only act among the multiplet. Here, we assume

that p at the R site can be described in the same manner of
Eq. (2) by replacing Ŝi with Ŝ

R
and/or H . The P derived by

the N R ions (PR) can be represented by

P R
i = N

V

∑
j,k=x,y,z

(
κijk

〈
ŜR

j ŜR
k

〉 + γijk

〈
ŜR

j

〉
Hk + λijkHjHk

)
.

(9)

The first term corresponds to the spin-induced spontaneous
P , which may originate from the similar d-p hybridization
mechanism for transition-metal ions. The second and the third
terms are related with the first- and second-order ME effects,
respectively. The ME coupling tensors κijk , γijk , and λijk are
common for all the R ions in the crystal, but their magnitudes
vary with the kind of R. Hereafter, we omit the scaling
parameter N

V
, which can be absorbed into the parameters κijk ,

γijk , and λijk . The brackets 〈 〉 indicate the statistical average
of the operators taken by a single-site spin Hamiltonian of the
R ion.

Mutual relationships among the nonzero components of
the respective tensors κijk , γijk , and λijk can be derived by
the group theory [37]. For example, the symmetry of κijk is
the same as that of the piezoelectric tensor. Specifically, in a
RFe3(BO3)4 crystal with the R32 symmetry, the site symmetry
of a R ion is piezoelectric D3. In such a case, components
of the tensors with i = x are linked with each other by the
relationships such as κxxx = −κxyy (≡κ ′), κxyz = κxzy (≡ κ

2 ),
γxxx = −γxyy (≡γ ′), γxyz (≡γ ′′), γxzy (≡γ ), λxxx = −λxyy

(≡λ), and λxyz = λxzy (≡ λ′
2 ), and otherwise zero. Here, we

define a Cartesian coordinate for a RO6 polyhedron as in
Fig. 1(c). In the remaining part of this section, we will focus on
each ground-state multiplet of a R ion for R = Eu, Gd, and Tb
to deduce the specific forms of their P R. Especially, P R

x with
H in an arbitrary direction will be given, which is applicable
to the analysis of the following experimental results on the P

along the a (x) axis under rotating H in the b′c (yz) plane.
For EuFe3(BO3)4, Eu ions contribute to P as

P Eu
x = λ

(
H 2

x − H 2
y

) + λ′HyHz. (10)

The terms proportional to κijk and γijk were removed since we
do not need any pseudospin operator for the ground state J = 0
of Eu3+. The remaining λ terms may be due to the H -induced
moment, which corresponds to van Vleck paramagnetism
through the excited multiplet 7F1.

In the case of GdFe3(BO3)4, a Gd3+ ion has a spin of S = 7
2 ,

which is described by a real-spin operator, Ŝ
Gd

. The specific
formula of P Gd

x is written as

P Gd
x = κ ′〈Ŝ2

x − Ŝ2
y

〉 + κ〈Ŝy Ŝz〉 + γ ′(〈Ŝx〉Hx − 〈Ŝy〉Hy)

+ γ ′′〈Ŝy〉Hz + γ 〈Ŝz〉Hy. (11)

Here, we omit the λ terms, which are assumed to be much
smaller than the other two real-spin related terms. To take a
statistical average we need a spin Hamiltonian of the Gd ion,
which will be discussed in Sec. IV B.

The Ising nature of a Tb3+ ion in TbFe3(BO3)4 is described
by pseudospin operators with S = 1

2 , which are proportional
to the Pauli matrices. Indeed, a recent spectroscopic study of
this compound [38] revealed that its ground state is composed
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of a non-Kramers doublet with the lowest excited state lying
sufficiently high (by ∼200 cm−1) above them. The resultant
formula is

P Tb
x = γ 〈Ŝz〉Hy. (12)

We omitted the terms κijkŜ
Tb
j ŜTb

k because they become
constant, and also omitted the λ terms for the same reason
in Eq. (11). As for the γ terms we only have to treat the above
one, because a huge Ising anisotropy (gc ∼ 18, ga ∼ 0) [38]
confines the Tb moment along the z (c) axis. Note that the
pseudospin operator does not work as an axial vector because
the Tb3+ ion is a non-Kramers ion. As Griffith [39] warned
to use the pseudospin operators to describe the magnetic
and spectroscopic properties of such system, we also need
a special care in the discussion of ME responses. Fortunately,
the validity of the form of Eq. (12) was previously proved in
the context of the electric-field (E) effect in paramagnetic res-
onance within the ligand-field theory by Washimiya et al. [40].

With these specific forms of P R, each RFe3(BO3)4 is
expected to show anisotropic P under rotating H . In the
following section, we report on the mutually distinctive ME
responses, which will be decomposed into origins for each
magnetic subsystem with the help of the above formulas.

III. EXPERIMENTAL METHODS

Single crystals of RFe3(BO3)4 (R = Eu, Gd, and Tb) were
grown from flux of [100 − n] mass %(Bi2Mo3O12 + pB2O3 +
qR2O3) + n mass %[RFe3(BO3)4] composition with n = 25,
p = 3, and q = 0.6 to grow EuFe3(BO3)4, with n = 25, p =
2, and q = 0.6 to grow GdFe3(BO3)4 [41], and with n = 25,
p = 2.5, and q = 0.5 to grow TbFe3(BO3)4 [20]. In each case,
the flux with a total mass of 60 g was prepared in a cylindrical
platinum crucible by successive melting of (Bi2O3+MoO3) at
600 ◦C and (B2O3 + R2O3+Fe2O3) at 1000 ◦C. The flux was
kept at 1000 ◦C for several hours, and the flux temperature was
gradually decreased to 860 ◦C. The prismatic green crystals
with size of 2–5 mm were obtained.

