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Dual-fermion approach to interacting disordered fermion systems
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We generalize the recently introduced dual-fermion (DF) formalism for disordered fermion systems by
including the effect of interactions. For an interacting disordered system the contributions to the full vertex function
have to be separated into crossing-asymmetric and crossing-symmetric scattering processes, and addressed
differently when constructing the DF diagrams. By applying our approach to the Anderson-Falicov-Kimball
model and systematically restoring the nonlocal correlations in the DF lattice calculation, we show a significant
improvement over the dynamical mean-field theory and the coherent potential approximation for both one-particle
and two-particle quantities.
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I. INTRODUCTION

The transport and thermodynamic properties of many real
materials are strongly influenced by disorder and strong
electron correlations [1,2]. The interplay of these two effects
can lead to many interesting phenomena. In particular, both
disorder and electron-electron interactions are known to be the
driving mechanisms for metal-insulator transitions, although
of different nature. Electron correlations induce the Mott-
Hubbard metal-insulator transition with the opening of a gap in
the single particle excitation spectrum [3]. On the other hand,
coherent back-scattering of electrons off disorder-induced
nonperiodic potentials can lead to their localization, known
as Anderson localization [4]. Despite intensive studies, the
proper modeling of disordered interacting systems remains a
great challenge.

Mean-field methods like the coherent potential approxi-
mation (CPA) [5–8] and the dynamical mean-field theory
(DMFT) [9–13] have revolutionized the study of disordered
and correlated systems. These are single-site mean-field ap-
proximations with an averaged local momentum-independent
effective medium. As single-site methods, both the CPA and
DMFT fail to take into account nonlocal correlations, which
are found to be important in many cases. For example, in cor-
related clean systems one frequently observes ordered states
with nonlocal order parameters which cannot be accounted
for within the DMFT. Likewise, for noninteracting disordered
systems it is well known that the CPA, while being rather
successful describing electronic structures, completely fails to
capture Anderson localization [1].

There have been a number of attempts to develop systematic
nonlocal extensions to the CPA and DMFT. These include such
cluster extensions as the molecular coherent potential approx-
imation (MCPA) [14–16], dynamical cluster approximation
(DCA) [17–19], cluster coherent potential approximation
(CCPA) [20–24], and the traveling cluster approximation
(TCA) [25,26]. These methods generally extend the CPA and
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DMFT by replacing the single-site impurity problem by that
of a finite-size cluster coupled to a mean-field bath.

A distinctly different approach called the dual fermion
(DF) method has been developed to incorporate nonlocal
correlations introduced by both disorder and interactions.
Originally constructed for interacting clean systems [27], it
has been recently extended to study disordered noninteracting
electronic systems [28] and disordered dipole systems [29].
Note that earlier a very similar idea using the parquet
method had also been proposed by Janis [30], though the DF
method is more elegant, systematic, and most importantly,
it designs an exact mapping from real fermion lattice onto
dual-fermion lattice. In this work we extend the dual-fermion
approach further so both disorder and interaction effects can
be be treated on equal footing. By separating the scattering
vertex contributions into crossing-asymmetric and crossing-
symmetric components, we manage to derive the proper DF
mapping and construct the DF Feynman diagrams, which are
now more complicated due to the different scattering processes
arising from disorder and Coulomb interaction, respectively.
We apply the method to the Anderson-Falicov-Kimball model.
Our numerical results for one-dimensional (1D) systems show
a remarkable correction to the DMFT-CPA results and are
consistent with DCA calculations for large clusters. Finally,
the phase diagram for two-dimensional (2D) systems is
determined by using both one- and two-particle quantities.

The paper is organized as follows: In Sec. II we describe
the details of the DF formalism for treating both disorder
and electron-electron interactions. Results for one- and two-
particle properties obtained from applying our DF formalism to
the Anderson-Falicov-Kimball model and how they compare
with DMFT-CPA data are presented in Sec. III. Section IV
summarizes and concludes the paper.

II. FORMALISM

A. Dual-fermion mapping

As the simplest interacting disordered fermion system, in
the following we use the Anderson-Falicov-Kimball model to
derive the dual-fermion mapping. Note that the derivation can
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be readily generalized to the more general Anderson-Hubbard
model with small modifications.

The Hamiltonian for the Anderson-Falicov-Kimball model
has the form

H =
∑

k

(εk − μ)c†kck −
∑

i

vini + U
∑

i

nin
f

i , (1)

where εk is the dispersion of the itinerant c electrons, μ is
the chemical potential, U is the Coulomb interaction between
c electrons (ni ≡ c

†
i ci) and the immobile f electrons (nf

i ≡
c
f †
i c

f

i ) on the same site, and the on-site disorder potential vi is
distributed according to some given probability density P(vi).
The latter can have in principle any form, but for the present
purpose we specify it as

P(vi) = �(D/2 − |vi |)/D, (2)

where �(x) is the step function

�(x) =
{

1, x � 0

0, x < 0
, (3)

and D is the disorder strength.
Following the derivation of the dual-fermion mapping for

the noninteracting disordered case [28], after introducing the
auxiliary dual-fermion degrees of freedom and then integrating
out the real fermion degrees of freedom (see Appendix A
for details), one arrives at an effective action (to simplify
the notation we represent the fermionic Matsubara frequency
iwn as w and bosonic Matsubara frequency iνm as ν in the
following):

S[f,f ∗] = −
∑
w,k

G−1
d0 (w,k)f ∗

w,kfw,k +
∑

i

Vd,i (4)

in which the bare dual Green function is defined as the
difference of lattice Green function Glat and impurity Green
function Gimp,

Gd0(w,k) ≡ Glat(w,k) − Gimp(w) (5)

and the dual potential (by keeping only the lowest two-body
interaction)

Vd,i = 1

2

∑
w,w′

V p,0(w,w′)f ∗
i,wf ∗

i,w′fi,w′fi,w

+ 1

4

∑
w,w′,ν

V p,1(ν)w,w′f ∗
i,w+νf

∗
i,−wfi,−w′fi,w′+ν (6)

is split into crossing-asymmetric, with interaction strength
V p,0, and crossing-symmetric terms, with interaction strength
V p,1. They are parametrized by the real fermion full vertex

V p,0 = Fp,0,
(7)

V p,1 = Fp,1,

and will be detailed in Sec. II C. Note that in the above expres-
sion for the dual potential, a prefactor 1/2 instead of 1/4 is used
for the crossing-asymmetric part because it does not have the
full crossing symmetries and thus cannot be antisymmetrized;
while the crossing-symmetric part can be antisymmetrized and
thus carries a prefactor 1/4. When writing down the above
concise expression for the dual-fermion action, we have to

