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Doublon-holon binding, Mott transition, and fractionalized antiferromagnet in the Hubbard model
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We argue that the binding between doubly occupied (doublon) and empty (holon) sites governs incoherent
excitations and plays a key role in the Mott transition in strongly correlated Mott-Hubbard systems. We construct a
new saddle-point solution with doublon-holon binding in the Kotliar-Ruckenstein slave-boson functional integral
formulation of the Hubbard model. On a half-filled honeycomb lattice and square lattice, the ground state is
found to exhibit a continuous transition from a paramagnetic semimetal/metal to an antiferromagnetic-ordered
Slater insulator with coherent quasiparticles at Uc1, followed by a Mott transition into an electron-fractionalized
AF∗ phase without coherent excitations at Uc2. Such a phase structure appears to be generic for bipartite lattices
without frustration. We show that doublon-holon binding unites the three important ideas of strong correlation:
coherent quasiparticles, incoherent Hubbard bands, and deconfined Mott insulator.
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I. INTRODUCTION

The fundamental theoretical challenge of the strong corre-
lation problem is the description of both low-energy coherent
quasiparticles (QPs) and higher energy incoherent excitations
and spectral weight transfer from coherent to incoherent
excitations with increasing correlation strength. Two very
important ideas, the emergence of two broad incoherent
features known as Hubbard bands and the existence of
renormalized QPs with a Luttinger Fermi surface, were
advanced by Hubbard [1] and Brinkman and Rice [2],
respectively. Unfortunately, the Hubbard equation-of-motion
scheme that produces an incoherent spectrum fails to produce
QPs correctly and violates Luttinger’s theorem [3], whereas
the approaches based on the BR-Gutzwiller wave functions
[4] capture a Luttinger Fermi surface of QPs but encounter
serious difficulties in constructing variational excited states to
account for the incoherent excitations. Faced with this enigma,
numerical approaches such as exact diagonalization (ED),
quantum Monte Carlo (QMC), and dynamical mean-field
theory (DMFT) [5] have played a key role in recent studies of
the strong correlation problem.

In this paper, we develop new analytical insights and
construct a unified theory for both the coherent and the
incoherent excitations as well as the magnetic and the Mott
transition. Our focus is the half-filled single-band Hubbard
model on bipartite lattices without frustration. As specific
examples, we study the square lattice and the honeycomb
lattice, especially in view of the recent debate over the
possible emergence of a gapped spin-liquid (SL) phase on
the honeycomb lattice [6–15]. With only on-site interactions,
the Hilbert space of the Hubbard model is a product of the local
Hilbert space on a single site that consists of empty (holon),
doubly occupied (doublon), and singly occupied states. The
BR-Gutzwiller approach amounts to a metallic state where the
holon, denoted as a boson e, and the doublon, as d, condense
fully with macroscopic phase coherence, as can be obtained
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by the Gutzwiller approximation [16] or the slave-boson
mean-field theory [17]. The metal-insulator transition is thus
forced to follow a route where the densities of doublons and
holons vanish together with the condensates, nd = ne = 〈d〉 =
〈e〉 = 0, such that there is exactly one electron per site. As
a result, single-particle motion, coherent or incoherent, is
completely prohibited. This so-called Brinkman-Rice (BR)
transition is different from the Mott transition induced by the
complete transfer of the coherent QP weight into the incoherent
background, i.e., depletion of the condensate with maintenance
of the finite doublon/holon (D/H) density in the Mott insulator.

We show that the crucial physics uniting the disparate
ideas of Hubbard and BR is the binding between doublon and
holon: 〈diej 〉 �= 0. In the Mott insulator at large U , although
the D/H condensate vanishes (〈d〉 = 〈e〉 = d0 = 0), together
with the disappearance of the coherent QP, the D/H density
remains nonzero (nd = ne �= 0). The motion of the QP is thus
possible by breaking the D-H pairs, giving rise to higher energy
incoherent excitations. With decreasing U , the D/H density
increases and the D-H binding energy decreases. At a critical
Uc, the D-H excitation gap closes and a D/H single-particle
condensate develops, marking the onset of the Mott transition.
On the metallic side of the Mott transition, D-H binding
continues to play an important role since an added electron
can propagate either as a coherent QP via the D/H condensate
or incoherently via the unbinding of the D-H pairs.

The idea that D-H binding plays an important role in
Mott-Hubbard systems was introduced by Kaplan, Horch,
and Fulde [18] and studied in the context of improved
variational Gutzwiller wave functions [19,20]. The difficulty
in constructing appropriate variational wave functions for
excitations has prevented further advances along these lines.
More recently, field theory approaches involving the binding
of charge 2e doublons with fermionic QPs [21] as well as
combination of bosons with fermions to form cofermions [22]
have been put forth within the context of doped Mott insulators.

In this work, we show that the physical picture presented
above can be realized in the slave-boson functional integral
formulation of the Hubbard model introduced by Kotliar
and Ruckenstein (KR) [17] by constructing new saddle-point

1098-0121/2014/89(19)/195119(13) 195119-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.89.195119


SEN ZHOU, YUPENG WANG, AND ZIQIANG WANG PHYSICAL REVIEW B 89, 195119 (2014)

FIG. 1. Schematic phase diagram obtained for the half-filled
single-band Hubbard model with D-H binding on a honeycomb lattice
and a square lattice. The AF order m is developed after the magnetic
transition Uc1, and the single-boson condensate of the doublon d0

disappears at the Mott transition Uc2.

solutions that include D-H binding. This approach also offers
a treatment of the magnetism at half-filling that compares
well to QMC simulations [23] and has the added advantage
of allowing the study of excitations and finite-temperature
properties [24]. As concrete examples, we studied D-H binding
in the half-filled Hubbard model on a honeycomb and a
square lattice at zero temperature and obtained the phase
diagram shown schematically in Fig. 1. On the honeycomb
lattice, a continuous transition from a semimetal (SM) to
an antiferromagnetic (AF)-ordered insulator takes place at
a critical Coulomb repulsion Uc1 � 3.4t , suggesting that the
gapped SL phase proposed by Meng et al. [6] may correspond
to an AF-ordered phase in the thermodynamic limit. Sorella
et al. [12] recently extended the QMC and the finite-size
scaling analysis to much larger system sizes and discovered
that the signature of the gapped SL disappears and is replaced
by that of a continuous SM-to-AF order transition at U �
3.8t , in qualitative agreement with our results. Remarkably,
we found a second quantum phase transition at a critical
Uc2 � 5.7t beyond which the D/H single-particle condensate
vanishes (d0 = 0) amid a finite density of doublons bound to
holons. For U > Uc2, a new AF phase without coherent QP
excitations, termed AF∗ in Fig. 1, emerges where the electrons
are fractionalized and the elementary excitations do not carry
the quantum numbers of an electron. We obtained a similar
phase diagram for the square lattice; the transition to the Slater
AF state happens for infinitesimal U (i.e., Uc1 = 0) due to the
perfect nesting of the Fermi surface on the square lattice, while
the transition to the AF* phase takes place at Uc2 � 6.8t .