The orientation of the crystals was determined by Laue
x-ray diffractometry. The crystal surfaces were assigned to
the combination of rhombohedra {101̄1} and trigonal prisms
{21̄1̄0} and {2̄110}. Here, the sense of the rhombohedra is
tentative just for the definition of the rotational direction of the
H . For polarization measurements the crystals were polished
with the end faces perpendicular to the a axis and silver paste
was painted on the two parallel surfaces as the electrodes. P

was deduced by the time integration of the polarization current
measured with a constant rate of H rotation (2 ◦/sec) or H

sweep (80 Oe/sec). The H was rotated around the [21̄1̄0] (a)
axis. The rotational direction of the H is defined as clockwise
when it is rotated from the [0001] (c) axis towards the [011̄0]
(b′) axis. M was measured using a Quantum Design magnetic
property measurement system (MPMS) and physical property
measurement system (PPMS).

IV. RESULTS AND DISCUSSION

A. ME responses in EuFe3(BO3)4

We begin with the results on EuFe3(BO3)4. This is because
its phase diagram [Fig. 2(a)] and the predicted ME response

FIG. 3. (Color online) (a)–(d) P along the a axis measured at
various T with μ0H = 7 T as functions of the angle of the H

(θH ). The solid curves are fits with Eq. (13). (e) The schematic
illustration of three equivalently stable magnetic domains under
H ‖ c. Corresponding PFe are indicated. (f) The unique collinear
magnetic structure chosen under H ‖ b′.

of a Eu ion [Eq. (10)] are simple compared with those of the
other two compounds with the rare-earth moment. The P along
the a axis was measured in rotating H around the a axis for
EuFe3(BO3)4. Figures 3(a)–3(d) show Pa as functions of the
H angle (θH ), measured at 7 T and at various T . The θH is
defined as the angle from the c axis to the H when the H is
rotated in a clockwise manner. Note that the magnitude of H is
sufficient to induce the ME phase II under H ‖ b′ [Fig. 2(a)].

At 2 K and 20 K [Figs. 3(a) and 3(b)], the emergence
of P is observed as H is inclined from the c axis (θH =
0◦,180◦) towards the b′ axis, which are indicated by closed
and open triangles (� and �); this is interpreted as follows.
The collinear magnetic order of the Fe subsystem has three
possible magnetic domains with spontaneous P (PFe) along
one of the a axes [Fig. 3(e)]. Since they are equivalently stable
under H ‖ c (θH = 0,180◦), each domain is equally populated
to cancel P (Pa = 0). As the H is inclined towards the b′ axis,
one of the three domains is selected to form a single domain,
which allows the emergence of P along the a axis [Fig. 3(f)].

During the rotation of H from the angle position � to
�, P takes a nonzero value and shows a slight modulation
with a local minimum at around θH = 90◦,270◦ (H ‖ b′). The
observed behavior in that region is described by the formula

P obs
a = P0 − � sin2(θH ± θ0). (13)

The constant shift θ0 (∼3◦) has the opposite signs (±) for
clockwise and counterclockwise rotations of the H . The P0
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FIG. 4. (Color online) Plots of the P0 and the � obtained from
P -θH scans at various T with μ0H = 7 T. Open (filled) circles are
for the scans with clockwise (counterclockwise) rotating H . The red
solid curve is the theoretical T dependence of the P Fe

x computed with
Eq. (8). The dashed curve is computed with Eq. (17). The pink solid
line is the estimated constant value for the �.

term is discerned at 32 K [Fig. 3(c)], just below TN ∼ 34 K,
yet disappears in a paramagnetic region of 40 K [Fig. 3(d)].
These facts clearly suggest that P0 is ascribed to the magnetic
order.

The discussions in Secs. II A and II B can be applied to the
single-domain region between � and �. Assuming that the Fe
antiferromagnetic order of the single domain is not modulated
during the rotation of the H [Fig. 3(f)], the Fe subsystem
gives rise to a constant value (P Fe

x ). On the other hand, we
predict that the Eu ion shows the H -dependent ME response
as described by Eq. (10). Substituting each component of H⎛

⎝Hx

Hy

Hz

⎞
⎠ =

⎛
⎝ 0

H sin θH

H cos θH

⎞
⎠ (14)

into Eq. (10), we get

P Eu
x = −λH 2 sin2 θH + λ′H 2 sin θH cos θH . (15)

The summation of P Fe
x and P Eu

x gives

Pa = P Fe
x − λH 2 sin2 θH , (16)

where we put λ′ = 0 since the second term in Eq. (15) was
not observed in the experiment. This formula reproduces the
observed phenomenon [Eq. (13)] with the assignments as P0 =
P Fe

x and � sin2 θH = P Eu
x except the shift ±θ0. Since the P

was obtained by integrating the time-recorded current, ±θ0

represents some time delay of the response (e.g., domain wall
motion) against the rotating H .