FIG. 1. (Color online) Algorithm for the dual-fermion approach.
The orange region (left half) is for the real fermion, where the
important on-site correlations are taken into account by numerical
exact methods, such as the quantum Monte Carlo (QMC) method.
The blue region (right half) is for the dual fermion, where the
intermediate-length-scale correlations ignored at the DMFT+CPA
calculation are restored systematically. The connection between these
two regions is the dual-fermion mapping.

impose the constraint that Hartree-like diagrams in the self-
energy calculation constructed from V p,0 should be eliminated
at the one-particle level, while at the two-particle level the
vertical component of the particle-hole (p-h) two-particle
Green function should be canceled by the vacuum term. This
constraint stems from taking the replica limit [19,28,31]. Both
V p,0 and V p,1 are for the particle-particle (p-p) channel, and
they are related to their counterparts for the particle-hole (p-h)
channel by the crossing symmetry [32]

V 0(w,w′) = −V p,0(w,w′) (8)

and

V 1(ν)w,w′ = −V p,1(w + w′ + ν)−w′,−w. (9)

B. Algorithm

Like the conventional dual-fermion algorithm for interact-
ing systems, the dual-fermion algorithm for an interacting
disordered system can be represented schematically by Fig. 1.
We start on the left side from a DMFT+CPA solution of the
real fermion system, and then use the information collected
by solving the impurity problem (mainly the one-particle
Green function Gimp, self-energy �imp, and two-particle Green
function χimp) to parametrize the dual-fermion system in the
right half, i.e., construct the bare dual-fermion Green function
Gd0 and the dual potential Vd . While the local correlations are
included in the DMFT+CPA solution, the nonlocal corrections
are incorporated through the dual-fermion part, which is
calculated using a standard perturbation expansion in the Vd

term. After the dual-fermion system is solved, we map it back
to the real fermion system with the nonlocal corrections now
included in the lattice self-energy �(w,k) and Green function
G(w,k). We then solve the impurity problem again starting
with an updated impurity-excluded Green function G(w).
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FIG. 2. (Color online) Measurement formula for the two-particle
Green functions and the defining equation for the full vertex in the
particle-hole (p-h) channel (a) and particle-particle (p-p, Xp denoting
a quantity in this channel) channel (b). Note that the angle brackets
represent the quantum averaging while the curly brackets represent
the disorder averaging.

These steps are repeated until self-consistency is achieved with∑
k

Gd (w,k) = 0, (10)

i.e., with the local contribution to the dual-fermion Green
function Gd (w,k) being zero [27]. This condition would
fix the arbitrary function � introduced during the dual-
fermion mapping in Appendix A and eliminate the first-order
contribution to the self-energy on the dual-fermion lattice.

C. Dual potential

In the algorithm described above, the nontrivial part
is the measurement of the two-particle Green functions.
This is due to the requirement that the crossing-asymmetric
and crossing-symmetric contributions must be separated and
treated differently. We here propose a two-step procedure to
measure the two-particle Green functions:

(1) quantum averaging (integrate out the Coulomb term)
and

(2) disorder averaging (integrate out the disorder term).
By this procedure the crossing-asymmetric and crossing-
symmetric components can be separated as detailed in the
following.

In Fig. 2(a) we show for the case of the p-h channel that
the full two-particle Green function χ can be measured as
[spin indices are suppressed to simplify the expressions, and
hereafter, g represents the one-particle Green function for a
given decoupling field (for quantum averaging) and disorder
configuration (for disorder averaging), while G and χ are the
fully dressed one-particle and two-particle Green functions,

=

w

w

w

w

−=

χ

− F 0

−{

{
{ }

}

}

FIG. 3. (Color online) Measurement formula for the crossing-
asymmetric component of the two-particle Green function in the p-h
channel and the defining equation for the full vertex.

respectively]

χ (ν)w,w′ = {−〈g(w + ν,w′ + ν)g(w′,w)〉
+ 〈g(w + ν,w)g(w′,w′ + ν)〉
− 〈g(w,w)〉〈g(w′,w′)〉δν,0}, (11)

in which the angle brackets represent the quantum averaging
while the curly brackets represent the disorder averaging. The
full vertex is defined according to the following equation:

χ (ν)w,w′ = −G(w + ν)G(w)δw,w′

− T G(w + ν)G(w)F (ν)w,w′G(w′ + ν)G(w′).

(12)

Similarly, as shown in Fig. 2(b), we have

χp(ν)w,w′ = {〈g(w + ν,w′ + ν)g(−w, − w′)〉}
= G(w + ν)G(−w)δw,w′ − T G(w + ν)G(−w)

×Fp(ν)w,w′G(w′ + ν)G(−w′) (13)

for the p-p channel.
Note that the two-particle Green function measured in

this manner still contains both the crossing-asymmetric and
crossing-symmetric contributions. However, by analyzing the
diagrams contributing to each component, we realize that the
crossing-asymmetric component can be measured individually
as (see Fig. 3 for the Feynman diagram)

χ ′(w,w′) = {−〈g(w,w)〉〈g(w′,w′)〉}. (14)

The full vertex for the crossing-asymmetric component can
then again be calculated using the definition equation

χ ′(w,w′) = −G(w)G(w′)

−T G(w)G(w′)F 0(w,w′)G(w)G(w′). (15)

Let us now turn to the calculation of the crossing-symmetric
component F 1(ν)w,w′ . Diagrams for the full vertex are il-
lustrated in Fig. 4, where the scattering from disorder is
represented by a dashed line and black crosses, and the
interaction by a wavy line. One obtains pure disorder diagrams
[where only disorder scatterings appear in the connection
of two fermion lines, only two frequencies are needed, and
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FIG. 4. (Color online) Feynman diagrams contributing to the full
vertex in the p-h channel for the c electrons. Group (a) are the
diagrams due to disorder contributions only. Note that between the
two fermion lines only disorder scattering processes appear (dashed
line and black crosses) and the thin line is for the single-particle Green
function for the c electrons. Group (b) diagrams are contributions due
to the Coulomb interaction (wavy lines) with the f electrons (in the
middle is the particle-hole bubble formed by the f electrons). And
group (c) displays the mixed contributions.

thus can be expressed as X(w,w′)], pure interacting diagrams
(only interaction scatterings in the connections), and the mixed
diagrams:

F (ν)w,w′ = FD(w + ν,w)δw,w′ + FU (ν)w,w′ + Fmix(ν)w,w′ .

(16)

To be able to do the calculation in the dual-fermion formal-
ism, one has to separate out the pure disorder contributions FD .
Then the full vertex can be divided into two parts as shown in
Fig. 5:

F (ν)w,w′ = F 0(w + ν,w)δw,w′ + F 1(ν)w,w′ , (17)

with

F 0(w,w′) ≡ FD(w,w′), (18)

and finally

F 1(ν)w,w′ ≡ FU (ν)w,w′ + Fmix(ν)w,w′

= F (ν)w,w′ − F 0(w + ν,w′)δw,w′ . (19)

Note that while F 1 is fully crossing symmetric and thus
can be treated like a conventional vertex function in a clean
interacting system, F 0 does not have full crossing symmetry.