The rest of the paper is organized as follows. Section
II describes the slave-boson path integral formulation of
the Hubbard model, the KR saddle-point solution on the
honeycomb and the square lattice, and the BR metal-insulator
transition. In Sec. III, we introduce the slave-boson intersite
correlations into the functional integral and construct the new
saddle-point solution that includes the effects of D-H binding.
The Mott transition and the spectral weight transfer between
coherent and incoherent excitations are studied to obtain the
phase diagrams of the Hubbard model on the two half-filled
bipartite lattices. We describe the transitions among the
paramagnetic (PM) metal/SM, Slator AF insulator, and AF∗
phases, elucidate the properties of the electron-fractionalized
AF∗ phase, and develop further insights into the nature of the
incoherent excitations in Mott-Hubbard systems. Section IV
contains the summary and conclusions.

II. HUBBARD MODEL AND SLAVE-BOSON FUNCTIONAL
INTEGRAL REPRESENTATION

We start with the Hubbard model with nearest-neighbor
hopping t and on-site Coulomb repulsion U ,

Ĥ = −t
∑

〈i,j〉,σ
(c†iσ cjσ + H.c.) + U

∑
i

n̂i↑n̂i↓, (1)

where c
†
iσ creates an electron with spin σ on site i, and n̂iσ =

c
†
iσ ciσ is the density operator. In the KR formulation [17], the

electron operator is written as

ciσ = ẑiσ fiσ , ẑiσ = L̂iσ (e†i piσ + p
†
iσ̄ di)R̂iσ , (2)

where the boson operators describe the holon (ei), doublon
(di), and singly occupied (piσ ) sites, and fiσ is a fermion
operator. The operators L̂σ and R̂σ are diagonal with unit
eigenvalues in the (empty; σ̄ ) and the (σ ; doubly occupied)
subspaces, respectively [29],

L̂iσ = (1 − d
†
i di − p

†
iσ piσ )α, R̂iσ = (1 − e

†
i ei − p

†
iσ̄ piσ̄ )β,

where α and β can take any value. The Hubbard-model
Hamiltonian is thus given by

ĤKR = −t
∑

〈i,j〉,σ
(ẑ†iσ ẑjσ f

†
iσ fjσ + H.c.) + U

∑
i

d
†
i di . (3)

The partition function is a coherent-state path integral over the
quantum fields [30].

Z =
∫

D[f,f †]D[e,e†]D[p,p†]D[d,d†]D[λ,λσ ]e− ∫ β

0 Ldτ ,

(4)

where the Lagrangian is given by

L =
∑

i

(e†i ∂τ ei + d
†
i ∂τ di) +

∑
i,σ

(p†
iσ ∂τpiσ + f

†
iσ ∂τ fiσ )

+ ĤKR + i
∑

i

λiQ̂i + i
∑
i,σ

λiσ Q̂iσ − μ
∑
iσ

f
†
iσ fiσ ,

(5)

where μ is the chemical potential and λi and λiσ are
the Lagrange multipliers introduced to enforce the local
constraints for the completeness of the Hilbert space,

Q̂i = e
†
i ei +

∑
σ

p
†
iσ piσ + d

†
i di − 1 = 0, (6)

and the equivalence between the fermion and the boson
representations of the spin-dependent density

Q̂iσ = f
†
iσ fiσ − p

†
iσ piσ − d

†
i di = 0. (7)

The KR saddle point corresponds to condensing all the boson
fields uniformly, with their values determined by minimizing
the action [17]. KR found that for α = β = −1/2, the saddle-
point solution recovers the Gutzwiller approximation [17].

The KR saddle-point solutions on a half-filled honeycomb
lattice [31] are summarized in Fig. 2. Restricting ourselves to
the PM phase, the doublon density d2

0 decreases linearly from
1/4 at U = 0 and vanishes at the BR metal-insulator transition
UBR � 12.6t . When magnetism is allowed, an SM–to–AF
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FIG. 2. (Color online) KR saddle-point solutions of the Hubbard
model on a half-filled honeycomb lattice. The Hubbard U dependence
of (a) the doublon condensate density d2

0 and staggered magnetization
m and (b) the energy per site E and single-particle energy gap in the
fermion sector �f . Corresponding results in the restricted PM phase
are also shown.

insulator transition arises at Um � 3.1t . The D/H condensate
remains nonzero for all finite U and the AF phase is a
Slater insulator with coherent QP excitations. The results
on a half-filled square lattice are shown in Fig. 3. The BR
metal-insulator takes place at UBR � 13t . When magnetism is
allowed, the PM metal is unstable with respect to the Slator AF
insulator for any nonzero U owing to the perfect nesting of the
Fermi surface; the AF-ordered moment develops exponentially
at Um = 0.

III. BOSON INTERSITE CORRELATIONS AND
NEW SADDLE-POINT SOLUTIONS WITH

DOUBLON-HOLON BINDING

The KR saddle-point solution, i.e., the Gutzwiller approxi-
mation, ignores all intersite correlations and captures only the
coherent QP single-particle excitations. Indeed, it has been
shown [32] that in the limit of infinite dimensions (infinite
d), the latter becomes an exact solution of the variational
Gutzwiller wave-function approach. Our strategy for going
beyond the Gutzwiller approximation described by the KR
saddle point is to build in explicitly the intersite correlations
and boson dynamics in the functional integral and construct a
new saddle-point solution that includes D-H binding.

A. Path integral including boson intersite correlations

Introducing the operators for the D-H pairing, 	̂ij = diej ,
and the D/H hopping χ̂ d

ij = d
†
i dj , χ̂ e

ij = e
†
i ej on the nearest-

neighbor bonds, as well as the density operators n̂d
i = d

†
i di ,
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FIG. 3. (Color online) KR saddle-point solutions of the Hubbard
model on a half-filled square lattice. Labels and notations follow those
in Fig. 2.

n̂e
i = e

†
i ei on each site, we can rewrite the bosonic part in the

hopping term in Eq. (3) as

ẑ
†
iσ ẑjσ = Ŷ

−1/2
ij,σ

[(
χ̂ e

ij

)†
p
†
iσ pjσ + χ̂ d

ijpiσ̄ p
†
j σ̄

+ 	̂jip
†
iσ p

†
j σ̄ + 	̂

†
ijpiσ̄ pjσ

]
Ŷ

−1/2
ji,σ , (8)

where

Ŷij,σ = R̂−2
iσ L̂−2

jσ = [
(1 − p

†
iσ̄ piσ̄ )(1 − p

†
jσpjσ )

− n̂e
i (1 − p

†
jσpjσ ) − n̂d

j (1 − p
†
iσ̄ piσ̄ ) + |	̂ji |2

]
. (9)

Note that, due to the normal ordering of the square roots,
the expression for Ŷij,σ involves explicitly the D-H pairing
but not the H/D hopping operators. The obvious challenge
is how to build these correlations into the calculation of
the partition function. Since they enter through the rather
formidable factor ẑ

†
iσ ẑjσ , the usual procedure of introducing

the corresponding correlation fields (	ij , χe
i,j , χd

ij , nd
i , ne

i )
via Hubbard-Stratonovich transformations in the path integral
does not work here. We found that the difficulty can be
overcome by introducing in the functional integral additional
Lagrange multipliers in the corresponding channel, 	v

ij , χ
d,v
ij ,

χ
e,v
ij , ε

d,v
i , and ε

e,v
i , such that the partition function becomes

Z =
∫

D[f,f †]D[e,e†]D[p,p†]D[d,d†]D[λ,λσ ]