To confirm the above assignments, the observed behav-
iors are fitted by Eq. (13) at various T [black curves in
Figs. 3(a)–3(d)] to plot P0 and � as functions of T in Fig. 4.
As described in Sec. II A, the T dependence of P Fe

x can be
numerically calculated by Eq. (8), where TN in u [Eq. (6)] is
set to 34 K corresponding to the TN at 7 T [Fig. 2(a)] and τ is
adjusted to reproduce the experimental value of P0 at T = 2 K.
The theoretical T dependence of P Fe

x is shown in Fig. 4. The P0

and P Fe
x values show a quantitative agreement in the entire T

range, indicating the relevance of the assignment. In contrast,
� shows less T dependence, which is consistent with that the

λ terms in Eq. (9) are ascribed to the H -induced van Vleck
paramagnetism of a Eu ion. These facts suggest the availability
of the theories developed in Sec. II for the interpretation
of the ME response of this system. Treating the present
analysis procedure as an example, we will show that the ME
responses in the other two compounds can be understood by
the summation of the P from Fe and R ions.

We also identified the microscopic origin of the Fe-induced
P as the d-p hybridization mechanism. The exchange striction
mechanism predicts the T dependence of the P0 within the
mean-field theory as

τ ′〈ŜFe
x

〉2 = τ ′S2BS(u)2, (17)

since such P is induced by correlation of neighboring spins.
This formula leads to the dashed black curve in Fig. 4 by
adjusting the parameter τ ′ to reproduce the P0 at 2 K. There
are discrepancies between the observed P0 and Eq. (17) in the
wide T range, indicating the irrelevance of this mechanism.

B. ME responses in GdFe3(BO3)4

Next, we discuss the results of GdFe3(BO3)4 with complex
phase diagrams [Figs. 2(f) and 2(h)] under H . The similar
measurements were performed in GdFe3(BO3)4 as done for
EuFe3(BO3)4. Figures 5(a)–5(d) show the θH dependencies of
Pa at 7 T, measured at various T . Note that in both H ‖ b′
[Fig. 2(f)] and H ‖ c [Fig. 2(h)] the magnitude of H is far
from the critical fields for the spin-flop transitions. In that

FIG. 5. (Color online) (a)–(d) P along the a axis measured at
various T with μ0H = 7 T as functions of the θH . The solid curves
are fits with Eq. (18). (e) The schematic illustration of the magnetic
structure for one of the ab planes under H ‖ b′. (f) The schematic
illustrations of the magnetic structures under a rotating H . Green
(purple) � and ⊗ show the direction of the P induced by the Fe (Gd)
subsystem.
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FIG. 6. (Color online) (a) Plots of the P0 and the K obtained from
P -θH scans at various T with μ0H = 7 T. Open (filled) circles are
for the scans with clockwise (counterclockwise) rotating H . The red
solid curve is the theoretical T dependence of the P Fe

x , computed with
Eq. (8). The pink (black) solid curve is the computed T dependence
of the P (κ) (P (γ )). (b) The black solid curve is the T dependence
of the M measured at 7 T under H ‖ b′. The red solid curve is the
theoretical T dependence of the M , computed by Eq. (28).

case, the Fe spins are expected to lie along the ab plane during
the rotation of H .

At 2 K and 20 K [Figs. 5(a) and 5(b)], the behaviors of
Pa around θH = 0◦,180◦ (H ‖ c) are quite similar to those
of EuFe3(BO3)4; as H is inclined towards the b′ axis, the Pa

steeply emerges signaling the reorientation of the Fe spins
to the a axis. Such V-shaped responses between the two θH

positions, a open triangle (�) and a closed triangle (�), are
observed at up to 35 K and disappear at above 40 K [Figs. 5(c)
and 5(d)], which suggests that the Fe-spin ordering survives at
around TN = 37 K even under μ0H = 7 T.

The Pa shows a characteristic angular dependence in a
region from � to � through θH = 90◦, which is described by

P obs
a = P0 − K sin 2(θH ± θ0). (18)

The fitted curves are shown with black lines in Figs. 5(a)–5(d).
With the same measurements at various T we obtained P0 and
K , which were plotted as functions of T in Fig. 6(a). The
numerical computation of the T dependence of P Fe

x using
Eq. (8) gives a red curve in Fig. 6(a), where TN in u [Eq. (6)]
is set to 37 K and τ is adjusted so as to reproduce the P0 at
5 K. The calculated P Fe

x shows a good agreement with the P0

in the entire T region, which suggests the P0 term originating
from the Fe subsystem. On the other hand, the second term in
Eq. (18) is quite different from that of Eq. (13) observed in
EuFe3(BO3)4, which indicates that the K term comes from the
Gd ions. To confirm the above assignment we shall reproduce
the P obs

a described by Eq. (18) by the summation of the P Fe
x

and the P Gd
x with a model of the angular dependence of the

magnetic structure of each subsystem.
According to the previous antiferromagnetic resonance

studies [17,18], the magnetic structure for one of the ab

planes of GdFe3(BO3)4 under H ‖ b′ can be schematically
illustrated as in Fig. 5(e). Fe spins in one of the sublattices
align perpendicular to H , whereas a Gd spin is canted by φ

from the a axis towards the b′ axis due to the balance between
the external H and the f -d molecular field from the Fe spins
(HFe). Hereafter, we neglect a slight canting of the Fe spins
towards the b′ axis. Let us consider the case when the H is
rotated around the a axis; the Fe spins show less modification
from polarizing along the a axis and contributes to the Pa by
a constant value P Fe

x , whereas the Gd spin rotates around the
a axis towards H [Fig. 5(f)], keeping the canting angle from
the a axis by φ. The model for the angular dependence of the
Gd spin is introduced as

SGd =
⎛
⎝ SGd cos φ

SGd sin φ sin θH

SGd sin φ cos θH

⎞
⎠ , (19)

where we ignore the anisotropy of the Gd spin by taking the
azimuth angle θ as θH . Note that the Gd spins in the other
sublattice can be described by replacing the angle φ of Eq. (19)
with the term 180◦ − φ because the Gd spin is canted from the
a axis due to the f -d molecular field (−HFe) from the other
sublattice of the Fe spins.