=

w + ν

w

w′ + ν

w′

w + ν

w

δw,w′ +

w + νw′ + ν

ww′
F F 0 F 1

FIG. 5. (Color online) Decomposing the full vertex into crossing-
asymmetric and crossing-symmetric scattering processes. The
crossing-asymmetric component only depends on two frequencies
and is coming from the disorder scattering at the two-particle level,
while the crossing-symmetric component is from the scattering due
to Coulomb interaction or from the combined interplay of Coulomb
interaction and disorder scattering.

Specifically, each crossing symmetry involving the particle-
hole vertical channel vertex is broken because that single
channel contribution is absent from the construction.

Since the f electrons are frozen at each site, the scattering
processes of c electrons on the f electrons are elastic and this
property will greatly simplify the vertex functions and the dual
potential as well. To be more specific, the crossing-symmetric
component [type (b) and type (c) diagrams in Fig. 4] of
the full vertex function in Eq. (17) can be decomposed into
two components (similar to the decomposition introduced
in Ref. [33]) and each of these two components can be
represented as depending on two frequencies only:

F 1(ν)w,w′ = F=(w + ν,w)δw,w′ + F‖(w,w′)δν,0. (20)

Note that the component F= is for the scattering processes
which conserve the energy at the horizontal direction, while
the other component F‖ is for the scattering processes which
conserve the energy at the vertical direction. These two
components are related by the crossing symmetry as

F=(w,w′) = −F‖(w,w′). (21)

III. RESULTS

To test our generalization of the dual-fermion approach, in
the following we apply it to the Anderson-Falicov-Kimball
model. In the limit of no Coulomb interaction, this model
reduces to the Anderson disorder model and the dual-fermion
calculation is presented in our previous contribution [28]. In
the other limit of no disorder, it reduces to the Falicov-Kimball
model for which both quantum Monte Carlo and DCA results
are available in the literature [17,18,34], and the dual-fermion
method is also applied on this model recently [35,36].

In Secs. III A and III B we will first look into correc-
tions from the DF to the DMFT+CPA results on the one-
dimensional (1D) lattice using the self-consistent second-order
method to solve the DF lattice problem (DF-second) as an
example (see Appendix B 3 b for details). In Sec. III C we will
carry out a detailed survey of the U -D phase diagram for the
two-dimensional (2D) lattice at a fixed temperature T = 0.05
(with 4t = 1) using DF-second and the fluctuation-exchange
(FLEX) approximation to solve the DF lattice problem (DF-
FLEX), see Appendix B 3 c for additional details on the
DF-FLEX approach. The filling is fixed at half-filling for both
c and f electrons.

A. Local Green function

Figure 6 shows the Matsubara frequency dependence of
the local Green function calculated from both DMFT+CPA
and DF approaches for the 1D lattice at U = 0.8 for zero
D = 0 and finite D = 1.0 disorder strength at different tem-
peratures T = 0.01,0.02,0.05. For clean system at U = 0.8
and D = 0 [Fig. 6(a)], both methods show an insulatorlike
behavior, which can be inferred from the imaginary part of
the local Green function converging to zero as a function of
temperature for the lowest Matsubara frequency. However,
while the DMFT+CPA results are temperature independent
due to the neglect of the nonlocal correlations, there is a
significant temperature dependence in the results from the
DF approach. Moreover, they appear to be consistent with
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FIG. 6. (Color online) Comparison of the local Green function
calculated by the DMFT+CPA and DF approaches for the 1D lattice.
Note that the former is essentially temperature independent, while
the latter is temperature dependent and shows very different behavior
which is consistent with DCA results (black up-triangles).

the DCA calculation for a cluster of size Nc = 8 at T = 0.01
included in Fig. 6 as filled black up-triangles.

Similarly, for finite disorder with D = 1.0 [Fig. 6(b)], the
DF results recover the important temperature dependence
from the nonlocal correlations, which are again absent in
the DMFT+CPA calculation. Due to the disorder, the system
becomes less insulating as compared to the clean case D = 0
[contrast the lowest Matsubara frequency results in Figs. 6(a)
and 6(b)]. This is well captured by the DF calculation which is
also consistent with the DCA results, while the DMFT+CPA
approach strongly overestimates this effect.

B. Correction from the dual-fermion calculation

In order to quantify how strong the corrections due to the
nonlocal correlations from the DF approach are, we introduce
the following quantity:

σ (Gloc) ≡ ImGDF
loc(iπT ) − ImGDMFT+CPA

loc (iπT )

|ImGDMFT+CPA
loc (iπT )| , (22)
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FIG. 7. (Color online) Relative correction from the dual-fermion
approach to the local Green function at the lowest Matsubara
frequency (iw = iπT ) for various parameters of the 1D lattice.
The corrections are minimized for both weak- and large-U limits
and maximized for values of U around the bandwidth. The peak
position shifts to larger U with increasing disorder strength. When
decreasing the temperature, the corrections all increase. This behavior
is consistent with DCA results.

which represents the relative difference of the imaginary part
of the local Green function at the lowest Matsubara frequency.
Results for the 1D lattice are shown in Fig. 7.

For both temperatures, T = 0.02 [Fig. 7(a)] and T = 0.01
[Fig. 7(b)], the corrections are weak in both small and large
U limits, reaching their maximum around U ≈ W = 1, W

being the bandwidth. This verifies our belief that DMFT+CPA
for the one-particle Green’s function works best for U 	 W

and U 
 W , while for U ≈ W the kinetic and interaction
parts of the Hamiltonian are strongly competing and nonlocal
correlations become more important. Thus we will naturally
expect an enhanced correction from the DF calculation in this
region. The corrections are around 30% for T = 0.02, and they
increase to around 60% when the temperature is decreased to
T = 0.01. One interesting observation is that the peak in the
plot shifts to larger U values and gradually smooths out when
the disorder is increased.
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C. U-D phase diagram for the two-dimensional lattice

Let us now turn to the phase diagram of the 2D Anderson-
Falicov-Kimball model.

An easy way to analyze the metal-insulator transition
due to crossing-symmetric scattering processes from the
Coulomb interaction is by looking at the difference between
the imaginary part of the local Green function at the two lowest
Matsubara frequencies:

Im δG = ImGloc(3iπT ) − ImGloc(iπT ). (23)

When decreasing the temperature, the imaginary part of local
Green function converges to zero for the insulating phase,
while it diverges for the metallic phase. This different behavior
can be captured with the above quantity, which is negative
for the insulating phase, and positive for the metallic phase.
Note that this distinction between metal and insulator phases
is accurate only at zero temperature. For finite temperature,
the insulator determined in this way could be just a bad metal
in reality. So in the following, we will call it bad-metal phase.
The transition is actually a crossover indicated by the changing
of the sign of Im δG. Figure 8 shows the U -D phase diagram
thus determined.