×D[	,χd,χe,nd,ne]D[	v,χd,v,χe,v,εd,vεe,v]e− ∫ β

0 dτL,

(10)
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with the Lagrangian

L =
∑

i

(e†i ∂τ ei + d
†
i ∂τ di) +

∑
i,σ

(p†
iσ ∂τpiσ + f

†
iσ ∂τ fiσ )

+ ĤDH + i
∑

i

λiQ̂i + i
∑
i,σ

λiσ Q̂iσ − μ
∑
iσ

f
†
iσ fjσ ,

(11)

where ĤDH is the effective D-H binding Hamiltonian

ĤDH = −t
∑

〈i,j〉,σ
(ziσ zjσ f

†
iσ fjσ + H.c.) + U

∑
i

d
†
i di

− i
∑
〈i,j〉

[
χ

d,v
ij

(
d
†
i dj − χd

ij

) + χ
e,v
ij

(
e
†
i ej − χe

ij

)

+	v
ij (diej − 	ij ) + 	v

ji(eidj − 	ji) + H.c.
]

+ i
∑

i

[
ε

d,v
i

(
d
†
i di − nd

i

) + ε
e,v
i

(
e
†
i ei − ne

i

)]
. (12)

The factor ziσ zjσ in Eq. (12) has the same form given in
Eqs. (8) and (9) but with the bosonic operators replaced by their
corresponding correlation fields (	ij ,χ

e
i,j ,χ

d
ij ,n

d
i ,n

e
i ). A few

remarks are in order. (i) Equations (10)–(12) provide an exact
representation of the Hubbard model; carrying out formally
the last two functional integrals in Eq. (10) recovers the KR
formulation given in Eqs. (3)–(5). (ii) The intersite correlations
of the piσ bosons can be included in a similar manner. For
simplicity, we treat the latter as condensed fields in this paper
since their densities (i.e., the density of single occupations)
remain high at half-filling. (iii) From the perspective of finding
a saddle-point solution of the action, the effective Hamiltonian
HDH in Eq. (12) can be understood intuitively as a variational
Hamiltonian describing the effects of intersite correlations of
the doublons and holons, including that of D-H binding, where
	v

ij , χ
d,v
ij , χ

e,v
ij , ε

d,v
i , and ε

e,v
i are nothing but the variational

parameters to be self-consistently determined.

B. Saddle-point solutions with D-H binding

We next discuss the D-H binding saddle-point solutions
of the path integral in Eqs. (10)–(12) which correspond
to configurations of the quantum fields that minimize the
action. We consider here the translation-invariant PM and
the two-sublattice AF saddle-point solutions on the half-filled
bipartite (honeycomb and square) lattices with 2N sites.
The bond variables are taken to be real and isotropic, and
symmetry requires 	〈ij〉 = 	d , χd

〈ij〉 = χe
〈ij〉 = χd , nd

i = ne
i =

nd , and correspondingly, i	v
〈ij〉 = 	v

d , iχ
d,v
〈ij〉 = iχ

e,v
〈ij〉 = χv

d ,

iε
d,v
i = iε

e,v
i = εv

d . Moreover iλi = λ, iλAσ = iλBσ̄ = λσ ,
and pA0σ = pB0σ̄ = p0σ , where A and B denote the two
sublattices on the bipartite lattice. Consequently, on the
nearest-neighbor bonds 〈i,j 〉, the factor

tziσ zjσ = tg
[
2p0↑p0↓χd + (

p2
0↑ + p2

0↓
)
	d

] ≡ χv
f , (13)

where g = ∏
σ Y

−1/2
σ , with

Yσ = 1 − 2nd − 2p2
0σ + 2p2

0σ nd + p4
0σ + 	2

d . (14)

As shown later, this expression ensures that the new saddle-
point solution recovers the noninteracting limit at U = 0.

Substituting these quantities into Eq. (12), we obtain the
saddle-point Hamiltonian,

Ĥ
sp
DH = Ĥf + Ĥd + 4Nζ

(
χv

d χd + 	v
d	d

)
− 2N

(
εv
d + 2λ

) − 4Nεv
dnd + 2N

∑
σ

(λ − λσ )p2
0σ ,

(15)

where the coordination number ζ = 3 on the honeycomb
lattice and ζ = 4 on the square lattice. The Hamiltonian Ĥf

and Ĥd determine the energy spectra in the fermion and boson
sectors, respectively.

1. Fermion spectrum

The fermion spectrum is given by, in terms of the wave
vector k defined on the reciprocal lattice,

Ĥf =
∑
k,σ

[
fAkσ

fBkσ

]† [
λσ − μ −χv

f ηk

−χv
f η∗

k λσ̄ − μ

] [
fAkσ

fBkσ

]
, (16)

where ηk is the dispersion due to the nearest-neighbor hopping
t , which takes the form of

ηk = exp(iky) + 2 cos(
√

3kx/2) exp(−iky/2)

on the honeycomb lattice and

ηk = 2(cos kx + cos ky)

on the square lattice. The sum over k runs over the first
Brillouin zone, corresponding to a unit cell with two sites. The
particle-hole symmetry at half-filling requires μ = U/2 and
λσ = μ − σε, where ε = (λ↑ − λ↓)/2 becomes nonzero when
AF order develops. The fermion dispersion is thus obtained by
diagonalizing Eq. (16):

E
f
±(k) = ±

√
ε2 + ∣∣χv

f ηk
∣∣2

. (17)

A gap of �f = 2|ε| would open in the fermion spectrum in
the presence of AF order.

On the square lattice, the sublattices A and B become
equivalent in the PM phase, where the fermion spectrum in
Eq. (16) simplifies to

Ĥf = −χv
f

∑
k,σ

ηkf
†
kσ fkσ . (18)

Here, the sum over k runs over the first Brillouin zone
corresponding to a unit cell containing only one site.

2. Boson spectrum

The charged boson spectrum is governed by

Ĥd =
∑

k

�
†
kMk�k, �k = [dAk,dBk,e

†
Bk̄,e

†
Ak̄]T ,

where the boson Hamiltonian matrix

Mk =

⎡
⎢⎢⎢⎣

εv
d + λ −χv

d ηk −	v
dηk 0

−χv
d η∗

k εv
d + λ 0 −	v

dη
∗
k

−	v
dη

∗
k 0 εv

d + λ −χv
d η∗

k

0 −	v
dηk −χv

d ηk εv
d + λ

⎤
⎥⎥⎥⎦ . (19)
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Here the relations due to the particle-hole symmetry at half-
filling have been applied. Note that Mk is independent of spin.
The boson dispersion is obtained by diagonalizing Eq. (19)
using the standard boson Bogoliubov transformation:

Ed
±(k) =

√(
εv

d + λ ± ∣∣χv
dηk

∣∣)2 − ∣∣	v
dηk

∣∣2
. (20)

Each branch of the above dispersion is doubly degenerate.
The condition for a real physical dispersion requires that εv

d +
λ � ζ (|χv

d | + |	v
d |). When the equality is satisfied, the boson

spectrum is gapless and the bosons can condense into the
zero-energy state. Otherwise, an energy gap,

�d = 2
√(

εv
d + λ − ζ

∣∣χv
d

∣∣)2 − (
ζ
∣∣	v

d

∣∣)2
,

develops in the boson spectrum and the doublon and holon
condensate will be depleted.