Here, we treat the spin moment as a classic vector to skip
the statistical averages of the operators. Substituting Eq. (14)
and (19) into Eq. (11), we get

P Gd
x = κ ′S2

Gd(cos2 φ − sin2 φ sin2 θH )

+ κS2
Gd sin2 φ sin θH cos θH − γ ′SGdH sin φ sin2 θH

+ (γ + γ ′′)SGdH sin φ sin θH cos θH . (20)

This is sufficient to know the allowed form of the P Gd
x as a

function of θH . We can check that the other sublattice of the
Gd spins gives the same formula because it is invariant under
the change of φ to 180◦ − φ. Since we did not observe the
angular dependence of sin2 θH type, we put κ ′ and γ ′ zero to
get

P Gd(cl)
x = 1

2

[
κS2

Gd sin2 φ + (γ + γ ′′)SGdH sin φ
]

sin 2θH ,

(21)

where the superscript (cl) indicates the classical treatment
of the spins. Since the terms in brackets [ ] are assumed
to be constant during the rotation of H for each sublattice,
the summation of P Fe

x and P Gd(cl)
x [Eq. (21)] successfully

reproduces the observed feature [Eq. (18)] except the shift
±θ0; this is presumably due to the same origin as mentioned
in Sec. IV A.

As can be seen from Eq. (21), the P Gd
x is composed of

the two terms: a spin-induced spontaneous P (∝κ) and an
H -linear P [∝ (γ + γ ′′)]. To know their ratio we focus on the
T dependence of K . The above treatment of the Gd spin as
a classical vector is not applicable to this; instead, we need
to calculate the statistical averages of the spin operators in
Eq. (11) to deduce the formula for the P Gd

x as a function of T .
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We take the following Hamiltonian ĤGd for a Gd spin (Ŝ
Gd

)
under a rotating H [Eq. (14)],

ĤGd = gμB(H + HFe) · Ŝ
Gd

, (22)

where HFe is the f -d exchange field from the Fe subsystem.
The single-site anisotropy, the exchange interaction between
Gd ions, and the dipole-dipole interaction are not included
here, since all of them are negligible compared with the terms
in Eq. (22).

Within this Hamiltonian the method described in the
Appendix is applicable for calculation of the statistical average
of polynomials of operators because Eq. (22) belongs to the
Hamiltonian in Eq. (A1) with the effective field Heff,

Heff = H + HFe =
⎛
⎝ HFe

H sin θH

H cos θH

⎞
⎠ . (23)

Substitution of Eq. (14), (A6), and (A8) into Eq. (11) gives a
quantum mechanical formula (q) of the P Gd

x as follows

P Gd(q)
x = 3κ

4
sin2 φ sin 2θHJ 2

[
B2

J (v) + B ′
J (v) − J + 1

3J

]

+ 1

2
(γ + γ ′′)H sin φ sin 2θHJBJ (v), (24)

where J = 7
2 . Here, we define the first and second terms of

Eq. (24) as P (κ) sin 2θH and P (γ ) sin 2θH , respectively. The
parameters P (κ) and P (γ ) are the quantities to be compared
with the experimental parameter K . The terms proportional
to κ ′ and γ ′ are omitted since the corresponding angular
dependencies do not appear in the experiment. Note that
Eq. (24) expresses not only the same angular dependence as
Eq. (21) but also the functional form with respect to T and H

through v, φ, and HFe, which are given by

v =
gμBJ

√
H 2

Fe + H 2

kBT
, (25)

φ = tan−1 H

HFe
, (26)

HFe = h

〈
ŜFe

x

〉
S

. (27)

For the T dependence of P (κ) and P (γ ), Eqs. (6) and (7)
are used to compute the T dependence of 〈ŜFe

x 〉 and HFe is
taken as 62 kOe at T = 0 (h = 62 kOe); this value of HFe is
similar to the one (∼70 kOe) estimated in Ref. [28]. We show
the calculated T dependencies of them in Fig. 6(a), where the
parameters κ , γ , and γ ′′ are adjusted so as to reproduce the
K at 15 K. The P (κ) alone shows a satisfactory agreement
in the entire T range while the P (γ ) showing merely gentle
T dependence. While the K term should, in principle, be
expressed by the summation of P (κ) and P (γ ) with some
ratio, we can safely conclude that the P (κ) term dominantly
contributes to the Gd-induced P , and that the P (γ ) term only
contributes to it by a minor amount.

