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Self-consistent hybrid functional for condensed systems

Jonathan H. Skone,1 Marco Govoni,2 and Giulia Galli2,*

1Department of Chemistry, University of California, Davis, One Shields Ave., Davis, California 95616, USA
2Institute for Molecular Engineering, University of Chicago, 5801 South Ellis Avenue, Chicago, Illinois 60637, USA

(Received 15 March 2014; revised manuscript received 17 April 2014; published 9 May 2014)

A self-consistent scheme for determining the optimal fraction of exact exchange for full-range hybrid
functionals is presented and applied to the calculation of band gaps and dielectric constants of solids. The
exchange-correlation functional is defined in a similar manner to the PBE0 functional, but the mixing parameter
is set equal to the inverse macroscopic dielectric function and it is determined self-consistently by computing the
optimal dielectric screening. We found excellent agreement with experiments for the properties of a broad class
of systems, with band gaps ranging between 0.7 and 21.7 eV and dielectric constants within 1.23 and 15.9. We
propose that the eigenvalues and eigenfunctions obtained with the present self-consistent hybrid scheme may be
excellent inputs for G0W0 calculations.
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I. INTRODUCTION

Density functional theory (DFT) [1] continues to be a
widely used theoretical methodology to describe both con-
densed matter and molecular systems. Its success is owed to the
reasonably good accuracy in predicting numerous properties
of broad classes of materials and molecules at a relatively low
computational cost. In the Kohn-Sham (KS) [2] formulation
of DFT, the density-dependent potential, Eq. (1), is the sum of
the Hartree vH , the exchange-correlation vxc, and the external
potential of the nuclei vext:

vKS (r) = vH (r) + vxc(r) + vext(r). (1)

The exact exchange-correlation potential is not known and
it is approximated in various manners. To date, in the
condensed matter physics community, the most widely used
exchange-correlation functionals have been the local density
approximation (LDA) and semilocal generalized gradient
approximation (GGA) [3]. Another popular approximation
makes use of so-called hybrid functionals, defined by the
sum of a local vxc and of a term proportional to the Hartree-
Fock exact-exchange operator [4]. Within the generalized
Kohn-Sham (GKS) formalism [5], the total nonlocal potential
vGKS (r,r′) is given by

vGKS (r,r′) = vH (r) + vxc(r,r′) + vext(r), (2)

where vxc is now fully nonlocal and can be expressed as

vxc(r,r′) = βvsr−ex
x (r,r′; ω) + αvlr−ex

x (r,r′; ω)

+(1 − β)vsr
x (r; ω) + (1 − α)vlr

x (r; ω) + vc(r) .

(3)

In Eq. (3), α and β are parameters that determine the amount
of long-range and short-range exact exchange, respectively.
The long-range nonlocal potential vlr−ex

x (r,r′; ω) is defined as

vlr−ex
x (r,r′; ω) = −

Nocc∑
i=1

φi(r)φ∗
i (r′)

erf(ω|r − r′|)
|r − r′| , (4)
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where ω is a parameter (separation length) and φi are
single-particle, occupied electronic orbitals. The short-range
potential vsr−ex

x (r,r′; ω) is defined in a similar manner, with the
complementary error function replacing the error function in
Eq. (4):

vsr−ex
x (r,r′; ω) = −

Nocc∑
i=1

φi(r)φ∗
i (r′)

erfc(ω|r − r′|)
|r − r′| . (5)

The Coulomb potential is partitioned [6] as

1

|r − r′| = erfc(ω|r − r′|)
|r − r′| + erf(ω|r − r′|)

|r − r′| . (6)

When α = β = 0, one recovers the KS equations with a local
or semilocal exchange-correlation potential. If α = β = 1,
one obtains the KS equations with exact-exchange potential.
For short-range hybrid functionals α = 0, e.g., in HSE06 [7],
where β = 0.25 and ω = 0.11 bohr−1, or in sX-LDA [8],
where β = 1 and the Thomas-Fermi screening factor is used
instead of the error function. When α �= 0 the range-separated
hybrid functional is long ranged. Examples of long-range
hybrid functionals include the empirical CAM-B3LYP func-
tional [9], where α = 0.65,β = 0.19,ω = 0.33 bohr−1, as well
as LC-ωPBE [10], where α = 1, β = 0, and ω = 0.4 bohr−1.
When α = β, a full-range hybrid functional is obtained and
α determines the fraction of exact exchange entering the
definition of the potential:

vxc(r,r′) = αvex
x (r,r′) + (1 − α)vx(r) + vc(r) , (7)

where vex
x (r,r′) corresponds to the sum of the exact-exchange

terms of Eqs. (4) and (5), and similarly, vx(r) corresponds to
the sum of the local exchange terms in Eq. (3).