In the PM phase on the square lattice, sublattices A and
B become equivalent and the boson Hamiltonian matrix in
Eq. (19) simplifies to

Ĥd =
∑
k,σ

[
dk

e
†
k̄

]† [
εv
d + λ − χv

d ηk −	v
dηk

−	v
dηk εv

d + λ − χv
d ηk

] [
dk

e
†
k̄

]
.

(21)

This results in a doubly degenerate boson dispersion relation:

Ed (k) =
√(

εv
d + λ − χv

dηk
)2 − (

	v
dηk

)2
. (22)

3. Self-consistency equations

The D-H binding saddle-point solution can be obtained
by solving the set of self-consistency equations derived from
minimizing the energy with respect to the variables {χd , 	d ,
nd , p0σ , ε, λ, χv

d , 	v
d , εv

d }:

χv
d = 2tgp0↑p0↓χf , (23)

	v
d = gχf

∑
σ

(
tp2

0σ − g	dχ
v
f Yσ

)
, (24)

εv
d = −ζg2χf χv

f

∑
σ

(
1 − p2

0σ̄

)
Yσ , (25)

p0σ = 2ζ tgχf (χdp0σ̄ + 	dp0σ )

λ − λσ − 2ζg2χf χv
f Yσ̄

(
1 − nd − p2

0σ

) , (26)

p2
0↑ − p2

0↓ = n
f

↑ − n
f

↓ , (27)

2nd + p2
0↑ + p2

0↓ = 1, (28)

χd = d2
0 + 1

2Nζ

∑
k

′ 〈ηkd
†
AkdBk + H.c.〉, (29)

	d = d2
0 + 1

2Nζ

∑
k

′ 〈η∗
kdAkeBk̄ + H.c.〉, (30)

nd = d2
0 + 1

2N

∑
α={A,B}

∑
k

′ 〈dαkdαk〉, (31)

where the fermion density n
f
σ and hopping χf per spin are

readily obtained from the fermion spectrum in Eq. (16). It
is instructive to examine the last three equations for the D/H
hopping, the D-H binding, and the D/H density. The closing of
the boson gap �d leads to a zero-energy mode at k = 0 whose
occupation enables the single-boson condensate d2

0 = e2
0. This

zero mode will be subsequently taken out of the momentum
summations in Eqs. (29)–(31). Accordingly, the solutions to
this set of self-consistency, Eqs. (23)–(31), must be searched
under two conditions: (i) assume d0 = 0 and (ii) assume a
nonzero d0. In the latter case, one more variable, (d0), is
introduced together with one extra equation that ensures the
existence of the zero-energy mode:

εv
d + λ = ζ

(∣∣χv
d

∣∣ + ∣∣	v
d

∣∣). (32)

If multiple solutions are found, the one with the lowest energy
should be chosen as the ground state. In practice, we found
only one solution at any given U .

4. Electron spectral function and spectral density

Once the saddle-point solution is obtained, the spec-
tral function of the physical electrons can be calcu-
lated from the one-particle Green’s function, Gασ (k,τ ) =
−〈Tτ cαkσ (τ )c†αkσ (0)〉. The detailed derivation of the spectral
function and the integrated spectral function (ISF), i.e., the
tunneling density of states,

Nα(ω) = −Im
∫ β

0
dτeiωτ

∑
k,σ

Gασ (k,τ ), (33)

are given in the Appendix. Note that since the spectral function
involves convolutions of the (d,e) boson normal and the
anomalous (due to pairing) Green’s functions with those of
the fσ fermion, the single-particle energy gap for the physical
electron is the sum of the fermion and boson gaps � = �d +
�f . More importantly, the coherent QP excitations would only
emerge with the D/H condensate, which recombines the charge
and spin degrees of freedom and can be detected by the QP
coherent peaks in N (ω).

C. Ground-state wave functions

Before presenting the results on the honeycomb and the
square lattice, it is instructive to discuss the possible phase
structure in terms of the general form of the ground-state
wave function of the D-H binding saddle point. Since the
Hilbert space is represented by those of the fermion and the
slave bosons, the electron ground-state wave function is a
product of the ground-state wave functions for the bosons and
fermions:

�(�r1σ1, . . . ,�rNσN ) = �B(�r1, . . . ,�rNd
; �r1, . . . ,�rNe

)

⊗ �F (�r1σ1, . . . ,�rNσN ). (34)

Here σi,i = 1, . . . ,N labels the spins of N electrons, while Nd

and Ne are the number of doublons and holons, respectively.
From Eq. (16), it is clear that the fermion wave function is given
by a Slater determinant, i.e., �F = �Slater({�riσi}) in both the
PM- and the AF-ordered phases. Compared to the conventional
wave-function form for an interacting many-body electron
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system, �({�riσi}) = ∏
i<j J (�ri − �rj )�Slater({�riσi}), the varia-

tional Jastrow factor J has been promoted to full-fledged boson
wave functions, thus allowing possible new electronic phases.
The key physics in our theory is the boson intersite correlation.
The corresponding boson ground-state wave function in
second quantized form is thus a direct product of single-boson
condensates and the pairing of uncondensed doublons and
holons [33]. On the square lattice, the boson wave function
from the Hamiltonian in Eq. (21) thus takes the form

|�B〉 = (e†0)N
0
e (d†

0)N
0
d |0〉B ⊗

∏
k

exp(−gkd
†
ke

†
k̄)|0〉B, (35)

where |0〉B is the vacuum of the boson sector, and the
pairing function gk = [εv

d + λ − χv
d ηk − Ed (k)]/	v

dη
∗
k. The

boson wave function on the honeycomb lattice described
by the Hamiltonian in Eq. (19) has a similar, slightly more
complicated form due to the doubling of the unit cell. In
the first part of the boson wave function, N0

e and N0
d are

the numbers of condensed holons and doublons that are
determined by the condensate density e

†
0e0 and d

†
0d0. This is

the only part retained in the KR saddle point or the Gutzwiller
approximation. Together with �F , they describe the coherent
QP part in the excitation spectrum of a correlated Fermi fluid.
The second part is due to D-H binding, which, together with
�F , describes the incoherent excitations and plays an integral
part in the Mott transition. As long as the condensate part is
present, the charge and spin degrees of freedom combine such
that the elementary excitations carry the quantum numbers
of an electron and appear as QP poles in the single-particle
Green’s function. Thus, the coexistence of the condensate and
the binding parts heralds the coherent QP and the incoherent
Hubbard excitations in Mott-Hubbard systems before the Mott
transition. This is the case in both the PM (U < Uc1) and the
Slater AF (Uc1 < U < Uc2) phase, where N0

e = N0
d �= 0 in

the condensed part of the boson wave function �B , while �F

changes from a PM to an AF Slater determinant. However, as
we will show, when U > Uc2, the quantum fluctuations due
to D-H binding destroy the single-particle condensate, i.e.,
N0

e = N0
d = 0, as all doublons and holons are bound together,

giving rise to a charge gap. The boson wave function is given
entirely by the second part in Eq. (35). Interestingly, this
boson wave function is just the wave function of a resonating
valence bond (liquid) state, which in the present context can
also be understood as that of an excitonic insulator, since the
doublon and holon carry opposite charges. Because all the
doublons are bound to the holons, the elementary excitations
do not carry the quantum numbers of an electron and the
entire single-particle excitations are incoheren,t as the charge
and spin cannot recombine to form a coherent QP. Had this
Mott transition taken place before the AF order, this insulating
phase would be an SL. However, as we will see on bipartite
lattices without frustration, AF order happens before the Mott
transition, i.e., Uc2 > Uc1. We thus term the phase for U > Uc2

the AF* phase, which is indeed an example of spin-charge
separation above one dimension, albeit taking place inside the
AF-ordered phase. Note that what distinguishes the AF* phase
from the Slater AF insulator is the complete depletion of the
single-particle condensates of the holons and doublons above
Uc2 such that all doublons are bound to holons.