To check the validity of the value of h, T dependence of M

was measured under H ‖ b′ of 7 T [Fig. 6(b)]. For the model

FIG. 7. (Color online) (a)–(f) P along the a axis measured with
various H and T as functions of the θH . The solid curves are fits with
Eq. (18). In (c), the solid curve is a fictitious P -θH curve by Eq. (18);
P0 and K were estimated appropriately from the data in Fig. 8(a).

of M , we take the form

M = χFeH + gμBJ sin φBJ (v). (28)

The first term is the T -independent M from the antiferro-
magnetic Fe subsystem. The second term is the contribution
from Gd spins, which is assumed to be canted by φ from the
a axis [Fig. 5(e)]. Equation (28) is related with h through
v and φ. We choose the value of χFe as χFeH = 0.8μB at
7 T, which is determined from the magnetic susceptibility
of YFe3(BO3)4 [10]. The red curve in Fig. 6(b) shows
the calculated T dependence of M . We successfully fit the
experimental M-T curve with the theoretical one, which
justifies the choice of fit h.

Since GdFe3(BO3)4 has complex phase diagrams under
H , it is necessary to check the range of the applicability
of the above discussion. The P -θH scans were performed
under various H [Figs. 7(a)–7(f)]. At 2 K, the regime of
Eq. (18) is clearly observed down to 4 T [Figs. 7(a) and 7(b)],
while at 3 T [Fig. 7(c)] a sudden drop of Pa is observed
in the hatched regions, signaling the transition to phase II
[Fig. 2(g)]. Indeed, the magnitude of H is lower than the
critical μ0H (∼3.7 T) for the transition to phase III [Fig. 2(f)]
under H ‖ b′ (θH = 90◦). A modulation of Pa in the hatched
region may be due to the deviation of the magnetic structure
from that illustrated in Fig. 2(g) by H . Figures 7(d)–7(f) show
the corresponding data at 15 K. Equation (18) is observed to
be applicable with changing the oscillation amplitude K as
H is decreased down to 1 T, indicating that the picture of the
magnetic structure shown in Fig. 5(f) holds good even under
such a magnitude of H .

The obtained P0 and K at 2 K and 15 K were plotted
as functions of H in Fig. 8(a). At 15 K, the P0 is almost
independent of H , which is consistent with the assumption that
the canting of Fe spins towards H may be ignored. On the other
hand, at 2 K the P0 decreases as H increases, which suggests
a slight modification on the Fe subsystem probably due to the
f -d molecular field. We also shows the H dependencies of Pa

under H ‖ b′, which were measured at 15 K and 2 K [Fig. 8(a)].
The Pa at 15 K shows good agreement with P0 (=P Fe

x ), which
is consistent with the fact that the Gd-induced P (∝sin 2θH ) is
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FIG. 8. (Color online) (a) Plots of the P0 and the K as functions
of the H . The red solid (dashed) curve is the H dependence of the
�Pa at 2 K (15 K) under H ‖ b′. The pink solid (dashed) curve and
the black solid (dashed) curve are the theoretical H dependencies
of the P (κ) and the P (γ ) at 2 K (15 K), respectively. (b) The black
solid (dashed) curve is the H dependence of the M measured at 2 K
(15 K) under H ‖ b′. A black triangle indicates the anomaly for the
spin-flop transition from phase II to III. The red solid (dashed) curve
is the theoretical H dependence of the M , computed by Eq. (28) with
T = 2 K (15 K).

absent under H ‖ b′ (θH = 90◦). While the agreement between
the P-H curve and the P0 at 2 K is almost good, we discern a
slight discrepancy at a lower field region (∼4 T). This seems
to come from the misestimation of P0 in the fitting of the P -θH

curves with Eq. (18) because there is a deviation of the fitted
curve from the observed P in Fig. 7(b). Since H of 4 T is just
above the critical field between phases II and III under H ‖ b′
[Fig. 2(f)], the magnetic structure under rotating H should be
slightly different from the currently applied picture [Fig. 5(f)].
It was theoretically suggested there is an “angular phase” with
Fe spins rotated from the ab plane towards the c axis at around
the critical field for H ⊥ c [17].

Figure 8(a) shows the H dependencies of P (κ) and P (γ )

calculated with the corresponding terms in Eq. (24), where the
same parameters κ , γ , γ ′′, and h are used for the discussion
on the T dependence of the K . Again, the P (κ) alone shows a
quantitative agreement for the H dependencies of K at both
2 K and 15 K, ensuring that the spin-induced spontaneous
P [∝κ〈Ŝy Ŝz〉] is relevant as the ME origin of the Gd ion.
As for the P (γ ), although it well reproduces the K at 15 K
because the γ + γ ′′ is chosen to reproduce the K at 15 K with
μ0H = 7 T in Fig. 6(a), it does not show agreement with the
K at 2 K. This result again indicates that the P (γ ) term cannot
be the main origin of K by itself, and possibly contributes to
it with a small amount besides the dominantly contributing

P (κ) term. The validity of the choice of h is also checked
by the M-H curves. Figure 8(b) shows the H dependencies
of M (black lines) under H ‖ b′ at 2 K and 15 K. A small
anomaly is indicated by a black triangle (�), which is related
with the spin-flop transition from phase II to III [27]. The
theoretical curves at corresponding T are shown in the same
figure by red curves, which were calculated by Eq. (28) with
the same parameters χFe and h as in fitting the M-T curve.
The agreements between the observation and the theories are
excellent at 15 K and at 2 K for H higher than the critical
field, confirming the relevance of the model for the magnetic
structure.