Both disorder and interaction tend to decrease the mobility
of itinerant particles. However, in Fig. 8 only interaction
drives the system to an insulating phase, while it remains
metallic even for large disorder strength. This is due to the
arithmetic averaging nature of the one-particle Green function
within the DF approach, which does not distinguish between
extended and localized electrons. The positive slope of the
metal–bad-metal crossover line indicates that the disorder
scattering helps particle mobility. Including more ladder-
type diagrams, for example within a DF-FLEX calculation
[Fig. 8(b)], tends to move the crossover line to a smaller value
of the interaction, and this shifting is less pronounced for larger
disorder strengths.

To analyze the driving force of the metal–bad-metal
crossover detected by the difference between the imaginary
part of the two lower Matsubara frequencies local Green
functions, we show in Fig. 9 the phase diagram determined
by the leading eigenvalues (LEV) for the charge-density-wave
(CDW) channel. The LEV λ is calculated by solving the
eigenproblem �χ0φ = λφ, where � is the irreducible vertex
and χ0 is the bare lattice susceptibility. Note that the closer
the LEV is to unity, the more susceptible the system becomes
to the CDW ordering. We can readily observe that the large-
LEV region resembles the bad-metal region in Fig. 8. This
indicates that the metal–bad-metal crossover is driven by CDW
correlations.

The phase diagram determined from either Im δG or
the LEV does not provide any signature of the Anderson
localization. To cure such a deficiency, we turn to the dc
conductivity (see Appendix B for the details of its calculation).
In marked difference with the DMFT+CPA approach, the full
vertex correction to the conductivity can be taken into account
using the parquet equation [28,32]. Results for this quantity
are collected in Fig. 10, where we present the phase diagram
as determined by the conductivity.

In our calculation, the conductivity remains finite for all
values of D and U on the 2D lattice. Therefore, we use

FIG. 8. (Color online) U -D phase diagram of the 2D Anderson-
Falicov-Kimball model determined from the difference between
the imaginary part of the local Green function at the two lowest
Matsubara frequencies. (a) The DMFT+CPA, (b) the DF-second,
and (c) the DF-FLEX results, respectively, at T = 0.05 (4t = 1).
The metal–bad-metal crossover is indicated by the black solid line,
while the Anderson localization transition cannot be detected by the
one-particle Green function.

a small but finite conductivity value σdc = 0.04 to delineate
metallic and bad-metal regions. This value is determined by
matching the critical U for zero disorder strength to the one
determined by Im δG, since both approaches should produce a
consistent result for the clean system. With this convention,
we observe in Fig. 10 that the Anderson localization line
connects continuously to the CDW metal–bad-metal crossover
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FIG. 9. (Color online) U -D phase diagram of the 2D Anderson-
Falicov-Kimball model determined from the leading eigenvalue
(LEV) for the charge density wave (CDW) channel calculated by
DMFT+CPA (a), DF-second (b), and DF-FLEX (c) at T = 0.05
(4t = 1). The closer the LEV is to one, the more susceptible is the
system to the CDW pairing formation. The region most susceptible
to CDW ordering resembles that of the bad-metal region determined
in Fig. 8, suggesting that the metal–bad-metal crossover is driven by
CDW ordering.

line. This is qualitatively similar to the ground-state phase
diagram obtained from the typical medium theory for the Bethe
lattice [37,38]. The difference is that the slope of the crossover
line for small U is negative which indicates that the Coulomb
interaction helps in localizing the particles.

FIG. 10. (Color online) U -D phase diagram determined from the
conductivity calculated by DMFT+CPA (a), DF-second (b), and DF-
FLEX (c) at T = 0.05. The metal–bad-metal crossover either due to
the Anderson localization or the Coulomb interaction is indicated by
the black solid line with finite but small conductivity σdc = 0.04.

IV. CONCLUSION

We have generalized the recently proposed DF approach
to treat both disorder and Coulomb interactions. This gen-
eralization is possible due to the clear separation between
the crossing-asymmetric component, due to the disorder
scattering, of the two-particle level vertex, and the crossing-
symmetric component, due to the Coulomb interaction pro-
cesses and the combined scattering processes from both
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disorder and Coulomb interactions. Thus the two competing
factors can be treated on equal footing in this method.

We would like to emphasize that the separation and different
treatments of crossing-asymmetric and crossing-symmetric
scattering processes are generic for two-particle field-theory
calculation of interacting disordered systems. Its application is
not limited to the DF method proposed here, and instead might
also find its use in other multiscale diagrammatic methods,
such as multiscale many-body approach [39] and dynamical
vertex approximation [40].

To demonstrate the algorithm, we apply the method to the
1D Anderson-Falicov-Kimball at half-filling and compare our
results to those obtained with other established approxima-
tions, viz the DMFT-CPA and larger cluster DCA calcula-
tions. We observe that our approach gives satisfying results,
significantly improving on the DMFT-CPA and systematically
approaching the DCA simulations.

As an important and challenging application we study the
phase diagram of the 2D Anderson-Falicov-Kimball system
using both single- and two-particle quantities. We observe that
the interaction-driven metal–bad-metal crossover is clearly
due to CDW correlations. Increasing the disorder, on the other
hand, does not seem to lead to a metal–bad-metal crossover
based on the behavior of the one-particle properties. Since for
the 2D model one however should observe signs of Anderson
localization, we resort to a quantity that should show this
effect. Here we use the conductivity, which indeed gives a
crossover to a bad metal with increasing disorder strength
which competes with the Coulomb interaction. This latter
competition leads to an interesting re-entrance behavior of the
metal–bad-metal crossover line for small to moderate disorder
strength, increasing the stability of the metallic phase.

These results indeed show that the algorithm introduced
here is capable of treating interactions and disorder on the
same footing, with results that significantly go beyond standard
DMFT/CPA calculations. Further applications to the full
Anderson-Hubbard model are on their way.
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APPENDIX A: DUAL-FERMION MAPPING

In this Appendix we will derive the dual-fermion formalism
using the replica technique. We consider the Anderson-
Falicov-Kimball model described by Eq. (1).