D. Mott, Slater AF, and AF Mott transitions

1. Results on the honeycomb lattice

The D-H binding saddle-point solutions on a half-filled
honeycomb lattice are summarized in Figs. 4 and 5. The
variational parameters χv

d and 	v
d and the order parameters for

D/H hopping χd and D-H pairing 	d are plotted in Figs. 4(a)
and 4(b) as functions of the Hubbard U . At U = 0, 	v

d = 0,
thus all doublons and holons are single particle condensed
with d2

0 = e2
0 = p2

0σ = 1/4 such that χv
f = t , recovering the

noninteracting limit. The SM phase remains stable at small
U . With increasing U , the doublon density decreases as
shown in Fig. 4(c). Due to the increase in D-H binding,
the D/H condensate d0 decays more rapidly than in the KR
saddle-point solution shown in Fig. 2(a). To study the Mott
transition, we first restrict the solution to be in the PM phase by
enforcing p0↑ = p0↓, which amounts to suppressing possible
magnetically ordered states. As shown in Fig. 4(c), the Mott
transition takes place at Uc � 7.3t , which is considerably
smaller than that of 12.6t for the BR transition [Fig. 2(a)].
The condensate d0 vanishes and all doublons are bound
with the holons in the Mott insulating phase for U > Uc,
accompanied by the opening of a charge gap �d that is linear
in U − Uc [Fig. 4(d)]. The ISF of the physical electrons is
shown in Fig. 5(a). Note the transfer of the coherent QP
weight to the incoherent part with increasing U and the
complete suppression of the coherent QPs in favor of two
broad incoherent spectral features beyond the Mott transition
that originate from the bosonic excitations Ed

±(k) in Eq. (19)
to be discussed later. Since the fiσ -fermion spinon remains
gapless, the insulating phase is a gapless SL. Thus, we find no
evidence of the honeycomb lattice for the proposed gapped SL
phase [6].

Next, we allow magnetism and study the interplay among
AF order, D-H binding, and the Mott transition in the ground
state. Figure 4(c) shows that the SM phase on the honeycomb
lattice remains stable until a critical Uc1 � 3.4t , where the
staggered magnetization (m) onsets. We find that for Uc1 <

U < Uc2, where Uc2 � 5.7t , although a single-particle gap
�f opens in the fermion sector [Fig. 4(d)], the zero-energy
mode remains stable in the d-e sector and continues to support
the D/H condensate. Thus, the spin and charge continue to
recombine in this regime and there are coherent excitations
corresponding to the sharp QP peaks in the ISF shown in
Fig. 5(b) at U = 4t and 5t . This phase is thus an Slater AF
insulator whose wave function would overlap well with an AF
Slater determinant.

Remarkably, a Mott transition in the presence of AF
order takes place at Uc2. For U > Uc2, an AF Mott phase
(i.e., the AF∗ phase) emerges with the opening of the boson
gap �d ∝ U − Uc2 in the d-e sector [Fig. 4(d)] as the D/H
condensate vanishes. Since all doublons are bound to holons,
the charge and spin cannot recombine and the electrons are
thus fractionalized in the AF∗ phase. A direct consequence
of the lack of elemental excitations carrying the electron
quantum number is the lack of coherent QP peaks in an
entirely incoherent excitation spectrum, as can be seen from
the broad ISF at U > Uc2 in Fig. 5(b) at U = 6t and 7t .
Unlike in the Slater AF phase, the vanishing of the D/H
condensate in the AF∗ phase enables the deconfinement of the
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FIG. 4. (Color online) D-H binding saddle-point solutions on a
honeycomb lattice. The Hubbard U dependence of (a) variational
parameters χ v

d and D/H hopping order parameter χd ; (b) variational
parameter 	v

d and D-H pairing order parameter 	d ; (c) D/H density
nd , condensate density d2

0 , and AF staggered magnetization m; and
(d) ground-state energy per site E and energy gaps in the boson
sector �d , the fermion sector �f , and for the physical electrons
� = �f + �d . Corresponding results in the restricted PM phase are
also shown. In the restricted PM phase, the Mott transition (SM
to Mott insulator) takes place at Uc � 7.3t , while the ground state
undergoes two transitions: the magnetic transition (from SM to Slater
AF insulator) at Uc1 � 3.4t and the Mott transition (from Slater AF
to AF∗ phase) at Uc2 � 5.7t .

0
0.4

0.8
1.2
1.6

U=3t

0

0.4

0.8

1.2 4t

0
0.4

0.8
1.2
1.6

5t

0

0.4

0.8

1.2 5t

0
0.4

0.8
1.2
1.6

7t

0

0.4

0.8

1.2 6t

-9 -6 -3 0 3 6 9
Bias ω/t

0
0.4

0.8
1.2
1.6In

te
gr

at
ed

 s
pe

ct
ra

l f
un

ct
io

n 
N

(ω
)

8t

-9 -6 -3 0 3 6 9
Bias ω/t

0

0.4

0.8

1.2 7t

(a) (b)

FIG. 5. (Color online) Integrated spectral function (ISF) with
D-H binding on the honeycomb lattice. The coherent [shaded (red)
areas], incoherent [lighter solid (blue) lines], and total (solid black
lines) ISF at different values of Hubbard U in (a) the restricted PM
phase, where the Mott transition is at Uc � 7.3t , and (b) the ground
state, where the AF-to-AF∗ transition is at Uc2 � 5.7t .

spin and charge degrees of freedom, such that the ground wave
function has no overlap with Slater determinant-like states. The
excitation energy gap for the physical electron, � = �f + �d ,
exhibits a derivative discontinuity at Uc2 [Fig. 4(d)] due to
the opening of the Mott gap �d in the AF∗ phase. However,
the magnetization m remains analytic across the AF → AF∗
transition in Fig. 4(c), which is a topological confinement-
deconfinement transition associated with the Ising-like global
Z2 symmetry (di → −di , ei → −ei), which is broken in the
Slater AF phase by the D/H condensate and restored in the
AF∗ phase.