Note that the Gd component of the P (∝sin 2θH ) does not
contribute to the Pa within usual P-H measurements under
H ‖ c (θH = 0◦) and H ‖ b′ (θH = 90◦). We can easily con-
firm by Eq. (11) that it is also the case for H ‖ a, which is the
measurement condition in Ref. [8]. With the measurement of
the angular dependence of the P , we succeeded in unraveling
the role of the Gd subsystem in the ME response, which would
be hard to know by the P-H scans with the H along certain
crystal axes.

C. ME responses in TbFe3(BO3)4

We further investigate the ME responses in TbFe3(BO3)4,
in which the Tb moment with the strong Ising anisotropy is
expected to cause a unique θH dependence of P . The P along
the a axis was measured at 2 K with H of 7 T rotating around
the a axis [Fig. 9(a)]. In the condition of H ‖ c (θH = 0◦,180◦),
the magnitude of H is sufficiently higher than the critical
field (∼3.5 T), assuring the transition to the metamagnetic
phase II [Fig. 2(c)]. When the H rotates clockwise [the red
curve in Fig. 9(a)] from θH = 0◦ towards the b′ axis, the P

shows a slight jump to a positive value at the angle position
indicated by a closed triangle (�). According to the preceding
results in EuFe3(BO3)4 and GdFe3(BO3)4, this is assigned to
the reorientation of the Fe spins along the a axis to induce the
P Fe

x [Fig. 9(e)]. As H is further inclined towards the b′ axis,
Pa decreases to show a negative value suggesting that the Tb
moment as well as the Fe spins contributes to the P .

This regime ends at the angle position indicated by an
open diamond (♦) with a sudden disappearance of Pa . The
critical angle is about θH = 60◦, at which the c component of
H coincides with the critical field (∼3.5 T). Since Zeeman
energy of the Tb moment with large Ising anisotropy drives
the metamagnetic transition [16], the crystal undergoes the
collinear antiferromagnetic order with the magnetic moments
along the c axis [Fig. 9(f)]. A small P is discerned in the
corresponding region, which may be a second-order ME effect
due to a slight modulation of the Fe spins by H . Corresponding
P was observed in a former study with the P-H scan under
H ‖ a [9]. At the angle indicated by a closed diamond (�),
the Pa shows a sudden change signaling the return to the
metamagnetic phase [Fig. 9(g)]. As H rotates towards the c

axis (θH = 180◦), the Pa again shows the characteristic angular
dependence until a drop at the angle of an open triangle (�)
indicating a breakdown of the single magnetic domain.

In the θH regions of �-♦ and �-�, both the Fe spins along
the a axis and the Tb moments along the c axis contribute to
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FIG. 9. (Color online) (a)–(d) P along the a axis measured at
various T with μ0H = 7 T as functions of the θH . The solid
and dashed curves are fits with Eq. (29). (e)–(g) The schematic
illustrations of the magnetic structures under a rotating H . Green
(purple) � and ⊗ show the direction of the P induced by the spins
(magnetic moments) at the Fe (Tb) subsystem.

P . The angular dependence of Pa is well described by

P obs
a = P0 ∓ � sin(θH ± θ0), (29)

where the parameter � is taken as positive, the sign −(+) in
front of the � is for the Pa around θH = 0◦ (180◦), and the
constant shift −(+)θ0 is for the clockwise (counterclockwise)
P -θH scan. The presence of the constant shift θ0 in Eq. (29)
may be due to the same reason mentioned in Sec. IV A. The
fitted curves are shown by solid and dashed lines in Fig. 9(a).

To reproduce the behavior described by Eq. (29) except
±θ0, we shall apply the phenomenological theory developed in
Secs. II A and II B, according to which the first term of Eq. (29)
corresponds to the Fe magnetic order (P Fe

x ) and the second
term originates from the Tb moment under H [Eq. (12)].
Substituting Eq. (14) into Eq. (12) gives

P Tb
x = γ

〈
ŜTb

z

〉
H sin θH , (30)

which reproduces the second term of Eq. (29) if 〈ŜTb
z 〉 is θH

independent except its sign. When we define γ as negative, the
proportionality between 〈ŜTb

z 〉 and the Tb-induced M (MTb)
gives γ 〈ŜTb

z 〉 < 0 around θH = 0◦ (MTb > 0) and γ 〈ŜTb
z 〉 > 0

around θH = 180◦ (MTb < 0); this coincides with the sign (∓)
in front of the �. While the θH dependence of 〈ŜTb

x 〉 (∝MTb)
is possibly present, it is assumed to be constant in the regions
of �-� and ♦-�, because the Ising nature of the Tb moment

FIG. 10. (Color online) Plots of the P0, the � and the magnetic
moment of a Tb ion (MTb) as functions of T . Open (filled) circles
are for the scans with clockwise (counterclockwise) rotating H of
7 T. The red solid curve is the theoretical T dependence of the P Fe

x

computed with Eq. (8).

keeps the MTb fully polarized until the c component of the H

becomes less than the critical H .
This scenario is supported by the feature of the M-H curve

under H ‖ c. In H ‖ c, the H dependence of the M in the
metamagnetic phase II (H � 3.5 T) at T = 4.2 K can be well
reproduced by the formula

M = χH + M0, (31)

with the values of χ ∼ 1 × 10−5 (μB/Oe) and M0 ∼
9 (μB) [16]. The first and second terms typically represent
the contributions from the antiferromagnetic Fe spin order and
the Tb moment of g ∼ 18, respectively. The H -independent
M0 (∼MTb) suggests that the Tb moment is fully polarized
above the critical field; thus, we can assume the 〈ŜTb

x 〉 is also
independent of θH in the regions of �-� and ♦-�.