An example of a full-range hybrid is PBE0 [11], where
α = 0.25. Hybrid functionals have been regularly used to
describe molecules [12], but their application to condensed
matter systems has been slower to realize due to the sub-
stantial increase in computational cost, with respect to local
functionals, when using, e.g., plane-wave basis sets. However,
in the last decade, due in part to several methodological
advances [13–15], hybrid functionals have been increasingly
used to investigate a variety of periodic systems with plane-
wave basis sets and have been shown to surmount some of
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the shortcomings of local and semilocal functionals [16]. The
fraction of exact exchange included in the potential greatly
affects the calculated electronic structure and related quantities
such as the static dielectric constant, the energy gap, and
equilibrium geometries. In most hybrid functionals used to
date, the fraction of exact exchange is kept fixed.

Recently, several authors have suggested using α as an
adjustable parameter to reproduce the experimental band gap
of solids [17–21]. For nonmetallic, condensed systems the
screening of the long-range tail of the Coulomb interaction
is proportional to the inverse of the static dielectric constant
(ε−1

∞ ) and it is thus intuitive to relate the parameter α in
Eq. (7) to ε−1

∞ . One may also justify such a relation by
using many-body perturbation theory [22,23]. For example,
in Hedin’s equations [24], the exchange-correlation potential
of Eq. (7) is replaced by the self-energy �, which is a nonlocal
and energy-dependent operator. One of the most successful
approximations to � is the GW approximation [25], which
has been extensively used in the last three decades to improve
upon the single-particle energies and wave functions obtained
with local and semilocal DFT calculations [26–30]. Since the
GKS potential is not energy dependent, one may only draw
a comparison between Eq. (7) and Hedin’s equation in the
GW, static approximation, known as the static COulomb Hole
plus Screened EXchange (COHSEX) [24]. The connection
between hybrid functionals and the COHSEX approximation
has been previously discussed [20,31,32], and we consider
it here in further detail. Within the COHSEX approxima-
tion, the self-energy contains separable local and nonlocal
potentials:

�(r,r′,ω = 0) = �COH(r,r′) + �SEX(r,r′) , (8)

where the local �COH represents the Coulomb-hole (COH)
interaction and the nonlocal �SEX is the statically screened
exchange (SEX):

�COH(r,r′) = − 1
2δ(r − r′)[v(r,r′) − W (r,r′)], (9)

�SEX(r,r′) = −
Nocc∑
i=1

φi(r)φ∗
i (r′)W (r,r′) . (10)

In Eqs. (9) and (10), the screened Coulomb potential W is
given by

W (r,r′) =
∫

dr′′ε−1(r,r′′)v(r′′,r′), (11)

where ε−1 is the dielectric response function and v is the bare
Coulomb potential. If we approximate the inverse microscopic
dielectric function ε−1 by the inverse macroscopic dielectric
constant ε−1

∞ , thereby neglecting the microscopic components
of the dielectric screening, we obtain

W (r,r′) ≈ 1

ε∞
v(r,r′) . (12)

Inserting Eq. (12) in Eqs. (9) and (10) yields the following
expressions for COH and SEX:

�COH(r,r′) ≈ −(
1 − ε−1

∞
)

1
2δ(r − r′)v(r,r′), (13)

�SEX(r,r′) ≈ −ε−1
∞

Nocc∑
i=1

φi(r)φ∗
i (r′)v(r,r′). (14)

We may now compare the exchange-correlation potential
of Eq. (7) and the electron self-energy of Eq. (8) using the
simplified expressions for COH and SEX given by Eqs. (13)
and (14). If α = ε−1

∞ is chosen, the prefactors of the local
and nonlocal exchange potentials in Eq. (7) are the same as
those of the corresponding local and nonlocal self-energies in
Eqs. (13) and (14), respectively. Hence through simplifications
of the many-body self-energy, Eq. (8), we obtain α = 1/ε∞.
We also note that the equivalence between Eq. (7) and
Eqs. (13) and (14) holds exactly for the nonlocal terms where
the exact exchange is present in both; the local operator
arising from the COH part is expressed in Eq. (7) using
a local/semilocal form. A similar proportionality between α

and ε−1
∞ was derived from many-body perturbation theory to

study the polarizability of semiconductors in the framework of
time-dependent DFT, where α was used to statically screen the
long-range contribution to the exchange-correlation kernel in
the polarizability, but without introducing a nonlocal potential
in the Hamiltonian [33].