The disorder averaged lattice Green function is given by

G(w,k) = − δ

δηwk
{ln Zv[ηωk]}|ηwk=0, (A1)

with {(· · · )} = ∫
dvp(v)(· · · ) indicating a disorder averaged

quantity, Xv representing the quantity X is disorder configu-
ration dependent, and ηwk being a source field. The partition
function for a given disorder configuration {vi} is defined as

Zv[ηwk] =
∫

Dc̄DcDc̄f Dcf e−Sv [ηwk], (A2)

where Dc ≡ ∏
wk dcwk, Dcf ≡ ∏

wi dc
f

wi , and the action is
itself defined as

Sv[ηwk] =
∑
wk

c̄wk(−iw + εk − μ + ηwk)cwk

+
∑

i

vi

∫ β

0
dτni(τ ) + U

∑
i

∫ β

0
dτni(τ )nf

i (τ ),

(A3)

where iw = i(2n + 1)πT are the Matsubara frequencies, εk
is the lattice bare dispersion, μ is the chemical potential, and
U is the Coulomb interaction. In the following, the explicit
dependence on the source term ηwk will be hidden to simplify
the expressions. Using the replica trick

ln Z = lim
m→0

Zm − 1

m
, (A4)

where m replicas are introduced, we can express the disorder-
averaged Green function as

G(w,k) = − lim
m→0

1

m

δ

δηwk

{∫
Dc̄DDc̄fDcf e−Svi

}
|
ηwk=0 ,

(A5)

where Dc ≡ ∏
wkα dcα

wk, Df ≡ ∏
wiα dc

f,α

wi , and α is the
replica index. The replicated lattice action is

Svi =
∑
wkα

c̄α
wk(−iw + εk − μ + ηwk)cα

wk

+
∑
iα

vi

∫ β

0
dτnα

i (τ ) + U
∑
iα

∫ β

0
dτnα

i (τ )nf,α

i (τ ).

(A6)

The disorder averaging can be formally done, and thus we
obtain

S =
∑
wkα

c̄α
wk(−iw + εk − μ + ηwk)cα

wk

+
∑

i

W (ñi) + U
∑
iα

∫ β

0
dτnα

i (τ )nf,α

i (τ ). (A7)

Note that the Coulomb interaction term remains the same form,
and a new elastic, effective interaction between electrons of
different replicas W (ñi) appears due to the disorder scattering.
The latter is local in space and nonlocal in time, and could be
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expressed through local cumulants 〈vl
i〉c as [19]

e−W (ñi ) =
∫

dvip(vi)e
−vi

∑
α

∫
dτnα

i (τ )

= e− ∑∞
l=2

1
l! 〈vl

i 〉c[
∑

α

∫
dτnα

i (τ )]l . (A8)

Similarly to the noninteracting disorder fermionic sys-
tems [28], we follow four steps to derive the DF formalism
for the interacting disorder models. First, we introduce an
effective single-site impurity reference problem by formally
rewriting the original action as

S =
∑

i

Simp −
∑
wkα

c̄α
wk(�w − εk − ηwk)cα

wk, (A9)

with an effective impurity action [containing both the Coulomb
and disorder interactions W (ñi)]

Simp =
∑
αw

c̄α
wi(−iw − μ + �w)cα

wi

+W (ñi) + U
∑

α

∫ β

0
dτnα

i (τ )nf,α

i (τ ). (A10)

Here �w is a local, and yet unknown, hybridization function
describing the interaction of the impurity with the effective
medium. As in the original DF formalism, it is assumed that
all the properties of the impurity problem, i.e., the one-particle
Green function

Gimp(w) = − lim
m→0

1

m

m∑
α=1

∫
Dc̄DcDc̄fDcf cα

wc̄α
we−Simp ,

(A11)

and the two-particle Green functions which contain effects
from both Coulomb interaction and disorder

χp
imp(ν)w,w′ = lim

m→0

1

m

m∑
α,β=1

∫
Dc̄DcDc̄fDcf

× cα
w+νc

β
−wc̄α

−w′ c̄
β

w′+ν e−Simp (A12)

can be calculated. See Sec. II C in the main text about how to
measure them in the real calculation. These Green functions
are local quantities. Our task is to express the original lattice
Green function and other properties via quantities of the
DMFT+CPA impurity problem. What has been accomplished
so far in Eq. (A9) is that the local part of the lattice action has
been moved to the effective impurity.

In the second step of the DF procedure we introduce
auxiliary (“dual” fermions) degrees of freedom. In doing so,
we transfer the nonlocal part of the action in Eq. (A9) to the
dual variables. As a result, the original real fermions carry
information about the local part only. The transformation to
dual fermions is done via a Gaussian transformation of the
nonlocal part of Eq. (A9),

ec̄α
wkA2

wkcα
wk = A2

wk

λ2
w

∫
Df̄Df e

−λw(c̄α
wkf α

wk+f̄ α
wkcα

wk)− λ2
w

A2
wk

f̄ α
wkf α

wk
,

(A13)

with A2
wk = (�w − εk − ηwk), and λw yet to be specified.

With such a transformation, the lattice Green function of
Eq. (A5) can be rewritten as

G(w,k) = − lim
m→0

1

m

δ

δηwk

(�w − εk − ηwk)

λ2
w

×
∫

Df̄Df e− ∑
wkα λ2

wf̄ α
wk(�w−εk−ηwk)−1f α

wk

×
∫

Dc̄DcDc̄fDcf e− ∑
i Si

site |
ηwk=0 , (A14)

in which the replicated action for site i is of the form

Si
site = Simp +

∑
αw

λw

(
c̄α
iwf α

iw + f̄ α
iwcα

iw

)
. (A15)

In Eq. (A14) the intersite coupling is transferred to a coupling
between dual fermions.

In the third step of the DF mapping, we integrate out the
real fermions from the local site action Si

site for each site i

separately, i.e.,

∫ ∏
αw

dc̄α
i dcα

i dc̄
f,α

i dc
f,α

i e−Ssite

= Zimpe
− ∑

wα λ2
wGimp(w)f̄ α

iwf α
iw−V

α,β

d,i [f̄ α
i ,f

β

i ], (A16)

in which Zimp is the partition function for the replicated
impurity system

Zimp =
∫ ∏

αw

dc̄α
i dcα

i dc̄
f,α

i dc
f,α

i e−Simp[c̄α
i ,cα

i ]. (A17)

As in the clean case, formally this can be done up to infinite
order, which makes the mapping to the DF variables exact.
Choosing for convenience λw = G−1

imp(w), the lowest-order of

the replicated DF potential V
α,β

d,i [f̄ α
i ,f

β

i ] reads as

V
α,β

d,i

[
f̄ α

i ,f
β

i

] = 1
2V p,0(w,w′)f̄ α

iwf̄
β

iw′f
β

iw′f
α
iw

+ 1
4V p,1(ν)w,w′ f̄ α

i,w+ν f̄
α
i,−wf α

i,−w′f
α
i,w′+ν,

(A18)

where the impurity full vertex are calculated as discussed in the
main text. In general, the DF vertex V

α,β

d,i [f̄ α
i ,f

β

i ] contains n-
body correlation terms introduced by disorder and interaction,
but in the following discussion we will limit ourselves to the
leading quartic term with four external DF fields only. Similar
to the disordered real fermion system, now we can take the
replica limit on the DF potential and then we would have the
form shown in Eq. (6) in the main text. Due to the replica limit,
we have to impose a constraint on topology of the Feynman
diagrams that there is no closed-fermion loop inside.