To confirm the above assignment that P0 = P Fe
x and

∓� sin(θH ) = P Tb
x , the P -θH scans were performed at various

T with μ0H = 7 T. The representative results are shown
in Figs. 9(a)–9(d). Similar features as discussed above are
observed up to T = 20 K. We obtained the values of P0 and �

by fitting the data by Eq. (29) and plotted them as functions of
T in Fig. 10. The calculated T dependence of the P Fe

x is shown
by the red curve in Fig. 10, where we used TN = 36 K in u

[Eq. (6)] corresponding to the transition T under H ‖ c of 7 T
[Fig. 2(c)] and adjusted τ so as to reproduce the P0 at 2 K. The
agreement of P0 and P Fe

x is good except a slight discrepancy at
20 K, which may suggest some deviation of the T dependence
of the Fe spins from Brillouin function due to the presently
ignored f -d coupling. For clarification, the T dependence of
the Fe-sublattice magnetization under H should be estimated
by a neutron scattering technique.

To prove the equation

∓� = γ
〈
ŜTb

x

〉
H, (32)

we need the T dependence of 〈ŜTb
x 〉, which can be estimated

from the magnitude of MTb through the relationship MTb ∝
〈ŜTb

x 〉. The H dependence of M was measured under H ‖ c

at various T and the H -linear term [χH in Eq. (31)] was
subtracted from the M-H curve for the estimation of MTb at
7 T. The obtained values are plotted as a function of T in
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FIG. 11. (Color online) (a)–(d) P along the a axis at 2 K with
various H as functions of the θH . The solid and dashed curves are
fits with Eq. (29). (e) Plots of the P0 and the � as functions of the H .
The solid line is a guide for the eyes.

Fig. 10. The T dependencies of � and MTb are scaled with
each other (� ∝ MTb), indicating the validity of Eq. (32).

We further performed the P -θH scans at 2 K with various
magnitudes of H [Figs. 11(a)–11(d)]. Down to 4 T slightly
above the critical H for the metamagnetic transition, we
observe the regime which can be described by Eq. (29), while
at 3 T below the critical field the P hardly shows the angular
dependence, being consistent with a tiny P observed under
H ‖ a in a former study [9]. The fitted curves are shown
by solid and dashed lines in Figs. 11(a)–11(c). The obtained
values P0 and � are plotted as functions of the H in Fig. 11(e).
P0 is almost constant with respect to the magnitude of H ,
indicating the modification of the antiferromagnetic order
of the Fe spins by H is negligible; by contrast, the � is
clearly proportional to H , which confirms Eq. (32) with the
assumption that 〈ŜTb

x 〉 is H independent.
In a previous study on TbFe3(BO3)4 a small jump of Pa at

the metamagnetic transition under H ‖ c was reported [9]. It
was suggested that the ME domains were not compensated due
to the uncontrollable misalignment of H . In the present study
we controlled the canting angle of the H from the c axis and
successfully revealed that the canted H not only arranges the
antiferromagnetic Fe domains with spontaneous P but also
induces the P from the Tb ion. We again confirm that the
measurement of the angular dependence of P is useful for the
understanding of the magnetic-ion resolved origins of the ME
response.

D. Discussion

We briefly discuss the microscopic origins of the R-induced
P . In Sec. II B, we assume that the spin- and the H -induced P

from a R ion can be written by Eq. (9). This form of P can be
justified by considering the modification of the (pseudo)spin
Hamiltonian Ĥ under E, whose physics is common to the
E effect in paramagnetic resonance [42,43]. Considering the
effect of E applied on a crystal, the electronic structure and/or
the lattice structure are modulated to induce the additional

term ĤE to Ĥ as follows:

ĤE = −
∑
ijk

Ei(κijkŜj Ŝk + γijkŜjHk). (33)

The respective terms correspond to the E-induced magnetic
anisotropy and a shift of the g factor, which were used to
account for the shift of the resonance of several kinds of
R3+ ions doped in CaWO4 and some halides [44,45]. On the
other hand, in the context of the ME responses of R ions
in magnets we can deduce P by differentiating ĤE by Ei

(Pi = − ∂〈ĤE〉
∂Ei

), which gives the same formula of Eq. (9) except
the λ terms, which may correspond to the E effect of van Vleck
paramagnetism.

In fact, it was observed the splitting of the resonance
parameters for the magnetic anisotropy by the application of
E in LaCl3:Gd3+ [46], which is of the order of 10−4 cm−1

for |E| = 1.7 × 107 V/m. By taking the lattice constant
several angstroms the observed value corresponds to the
P ∼ 1 μC/m2, which is comparable to the Gd-induced P

(∼5 μC/m2) revealed in this work. While the estimation
of the parameters in Eq. (33) were reported considering
the hybridization of the 4f and 5d orbitals via a noncen-
trosymmetric crystal field with a distortion of the surround-
ing ligands [47,48], quantitative agreements have not been
achieved. A more precise method to estimate the expected ME
responses based on the detailed knowledge of the electronic
wave function and the crystal structure would be needed.

V. CONCLUDING REMARKS

We have investigated the ME responses in three R fer-
roborates with R = Eu, Gd, and Tb. We focused on the
respective magnetic subsystems and theoretically discussed
the ME functionality of the individual magnetic ions. Con-
sidering their local symmetry and features of ground-state
multiplets, the expressions for respective contributions to P

were deduced. We measured P along the a axis with rotating
H around the a axis and successfully reproduced most of the
observed behaviors as the summation of P from each magnetic
subsystem.