The continuous SM-to-AF transition at Uc1 � 3.4t com-
pares well to the most recent QMC calculations on large
system sizes by Sorella et al. [12], which find the onset of
AF order and a single-particle excitation gap at U � 3.8t .
Since we have not included the intersite spin fluctuations
described by the dynamics of the pσ boson, our magnetic
gap is somewhat larger than the QMC values, and we do
not attempt quantitative comparisons to results obtained by
other numerical methods such as cluster dynamical mean-field
theory (CDMFT) calculations with continuous-time QMC
(CTQMC) or ED impurity solvers. While the CTQMC-
CDMFT [7,11] is performed at relative high temperatures and
is not very suitable for extracting small energy gaps in the
quantum states, the ED-CDMFT [8,9] as well as the ED-VCA
(variational cluster approximation) [10,13] revealed spurious
excitation gaps at very small U , before the emergence of AF
order. This was viewed as supporting evidence for the proposed
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gapped SL phase [6]. Recently, Hassan and Sénéchal [14]
noted that these ED-CDMFT and ED-VCA calculations use
only a single bath orbital per cluster site, which they argued is
insufficient and leads to artificial excitation energy gaps for all
nonzero values of U . Their calculations with two bath orbitals
connecting each cluster site show that the PM Mott transition
and thus the SL phase are indeed pre-empted by a magnetic
transition occurring at a lower value of U . Liebsch and Wu
[15] further pointed out that the spurious excitation gap at
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FIG. 6. (Color online) D-H binding saddle-point solutions on a
square lattice, where Uc � 8.8t , Uc1 = 0, and Uc2 � 6.8t . Labels
and notations follow those in Fig. 4.

very small U originates from the breaking of the translation
symmetry in these cluster calculations.

2. Results on the square lattice

Figures 6 and 7 show the results obtained on the half-filled
square lattice, which are qualitatively the same as those
obtained on the honeycomb lattice. In the PM phase, the Mott
transition is at Uc � 8.8t in contrast to the BR transition at
UBR � 13t without taking D-H binding into account. Because
the band structure leads to a perfectly nested Fermi surface at
half-filling, the PM metallic phase is unstable towards AF order
for infinitesimal U on the square lattice. The AF order therefore
emerges at Uc1 = 0 with an exponentially small staggered
magnetization, as shown in Fig. 6(c). This Slater AF insulator
with coherent QP excitations is stable until Uc2 � 6.8t , where
a transition into the AF* phase with the vanishing of the
holon/doublon condensate and the opening of the charge gap
[Figs. 6(c) and 6(d)] and the disappearance of coherent QP
peaks in favor of two broad incoherent features in the integrated
spectral density Fig. 7. It is important to note that the Fermi
level density of states, whose two limiting behaviors, vanishing
or divergent, are presented by the unfrustrated honeycomb and
square lattices, respectively, while affecting the PM to Slater
AF transition, does not play an essential role in determining
the Mott transition from the Slater AF to the AF* phase. This
is because the latter is tied to the opening of the charge gap
in the boson sector near the doublon and holon band bottom
above a finite Uc2, as can be seen from the boson dispersions
shown in Fig. 9.

To further explore the generality of these predictions, we
have studied the case where the noninteracting band has a
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FIG. 7. (Color online) ISF with D-H binding on the square
lattice. Labels and notations follow those in Fig. 5.
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semicircular density of state, ρ(ω) = (4/πW )
√

1 − (2ω/W )2,
where W is the bandwidth. We found an identical phase
structure with a PM metal to Slater AF insulator at Uc1 �
0.1W , followed by the Mott transition to that AF* phase
at Uc2 � W . Note that although the semicircle density of
states can be realized in the infinite-d unfrustrated Bethe
lattice, these results should not be considered as obtained
for the infinite-d Hubbard model, since taking the infinite-d
limit would suppress all intersite correlations, including the
intersite D-H binding considered here. Thus, in the infinite-d
limit, we would only recover the KR saddle-point solution,
i.e., the Gutzwiller approximation, which is exact for the
Gutzwiller wave-function approach in infinite dimensions
[32]. In this sense, our approach can be viewed as going
beyond the Gutzwiller approximation by including the intersite
correlations in physical dimensions.

With this difference in mind, we proceed to compare in
Fig. 8 the local spectral function in the PM phase on the square
lattice of our D-H binding theory with the results obtained from
the single-site DMFT on the square lattice [34] at different
Hubbard U values. Overall, we find remarkable agreement
in the incoherent part of the spectrum for all values of U/t
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FIG. 8. (Color online) Local spectral function obtained from the
D-H binding theory and the single-site DMFT by Žitko et al. [34] on a
paramagnetic square lattice at various U . Curves are offset vertically
for clarity.

on both sides of the Mott transition. The most significant
deviations of the results are in the low-energy QP peaks around
the Mott transition. The main cause of the latter can be traced
to a particular property of the single-site DMFT formulation
that the spectral density at ω = 0 is independent of U in the
infinite-d limit of the Hubbard model [35], which holds the
QP peak at a constant height until its width goes to 0 at
the Mott transition, shown by the DMFT data in Fig. 8. The
latter is no longer true in the presence of intersite correlations
beyond the infinite-d limit, as shown in the D-H binding results
in Fig. 8, where the QP peaks, agreeing with the DFMT
result for moderate U , are suppressed in both height and
width and disappear completely at the Mott transition, whose
critical value is significantly reduced by intersite correlations
[36]. We also find broad qualitative agreement with the local
spectral density of cluster DMFT calculations that captures
certain short-range correlations, although finding consistency
in CDMFT results is difficult due to the different cluster
embedding procedure (including cluster shapes and sizes) and
the choice of the impurity solver. We find that it is particularly
intriguing that in the CDMFT study of the PM phase by Park
et al. [36], the metallic phase has an ISF consistent with
our result in the PM phase, whereas on the insulating side
near the metal-insulator transition, the local spectral function
displayed a small gap with very pronounced peaks at the
gap edge that closely resemble our findings in the AF Slater
insulator. Indeed, these peaks at the edge of the magnetic gap
are a clear hallmark of the coherence QP peaks characteristic
of a Slater spin-density wave insulator. We thus conjecture
that the CDMFT findings of a small gap PM insulating state
with pronounced gap-edge coherence peaks are due to the
fluctuating or short-range Slater AF order, and with increasing
U , a true Mott transition would emerge with the suppression
of the QP peaks and the opening of the charge gap.

3. Stability of the D-H binding saddle point

Next we comment on the D-H binding saddle-point stability
with respect to gauge-field fluctuations. It is known that the
KR formulation introduces three U (1) gauge fields [37] since
the action is invariant under ei → eie

iθi , piσ → piσ eiφiσ , di →
die

−iθi+i
∑

σ φiσ , fiσ → fiσ eiθi−iφiσ , and λi → λi + θ̇i , λiσ →
λiσ + θ̇i − φ̇iσ . The piσ condensate breaks two of the U (1)
symmetries and makes the gauge fields associated with φiσ

massive by the Anderson-Higgs mechanism. The remaining
U (1) symmetry is also broken in the SM and the AF phase
by the D/H condensate, making the θi gauge field massive. In
the AF∗ phase, it is the D-H pairing 	ij that breaks the U (1)
symmetry and the θi gauge field remains massive, as does
its staggered component due to the D/H hopping fields χ

d,e
ij .

The absence of gapless gauge-field fluctuations supports the
stability of the obtained phases.