To get a relation between the DF Green function and real
fermion Green function, we take the derivative with respect
to the source field ηwk. Then the Green function of Eq. (A14)
reads as

G(w,k) = (�w − εk)−1 + Gd (w,k)

(�w − εk)2 Gimp(w)2
, (A19)
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where we define the averaged DF Green function as

Gd (w,k) = − lim
m→0

1

m

m∑
α′=1

∫
Df̄Df e− ∑

wkα Sd0

× e− ∑
iαβw V

α,β

d,i [f̄ α
i ,f

β

i ]f α′
wkf̄

α′
wk, (A20)

and Sd0 = f̄ α
wk[ (�w−εk)−1+Gimp(w)

G2
imp(w) ]f α

wk is the noninteracting DF
action.

Notice that for the case of noninteracting dual fermions
when dual potential is zero, Eq. (A19) reduces to the
DMFT+CPA solution for the lattice Green function with
G(w,k) = 1

G−1
imp+�w−εk

. Hence, the DMFT+CPA is the zeroth

order approximation within our framework.

APPENDIX B: VERTEX MANIPULATION

The two basic building blocks for constructing the dual-
fermion diagrams are the bare dual Green function and the
bare dual vertex. As compared to the DF formalism for the
clean system, the complexity comes from the vertex part which
requires the differentiation between crossing-asymmetric and
crossing-symmetric scattering components. These two cannot
be treated on the same footing. In the following we will provide
a detailed discussion about how to manipulate the vertex in
the calculation of self-energy and vertex functions on the DF
lattice. These equations, such as the Bethe-Salpeter equation
and parquet equations, are first derived from the real fermion
system and then generalized to the DF system by replacing the
real fermion quantities by their DF counterparts.

1. Bethe-Salpeter equation

The Bethe-Salpeter equation which relates the full vertex
F to the irreducible vertex � reads

F (q)p,p′ = �(q)p,p′ + T

N

∑
p′′

�(q)p,p′′χ0(q)p′′F (q)p′′,p′ ,

(B1)

where each index represents a bundle of Matsubara frequency
and momentum indices p ≡ (iw,k) and q ≡ (iν,q), and N is
the number of sites on the lattice. In the above we have used
the nonperturbative two-particle Green function for the p-h
channel

χ0(q)p ≡ G(p + q)G(p). (B2)

Similarly for p-p channel, we have (note the symbol p in the
superscript represents p-p channel and should not be confused
with the frequency-momentum index p which appears only in
parentheses or subscript)

χ
p

0 (q)p ≡ G(p + q)G(−p). (B3)

To simplify the notation, in the following we will hide the
explicit dependence on the indices and write Eq. (B1) as

F = � + �χ0F. (B4)

When solving this equation, the nontrivial part is about how
to construct the vertex ladder. Since the vertex function can
be decomposed into two components as shown in Eq. (17),

Φ00 Φ01

Φ10 Φ11

FIG. 11. (Color online) Decomposition of the vertex ladder. Note
that �00 contributes to the pure disorder term F 0 while all the other
three contribute to F 1.

we have (remember that “0” in the superscript represents
the crossing-asymmetric component while “1” represents
crossing-symmetric components, and see Fig. 11 for the
corresponding Feynman diagrams)

� ≡ �χ0F

= (�0 + �1)χ0(F 0 + F 1)

= �0χ0F
0 + (�0χ0F

1 + �1χ0F
0 + �1χ0F

1)

= �0 + �1. (B5)

Therefore, the Bethe-Salpeter equation for each component
has the following form:

F 0 = �0 + �0χ0F
0

= [1 − �0χ0]−1�0 (B6)

and

F 1 = �1 + �0χ0F
1 + �1χ0F

0 + �1χ0F
1

= [1 − �χ0]−1�1[1 + χ0F
0]. (B7)

2. Parquet equations

The parquet equations [32] are more involved due to the
breaking of the crossing symmetry by the crossing-asymmetric
component. Since this complexity comes from the missing
of the vertical p-h channel contribution for the crossing-
asymmetric component, one can therefore pretend there is no
such missing diagram and thus the full crossing symmetries are
preserved when constructing the vertex ladders. So the parquet
equation can be readily written down and the irreducible
vertex can be decomposed into different contributions. Only
in the very end, the vertical p-h channel contribution for
the crossing-asymmetric component is removed explicitly to
restore the real physical case. By doing this, one can avoid the
possible missing of crossed channel contributions.

So one has (see Fig. 13 for the diagrams)

F̃ = F 0 + F 0′ + F 1 (B8)

for the full vertex in the p-h channel, where the tilde denotes
that the vacuum term is not subtracted yet and thus contains the
p-h vertical contribution F 0′ from the disorder-only scattering.
It would be canceled out by the vacuum term eventually.
Nevertheless, it contributes nontrivially when constructing the
crossed channel contributions. Similarly for the irreducible
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Φ̃00 Φ̃01 Φ̃02

Φ̃12Φ̃11Φ̃10

Φ̃20 Φ̃21 Φ̃22

FIG. 12. (Color online) Decomposition of the vertex ladder. Note
that �̃11 contains a fermion loop and thus is nonphysical. When
rotated [see Eq. (B24)], �̃00 corresponds to the vertical p-h channel
and will be canceled out by the vacuum term. All the left seven terms
are physical and contribute to the p-h irreducible vertex.

p-h vertex

�̃ = �0 + �0′ + �1. (B9)

Then the vertex ladder can be calculated as (see Fig. 12)

�̃ = (�0 + �0′ + �1)χ0(F 0 + F 0′ + F 1)

= �0χ0F
0 + �0χ0F

0′ + �0χ0F
1

+�0′χ0F
0 + �0′χ0F

0′ + �0′χ0F
1

+�1χ0F
0 + �1χ0F

0′ + �1χ0F
1. (B10)

When rotated [see Eq. (B24)], the term �0χ0F
0 corresponds

to the pure disorder vertical p-h channel and �0′χ0F
0′ contains

a closed fermion loop, and thus both should be ignored. The
left seven terms are physically meaningful and can be grouped
as

�rot1 = �0
rot1 + �1

rot1, (B11)

where

�0
rot1 = [�0χ0F

0′ + �0′χ0F
0 + �0′χ0F

1 + �1χ0F
0′]rot1

= [(�0 + �1)χ0F
0′ + �0′χ0(F 0 + F 1)]rot1

= [�χ0F
0′ + �0′χ0F ]rot1 (B12)

and

�1
rot1 = [�0χ0F

1 + �1χ0F
0 + �1χ0F

1]rot1

= [(�0 + �1)χ0F
1 + �1χ0F

0]rot1

= [�χ0F
1 + �1χ0F

0]rot1. (B13)