In EuFe3(BO3)4, a collinear antiferromagnetic ordering
of Fe spins yields an almost θH -independent P , which is
overlapped by the smaller P derived from paramagnetic
Eu ions. In both GdFe3(BO3)4 and TbFe3(BO3)4, the Fe-
induced spontaneous P is accompanied by θH -dependent
highly anisotropic P , which characterizes the ME property of
the R magnetic moment. A spin on a Gd ion smoothly rotates
along H to generate a spontaneous P , which is analogous to the
spin-induced P due to the d-p hybridization mechanism [33]
in transition-metal compound multiferroics. The Ising nature
of a Tb moment confines itself along the c axis resulting in a
linear ME effect under H .

The observed ME responses can be decomposed into the
components from the respective magnetic subsystems. The
theoretical calculation taking account of the atomic origins
of the respective components can account for the observed
features. In particular, the measurement of the angular depen-
dence of P is useful to understand the ME properties with
plural magnetic subsystems.
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FIG. 12. (Color online) The definitions of coordinates for a spin
moment S.

In this paper, we concentrated on the three R ferroborates,
which are characterized by their mutually distinctive magnetic
properties. Actually, they can be considered as typical com-
pounds among the RFe3(BO3)4 family. Their magnetic ground
states can be classified into three types: an easy-plane type
such as R = Y, Nd, Sm, Eu, and Er; an easy-axis type such
as R = Pr, Tb, and Dy; and an intermediate type such as R =
Gd and Ho, which are characterized by a spin-reorientation
transition from the easy-plane to the easy-axis type at TSR.
We believe that similar behaviors can be observed in these
ferroborates, to which the analyses as developed in this paper
are generically applicable.
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APPENDIX: CALLEN AND CALLEN TECHNIQUE

H. B. Callen and E. Callen worked on a theory of the
magnetic anisotropy and developed a technique for calculation
of the statistical average of polynomials of the lth degree
[Sl(Ŝ)] in the components of spin operators (Ŝ) [49]. Their
mathematical technique is of key importance for the computa-
tion of the terms like 〈Ŝy Ŝz〉 in Eq. (11). Here, we review the
points of their theory.

Let us consider a spin moment S with the quantum number
J described by a spin Hamiltonian in the form

Ĥ = gμB Heff · Ŝ, (A1)

where Heff is an effective magnetic field such as a summation
of H and a molecular field. We define the spherical coordinates
φ and θH for the S (Fig. 12), which is polarized along Heff.
The Sl(Ŝ) is conveniently written as a linear combination of
spherical harmonics,

Sl(Ŝ) =
∑
m

am
l Ym

l (Ŝ). (A2)

Here, we introduce new Cartesian coordinates (x ′, y ′, and z′),
where the x ′ axis is parallel to the spin moment (Fig. 12).
Ŝ can be reexpressed by the new operators Ŝ

′
defined on the

new coordinates. The transformation among them is expressed
as

⎛
⎝Ŝx

Ŝy

Ŝz

⎞
⎠ =

⎛
⎝ cos φ 0 − sin φ

sin φ sin θH cos θH cos φ sin θH

sin φ cos θH − sin θH cos φ cos θH

⎞
⎠

⎛
⎝Ŝ ′

x ′

Ŝ ′
y ′

Ŝ ′
z′

⎞
⎠.

(A3)

Then, we get a new expression for Sl with the operator Ŝ
′
:

Sl(Ŝ′) =
∑
m

am
l

∑
m′

bl(m,m′)Ym′
l (Ŝ

′
), (A4)

where bl(m,m′) can be expressed by cos φ, sin θH , etc., and
the spherical harmonics Ym′

l (Ŝ
′
) is defined with the principal

axis along the x ′ axis.
Since Ĥ is cylindrically symmetric around the x ′ axis, the

statistical average 〈Ym′
l (Ŝ′)〉 is zero unless m′ = 0. Thus,

〈Sl(Ŝ)〉 =
∑
m

am
l

∑
m′

bl(m,m′)
〈
Ym′

l (Ŝ
′
)
〉

=
∑
m

am
l bl(m,0)

〈
Y 0

l (Ŝ
′
)
〉
. (A5)

Application of the formula to l = 1 and 2 gives

〈Ŝ〉 =

⎛
⎜⎝

J cos φ

J sin φ sin θH

J sin φ cos θH

⎞
⎟⎠ BJ (v), (A6)

〈
Ŝ2

x − Ŝ2
y

〉 = 1

2
(cos2 φ − sin2 φ sin2 θH )

〈
3Ŝ ′2

x ′ − (J + 1)J
〉

= 3

2
(cos2 φ − sin2 φ sin2 θH )J 2

×
[
B2

J (v) + B ′
J (v) − J + 1

3J

]
, (A7)

〈Ŝy Ŝz〉 = 1

4
sin2 φ sin 2θH

〈
3Ŝ ′2

x ′ − (J + 1)J
〉

= 3

4
sin2 φ sin 2θH J 2

[
B2

J (v) + B ′
J (v) − J + 1

3J

]
,

(A8)

where v and φ are given as

v = gμBJHeff

kBT
, (A9)

φ = tan−1 Heffx√
H 2

effy + H 2
effz

. (A10)
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