E. Nature of incoherent Mott-Hubbard excitations

It is enlightening to discuss the energy spectrum and the
spectral function of the doublons and holons in connection
to the nature of the incoherent Mott-Hubbard excitations in
the local spectral function. The dispersion of the holons and
doublons in Eqs. (20) and (22) and the corresponding density of
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FIG. 9. (Color online) Energy spectrum along high-symmetry
directions (left) and ISF (right) of doublons and holons in the
restricted PM phases at several Hubbard U values across the Mott
transition on (a) a honeycomb lattice where Uc � 7.3t and (b) a square
lattice where Uc � 8.8t . The single-particle condensate contribution
to the ISF (a δ function at zero energy) on the metallic side of the
Mott transition is not shown.

states are shown in Fig. 9 in the PM phases of the honeycomb
and square lattice Hubbard models, respectively, at several
values of U across the Mott transition. Their behaviors are
similar in the AF and AF∗ phases.

1. Honeycomb lattice

At a fixed U , the boson spectrum shows two doubly
degenerate dispersive branches given in Eq. (20). There are
several noteworthy features. (i) Both dispersive branches are
flat near the M point of the hexagonal Brillouin zone, leading
to the two Van Hove singularities in the boson ISF plotted
in the right panel in Fig. 9(a). (ii) The two branches cross
and produce the Dirac cone at the high-symmetry K point
at a finite energy that increases with increasing U , leading
to the V-shaped density of states. Remarkably, (i) and (ii)
combine to form a Dirac-cone like dispersion that is similar
and can be regarded as a “ghost” band of the bare electron
dispersion carried by the excitations of the D/H complex. This
property was pointed out in a systematic large-N expansion
study of the t-J model for doped Mott insulators [38]. It is

remarkable that the ghost Dirac-cone feature manifests itself
in the broad peak-dip-peak structure in the incoherent part
of the ISF for the physical electrons shown in Fig. 5(a),
which can now be identified as D-H excitations. (iii) The
low-energy properties of the boson dispersion near the � point
is also intriguing. For U < Uc, i.e., on the metallic side of
the Mott transition, the lower energy branch is gapless, i.e.,
Ed

−(k) = 0, and disperses linearly away from the � point.
The existence of the zero-energy mode, together with the
vanishing of the ISF N (E), enables finite-temperature D/H
condensation in a two-dimensional system such that d0 �= 0 at
zero temperature. In contrast, for U > Uc, or U > Uc2 when
magnetism is allowed, a charge gap �d �= 0 opens up at the �

point, indicating the emergence of the Mott insulating or the
AF∗ phase with complete suppression of the D/H condensate.
Note also that the gapped Ed

−(k) is parabolic near �, giving
rise to a finite ISF N (E) at the band bottom.

2. Square lattice

The above findings on the connection between the incoher-
ent Mott-Hubbard excitations and the doublon-holon spectrum
applies in a straightforward manner to the square lattice case
as well. In contrast to the intrinsic two-sublattice structure
of the honeycomb lattice, the boson spectrum on the square
lattice has only one branch given in Eq. (22), which is shown in
Fig. 9(b). The corresponding density of states has a single Van
Hove peak tied to the dispersion near the X point. Similarly
to the honeycomb lattice case, this branch of D-H excitations
manifests itself in the single broad peak on the particle and
the hole side of the electron local spectral function shown in
Fig. 7.

The change in the bosonic dispersion across the AF Mott
transition, i.e., from the Slater AF insulator to the AF*
phase, is qualitatively the same as those displayed in Fig. 9
for the PM Mott transition. Namely, the boson spectrum
is gapless with a linear dispersion supported by the D/H
single-particle condensate on the Slater AF side and develops
an energy gap, when all holons are bound to doublons, above
which a quadratic dispersion is found for the Bogoliubov
quasiparticles. The linear dispersion in the PM phase is a
bosonic representation of the collective zero-sound excitations
in the Landau Fermi liquid. In the Slater AF phase, despite the
opening of a single-particle magnetic gap, the absence of a
charge gap is reflected in the existence of gapless collective
excitations represented by the bosons. It is only after entering
the AF* phase that the charge excitations are gapped out,
leaving only the spin waves as the low-energy excitations
inside the single-particle energy gap.

IV. CONCLUSIONS

In summary, we have shown that binding between doublons
and holons plays an essential role in describing the incoherent
excitations and the Mott transition in strongly correlated Mott-
Hubbard systems. For the honeycomb lattice Hubbard model,
we have shown that the SM–to–AF Slater insulator transition is
followed by a Mott transition into a fractionalized AF∗ phase
with increasing U . Interestingly, a different AF∗ phase of a
fractionalized antiferromagnet was proposed in the effective

195119-10



DOUBLON-HOLON BINDING, MOTT TRANSITION, AND . . . PHYSICAL REVIEW B 89, 195119 (2014)

Z2 gauge theory description of doped Mott insulators in the
projected (U = ∞) Hilbert space where spinons are paired
into a Néel state and doublons are absent [39]. In contrast, the
incoherent charge excitation through D-H binding is essential
in the AF∗ phase proposed here, which is more in line with the
importance of doublons in describing Mottness emphasized
recently [40].

The most practical way to test our predictions is to measure
the energy gap for single-particle excitations using spectro-
scopic probes such as ARPES and STM. Our theory shows
that with increasing U/W (which can be varied experimentally
by applying pressure or isoelectronic chemical substitution),
the system goes from a gapless PM state to an AF insulator
where the single-particle gap is controlled by the magnetic gap,
followed by a transition to the AF* phase where a charge gap
opens and is added on top of the magnetic gap. Thus, there is
a singularity (kink) in the evolution of the gap as a function of
U/W . Perhaps even more directly, the single-particle spectral
function as measured by ARPES shows well-defined QP
peaks above the magnetic gap in the Slater AF phase but
exhibits no coherent excitations in the AF* phase. Such an
AF∗ phase on a square lattice may have been observed in the
parent AF insulating compound of high-Tc cuprates by ARPES
experiments [41], which find no coherent QP excitations at all
energies.

As a concrete example, we propose to revisit the time-
honored Mott-Hubbard system, i.e., the transition metal
oxide V2O3, under chemical pressure achieved by Cr or Ti
substitutions. In this case, a finite-temperature Mott metal-
insulator transition above the low-temperature AF insulat-
ing ground state has been well established as a function
of chemical substitution [42–44]. Our theory predicts that,
hidden inside the AF insulating ground state, is a transition
from a Slater AF to the AF* phase. Moreover, melting
the AF order in the Slater AF insulator would result in
a metallic state, whereas melting the AF* phase at higher
Cr substitutions gives rise to a Mott insulator at finite
temperatures. Performing the experiments described above in
these materials would either provide support or disprove our
theory.
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APPENDIX: ISF OF PHYSICAL ELECTRONS

The ISF, which equals the tunneling density of states, for
the physical electrons is given by

Nα(ω) = −
∑
k,σ

Im
∫ β

0
dτeiωτGασ (k,τ ),

where the retarded single-particle Green’s function [45]

Gασ (k,τ ) = −〈Tτ cαkσ (τ )c†αkσ (0)〉,

with α the sublattice index. In the KR slave-boson formulation
[17], the electron operator is composed of ciσ = L̂iσ (e†i piσ +
p
†
iσ̄ di)R̂iσ fiσ . Within our saddle-point solution, L̂iσ and R̂iσ

are approximated by their saddle-point average for the local
Green’s functions. The electron operator in momentum space
is thus given by

cαkσ = rασ

∑
q,q′

(e†αq̄pαq′σ + p
†
αq̄′σ̄ dq)fα,k−q−q′,σ ,

with the normalization factor

rασ = 〈L̂ασ R̂ασ 〉 = [(
1 − nd − p2

α0σ

)(
1 − ne − p2

α0σ̄

)]−1/2
.