The calculation of the crossed p-p channel contribution is
straightforward. Similar to the p-h channel (see Fig. 11), the
p-p vertex ladder can be calculated as

�p = �pχ
p

0 Fp = �p,0 + �p,1. (B14)

Its rotation is [see Eq. (B25)]

�
p

rot2 = �
p,0
rot2 + �

p,1
rot2, (B15)

with

�
p,0
rot2 = �p,0χ

p

0 Fp,0|rot2, (B16)

�
p,1
rot2 = [

�p,0χ
p

0 Fp,1 + �p,1χ
p

0 Fp,0 + �p,1χ
p

0 Fp,1]
rot2 .

(B17)

Therefore, the parquet equations read

� = �0 + �1, (B18)

�0 = �0 − �0
rot1 − �

p,0
rot2, (B19)

�1 = �1 − �1
rot1 − �

p,1
rot2, (B20)

for the p-h channel, and

� = �p,0 + �p,1, (B21)

�p,0 = �p,0 + �0
rot3 − �0

rot2, (B22)

�p,1 = �p,1 + �1
rot3 − �1

rot2 (B23)

for the p-p channel. In the above, � represents the fully
irreducible vertex for either real fermion system or dual-
fermion system. For the latter, it might be approximated by
the dual potential V .

The rotations used in the above are defined as [32,41]

X(q)p,p′ |rot1 = X(p′ − p)p′,p+q, (B24)

X(q)p,p′ |rot2 = X(p + p′ + q)−p′,−p, (B25)

X(q)p,p′ |rot3 = X(p − p′)−p′,p+q . (B26)

3. Schwinger-Dyson equation

One special property associated with disordered system is
that there is no well-defined equation of motion, and thus the
Schwinger-Dyson equation cannot be used to construct the
self-energy diagrams from the vertices. This holds true even
for the dual-fermion disordered system after the mapping. In
the actual calculation, however, a common practice is taken so
that the dual potential is truncated up to two-body interaction.
With this truncation, the Schwinger-Dyson equation can be
defined on an order-by-order basis and thus can be used to
construct self-energy diagrams efficiently on the dual-fermion
lattice.

Similar to the parquet equation, it is convenient to use the
crossing-symmetrized vertices. Then the Schwinger-Dyson
equation from the p-h channel [see (a) in Fig. 14] reads

�(p) = − T

N

∑
q

Ṽ (v)w,wG(p + q)

− T

2N

∑
p′,q

Ṽ (v)w,w′G(p′+q)G(p′)F̃ (q)p′,pG(p + q),

(B27)
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=X̃ ++

=X̃p ++

FIG. 13. (Color online) Crossing-symmetrized vertex for both p-
h and p-p channels. Note X represents vertex functions at different
levels of reducibility.

with the crossing-symmetrized bare p-h vertex defined as (see
Fig. 13 for the diagrams)

Ṽ (v)w,w ≡ V 0(w + v,w)δw,w′ + V 0′(w,w′)δv,0

+V 1(v)w,w′

≡ Ṽ 0(v)w,w + V 1(v)w,w′ . (B28)

Note that V = V 0 + V 1 and V 0′(w,w′) = −V 0(w,w′).
Or equivalently, it can be written in terms of p-p channel

vertices

�(p) = T

N

∑
q

Ṽ p(v)w,wG(−p + q)

− T

2N

∑
p′,q

Ṽ p(v)w,w′G(−p′ + q)G(p′)F̃ p(q)p′,p

×G(−p + q). (B29)

with the crossing-symmetrized bare p-p vertex defined as (see
Fig. 13 for the diagrams)

Ṽ p(v)w,w ≡ V p0(−w + v,w)δw,w′ + V p0′(w′,w)δw+w′,v

+V p1(v)w,w′

≡ Ṽ p0(v)w,w + V p1(v)w,w′ . (B30)

Note that V p = V p0 + V p1 and V p0′(w′,w) = −V p0(w,w′).
Since the crossing-symmetrized vertices are used, a pref-

actor 1/2 is needed for the second term in the above to
avoid the double counting [the two internal single-particle
Green function lines corresponding to indices p′ and p + q

in (a) of Fig. 14 are indistinguishable and results in this
symmetry factor]. And nonphysical diagrams which contain

F̃Σ p
= ṼṼ +

p pp

p + q

p + q

p p

p + q(a)

(b)

F̃ pΣ p
= Ṽ pṼ p +

p pp

−p + q

−p + q

p p

−p + q

FIG. 14. (Color online) Schwinger-Dyson equation for the dual-
fermion lattice expressed through the p-h channel (a) and the p-p
channel (b).

Ṽ = ++

(a)

Ṽ p = ++

(b)

FIG. 15. (Color online) The first-order self-energy diagrams con-
structed through the Schwinger-Dyson equation from the p-h channel
(a) and p-p channel (b). Note that the first (Hartree-like) diagram for
both channels contains a close fermion loop and is nonphysical, so
one should remove it after the construction.

closed fermion loops are produced as well in this way.
These nonphysical diagrams vanish when taking the replica
limit, therefore one has to remove them manually after the
construction of self-energy diagrams.

a. First-order contributions

An example is shown for the first-order diagrams in Fig. 15.
The self-energy can be calculated as

�1
1st(w,k) = − T

N

∑
v,k′

V 1(v)w,wG(w,k′) (B31)

and

�0
1st(w,k) = T

N

∑
k′

V 0(w,w)G(w,k′), (B32)

for the crossing-symmetric and crossing-asymmetric vertex
components, respectively, from the p-h channel. Or equiva-
lently it can be calculated from the p-p channel as

�1
1st(w,k) = T

N

∑
v,k′

V p1(v)w,wG(−w,k′) (B33)

and

�0
1st(w,k) = − T

N

∑
k′

V p0(w,w)G(w,k′). (B34)

Note that after the convergence is achieved, the first-order
contributions should vanish due to the convergence criterion
used.

b. Second-order contributions

For the second-order contributions to the self-energy, one
needs to approximate the crossing-symmetrized full vertex by
the bare one Ṽ when using the Schwinger-Dyson equation.
One nontrivial vertex ladder contribution from the crossing-
symmetric component is

�1
2nd = V χ̄0V − V 0χ̄0V

0

= (V 0χ̄0V
1 + V 1χ̄0V

0 + V 1χ̄0V
1) (B35)
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Σ̃00 Σ̃01 Σ̃02

Σ̃12Σ̃11Σ̃10

Σ̃20 Σ̃21 Σ̃22

FIG. 16. (Color online) The second-order self-energy diagrams
constructed from the Schwinger-Dyson equation in the p-h channel.
Note that both �̃00 and �̃11 contain a close fermion loop and should
be removed.

in which the coarse-grained bare two-particle Green function
defined as

χ̄0(v,q)w = 1

N

∑
k

G(w,k)G(w + v,k + q). (B36)

The vertex ladder expression � = V1χ̄0V2 hereafter should be
interpreted as the following operation:

�(v,q)w,w′ =
∑
w′′

V1(v)w,w′′ χ̄0(v,q)wV2(v)w′′,w′ . (B37)

This contribution corresponds to the self-energy diagrams
�̃02, �̃20, and �̃22 in Fig. 16. The other contribution which
corresponds to self-energy diagrams �̃12 and �̃21 in Fig. 16 is

�1′
2nd = V 0′χ̄0V

1 + V 1χ̄0V
0′. (B38)

The crossing-asymmetric component contributes (correspond-
ing to �̃01 and �̃10 in Fig. 16)

�0
2nd = V 0χ̄0V

0′ + V 0′χ̄0V
0. (B39)

The resulting self-energy diagrams are shown in Fig. 16. Then
the self-energy can be calculated as

�1
2nd(w,k)

= −T

2

∑
v,q

(
�1

2nd + �1′
2nd

)
(v,q)w,wG(w + v,k + q)

(B40)

and

�0
2nd(w,k) = −T

2

∑
q

�0
2nd(v = 0,q)w,wG(w,k + q).

(B41)

The second-order self-energy can be equivalently calcu-
lated through the p-p channel. The vertex ladders needed are

�
p1
2nd = Ṽ pχ̄

p

0 Ṽ p − Ṽ p0χ̄
p

0 Ṽ p0

= V p0χ̄
p

0 V p1 + V p0′χ̄p

0 V p1 + V p1χ̄
p

0 V p0

+V p1χ̄
p

0 V p0′ + V p1χ̄
p

0 V p1 (B42)

Σ̃00 Σ̃01 Σ̃02

Σ̃12Σ̃11Σ̃10

Σ̃20 Σ̃21 Σ̃22

FIG. 17. (Color online) The second-order self-energy diagrams
constructed from p-p channel. Note that both �̃00 and �̃11 contain a
close fermion loop and should be removed.

and

�
p0
2nd = V p0χ̄

p

0 V p0′ + V p0′χ̄p

0 V p0

= 2V p0χ̄
p

0 V p0′. (B43)

In the above the coarse-grained bare two-particle Green
function in the p-p channel is defined as

χ̄
p

0 (v,q)w = − 1

2N

∑
k

G(w,k)G(−w + v, − k + q), (B44)

in which the symmetry factor 1/2 is included. The resulting
diagrams are shown in Fig. 17 and the self-energy can be
calculated as

�1
2nd(w,k) = T

∑
v,q

�
p1
2nd(v,q)w,wG(−w + v,−k + q)

(B45)

and

�0
2nd(w,k) = T

∑
q

�
p0
2nd(v = 2w,q)w,wG(w, − k + q).

(B46)

To sum up, the second-order self-energy can be calculated
as

�2nd = �1
2nd + �1′

2nd + �0
2nd

= �
p1
2nd + �

p0
2nd. (B47)

c. FLEX contributions

For the fluctuation-exchange (FLEX) approximation, one
should sum over the ladder diagrams from all the channels.
The p-h channel vertex ladders are

�1 = [1 − V χ̄0]−1V − [1 − V 0χ̄0]−1V 0, (B48)

�1′ = [1 − V χ0]−1V 0′[1 − V χ0]−1

− [1 − V 0χ0]−1V 0′[1 − V 0χ0]−1, (B49)

�0 = [1 − V 0χ0]−1V 0′[1 − V 0χ0]−1. (B50)
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By excluding the second-order contributions, the vertex lad-
ders can be written as (the index α in the following represents
different components for both p-h and p-p channels)

�α
FLEX ≡ �α − �α

2nd. (B51)

Then the FLEX self-energy contributions from p-h channel
can be calculated as

�1
FLEX(w,k) = −T

∑
v,q

(
�1

FLEX + �1′
FLEX

)
(v,q)w,w

×G(w + v,k + q) (B52)

and

�0
FLEX(w,k) = −T

∑
q

�0
FLEX(v = 0,q)w,w

×G(w,k + q). (B53)

The p-p channel vertex ladders are

�p1 = [
1 − Ṽ pχ̄

p

0

]−1
Ṽ p − [

1 − Ṽ p0χ̄
p

0

]−1
Ṽ p0, (B54)

�p0 = [
1 − 2V p0χ̄

p

0

]−1
V p0′. (B55)

Then the FLEX self-energy contributions (excluding the
second-order contributions) are

�
p1
FLEX(w,k)

= T
∑
v,q

�
p1
FLEX(v,q)w,wG(−w + v, − k + q) (B56)

and

�
p0
FLEX(w,k)

= T
∑

q

�
p0
FLEX(v = 2w,q)w,wG(w, − k + q). (B57)

The FLEX self-energy is calculated by summing all these
contributions

�FLEX = �1
FLEX + �1′

FLEX + �0
FLEX

+�
p1
FLEX + �

p0
FLEX + �2nd. (B58)

APPENDIX C: CALCULATION OF DC CONDUCTIVITY

We calculate the dc conductivity as [28,42]

σdc = β2

π
χxx

(
q = 0,τ = β

2

)
, (C1)

with the current-current correlation function χxx =
〈jx(q,τ )jx(−q,0)〉, and β = 1/T the inverse temperature.
The current-current correlation function can be Fourier trans-
formed from the frequency space

χxx

(
q = 0,τ = β

2

)
= T

∑
iνm

e−iνm
β

2 χxx(q = 0,iνm), (C2)

and then it can be related with the two-particle Green function

χxx(q = 0,ν ≡ iνm)

= T

N2

∑
w,w′;k,k′

χxx(q = 0,ν)w+ν,k;w′,k′

= − T

N

∑
w;k

v2
kχ0(q = 0,ν)w,k

− T 2

N2

∑
w,w′;k,k′

vkχ0(q = 0,ν)w,kF
rf (q = 0,ν)w,k;w′,k′

×χ0(q = 0,ν)w′,k′ vk′ . (C3)

The full vertex F rf is defined on the real fermion space, and
has to be mapped from its dual-fermion counterpart through

F rf (q)p,p′ = S(p + q)S(p)F (q)p,p′S(p′ + q)S(p), (C4)

with the assistance of the transformation matrix defined as

S = − 1

1 + Gimp�d

. (C5)

Now one can employ the Bethe-Salpeter and parquet equations
discussed in Appendix B to take into account all the crossed
channel contributions for the dual-fermion full vertex F . To ac-
celerate the convergence of the calculation of the conductivity
on the dual-fermion lattice, the embedding scheme proposed
recently [43] is employed through the calculations.
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