Therefore, the electron Green’s function

Gασ (k,τ ) = r2
ασ

∑
q,q′

�ασ (q,q′,τ )Gf
ασ (k − q − q′,τ ),

where G
f
ασ (k,τ ) = −〈Tτfαkσ (τ )f †

αkσ (0)〉 is the fσ -fermion
Green’s function, which can be computed easily in terms of
the fermionic QPs defined in Eq. (16), and � involves the
normal and anomalous (due to pairing) Green’s functions of
the bosons,

�ασ (q,q′,τ ) = 〈Tτ e
†
αq̄(τ )eαq̄(0)〉〈Tτpαq′σ (τ )p†

αq′σ (0)〉
+ 〈Tτdαq(τ )d†

αq(0)〉〈Tτp
†
αq̄′σ̄ (τ )pαq̄′σ̄ (0)〉

+ 〈Tτ e
†
αq̄(τ )d†

αq(0)〉〈Tτpαq′σ (τ )pαq̄′σ̄ (0)〉
+ 〈Tτdαq(τ )eαq̄(0)〉〈Tτp

†
αq̄′σ̄ (τ )p†

αq′σ (0)〉.

The ISF of the physical electrons becomes

Nα(ω) = −
∑
k,σ

r2
ασ Im

∫ β

0
dτeiωτ�ασ (τ )Gf

ασ (k,τ ), (A1)

where �ασ (τ ) = ∑
q,q′ �ασ (q,q′,τ ).

It is instructive to write each boson operator as the sum
of the condensate and fluctuations: b

(†)
k = b0δk + b̃

(†)
k , where b

stands for the (d,e,pσ ) bosons. Although this is not necessary,
doing so facilitates well the following discussion of the
coherent and incoherent contributions to the electron spectral
function. Note that the fluctuations b̃

(†)
k are boson operators,

obeying boson commutation relations and the energy spectrum
discussed above. Thus, the normal and anomalous boson
Green’s functions can be written as

〈Tτb
(†)
k (τ )b′(†)

q (0)〉 = b0b
′
0δkδq + 〈Tτ b̃

(†)
k (τ )b̃′(†)

q (0)〉.

Decomposing the condensate and fluctuation contributions this
way and keeping the leading-order fluctuations involving a
single boson Green’s function, we have

�ασ (τ ) = �cond
ασ (τ ) + �fluc

ασ (τ ), (A2)

where the condensate part

�cond
ασ (τ ) = d2

0 (p0↑ + p0↓)2, (A3)
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and the fluctuation part

�fluc
ασ (τ ) = p2

α0σ

∑
q

〈Tτ ẽ
†
αq̄(τ )ẽαq̄(0)〉 + p2

α0σ̄

∑
q

〈Tτ d̃αq(τ )d̃†
αq(0)〉

+ d2
0

∑
q

[〈Tτ p̃αqσ (τ )p̃†
αqσ (0)〉 + 〈Tτ p̃

†
αq̄σ̄ (τ )p̃αq̄σ̄ (0)〉] + p0↑p0↓

∑
q

[〈Tτ ẽ
†
αq̄(τ )d̃†

αq(0)〉 + 〈Tτ d̃αq(τ )ẽαq̄(0)〉]. (A4)

Correspondingly, the ISF in Eq. (A1) can be written as

Nα(ω) = N coh
α (ω) + N incoh

α (ω), (A5)

with

N coh(incoh)
α (ω)

= −
∑
k,σ

r2
ασ Im

∫ β

0
dτeiωτ�cond(fluc)

ασ (τ )Gf
ασ (k,τ ). (A6)

The coherent part of the ISF comes from the single-boson
condensates that recombine the charge and spin degrees of
freedom, leading to coherent QP excitations associated with
the coherence peaks in the ISF. Beyond the Mott transition, the
condensate of doublons and holons vanishes, and the coherent
ISF is completely suppressed.

In the incoherent part of the ISF defined in Eq. (A6),
the convolution of the boson and fermion Green’s func-
tions gives broad spectral features. Since the pσ bosons
are fully condensed and their fluctuations were ignored
for simplicity within our D-H saddle-point solution, the
question arises as to how to evaluate the corresponding
Green’s functions in Eq. (A4). Note that at the saddle-
point level, the local constraint in Eq. (6) is only satisfied
on average, i.e., 〈Q̂iα〉 = 0. When fluctuations are consid-
ered, a consistent condition imposed by the constraint is
〈Tτ Q̂α(τ )Q̂α(0)〉 = 0, where Q̂α = (1/N )

∑
i∈α Q̂iα , with N

the number of α-sublattice sites. Evaluating the latter to the
leading order in the boson correlations, one gets the following

relation:

p2
0↑ + p2

0↓
2

∑
k

[〈Tτ p̃
†
αk̄↓(τ )p̃αk̄↓(0)〉+ 〈Tτ p̃αk↑(τ )p̃†

αk↑(0)〉]

+ d2
0

∑
k

[〈Tτ ẽ
†
αk̄(τ )ẽαk̄(0)〉 + 〈Tτ d̃αk(τ )d̃†

αk(0)〉

+ 〈Tτ ẽ
†
αk̄(τ )d̃†

αk(0)〉 + 〈Tτ d̃αk(τ )ẽαk̄(0)〉] = 0.

As a result, the Green’s function of the p̃σ boson in �incoh
ασ

given in Eq. (A4) can be expressed in terms of those of the d̃-ẽ
bosons, leading to

�fluc
ασ (τ ) =

∑
q

{
ρe

ασ 〈Tτ ẽ
†
αq̄(τ )ẽαq̄(0)〉 + ρd

ασ 〈Tτ d̃αq(τ )d̃†
αq(0)〉

+ ρde
ασ [〈Tτ ẽ

†
αq̄(τ )d̃†

αq(0)〉 + 〈Tτ d̃αq(τ )ẽαq̄(0)〉]},
(A7)

where

ρe
ασ = p2

α0σ − p̄2
0, ρd

ασ = p2
α0σ̄ − p̄2

0,

ρde
ασ = p0↑p0↓ − p̄2

0, with p̄2
0 = 2d4

0/
(
p2

0↑ + p2
0↓

)
.

The normal and anomalous Green’s functions of the fluctuating
doublons and holons involved in Eq. (A7) can be evaluated
using the bosonic QPs defined in Eq. (19). We are thus ready
to compute the incoherent ISF in Eq. (A6). Remarkably, at U =
0, p0σ = d0 = e0 = 1/2, thus ρe

ασ = ρd
ασ = ρde

ασ = ρed
ασ = 0 in

Eq. (A7) and the incoherent spectral function is therefore
completely suppressed, recovering the noninteracting limit.
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