The use of the static electronic dielectric constant (ε∞) to
represent the effective screening of the exact-exchange po-
tential in nonmetallic condensed systems has been previously
suggested by several authors [31,34,35]. Marques et al. [31]
evaluated ε∞ at the semilocal Perdew-Burke-Ernzerhof (PBE)
level of theory and set α = 1/εPBE

∞ using a full-range hybrid
functional. Building upon previous work on range-separated
hybrid functionals for molecules, Refaely-Abramson et al. [35]
determined the static dielectric constant from the full dielectric
response function in the random phase approximation (RPA).
The results of both Refs. [31] and [35] showed a consider-
able improvement in computed electronic energy gaps over
semilocal and hybrid functionals. Despite properly describing
the correct long-range asymptotic limit, the accuracy of the
prefactors used in Refs. [31] and [35] may be affected
by the level of theory (PBE) or the approximations employed
for the evaluation of the polarizability (RPA).

Using both a full-range and a short-range screened hybrid
functional, Shimazaki and Asai [36,37] self-consistently eval-
uated α = ε−1

∞ by using a Penn model for the static dielectric
constant.[38] Koller et al. [39] also reported a self-consistent
short-range hybrid functional with the short-range mixing
parameter dependent on the static dielectric constant. The
latter was evaluated without including the density response
to the perturbing external electric field (no local-field effects);
an empirical fit was utilized to set the relation between α and
ε∞, resulting in considerable errors (∼30%) in the computed
macroscopic dielectric constants. The self-consistent hybrid
implementations of Refs. [36] and [39] used approximate
methods for the polarizability, which may have affected the
overall accuracy of the procedure.
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In this work we present a full-range, nonempirical hybrid
functional where the mixing parameter α is determined self-
consistently from the evaluation of the inverse static electronic
dielectric constant ε−1

∞ . The latter is computed by including
the full response of the electronic density to the perturbing
external electric field, i.e., local-field effects are included,
which are important to obtain accurate results. We computed
the dielectric constants, electronic gaps, and several lattice
constants of a broad class of solids and found results in
considerably better agreement with experiments than those
obtained with semilocal and the PBE0 hybrid functional.

The rest of the paper is organized as follows. Section II de-
scribes the methodology along with the computational details.
Section III presents results obtained using a self-consistent
(sc) hybrid. Section IV summarizes the present self-consistent
hybrid scheme and concludes with future directions to explore.

II. METHODS

A. Self-consistent hybrid mixing scheme (sc-hybrid)

The self-consistent cycle used to determine the sc-hybrid
functional proposed in this work is shown in Fig. 1. The
self-consistency loop is started with an initial guess for α,
which is bound to range from 0 to 1; α determines the
amount of exact exchange vex

x (r,r′) included in the exchange-
correlation potential expression of Eq. (7). In this work we
used the GGA exchange and correlation functional proposed
by Perdew, Burke, and Ernzerhof (PBE) [40]; hence in Fig. 1
vx(r) denotes the PBE exchange functional. Once the hybrid
exchange potential is defined, ε∞ is computed self-consistently
using the procedure outlined in Sec. II B and convergence is
assessed by comparing ε∞ evaluated in subsequent cycles.

As an initial guess for α, we used both the value that
reproduces the semilocal-only PBE limit (α = 0) and the value
α = 0.25 corresponding to the global hybrid PBE0. Figure 2
illustrates how the self-consistent procedure of Fig. 1 leads to
the same converged electronic dielectric constant, regardless
of the initial value of α, either PBE (sc-hybrid@PBE, blue
dashed line and triangles) or PBE0 (sc-hybrid@PBE0, red

FIG. 1. (Color online) Diagram of the self-consistent hybrid
scheme. The potential used in the solution of the generalized
Kohn-Sham equation is defined in Eq. (7). ε∞ is the static dielectric
constant.

11

12

ε ∞

sc-hybrid@PBE
sc-hybrid@PBE0

5

5.5

6

1 2 3 4
iteration

6.5

7

ε ∞

1 2 3 4
iteration

13

14

15

16

Si= 11.9ε∞
exp

PBE0

PBE C

= 5.7
expε∞

SiC Ge= 15.9ε∞

ε∞ = 6.52
exp

exp

FIG. 2. (Color online) Convergence of the value of the static
dielectric constant ε∞ in the sc-hybrid scheme is shown for four
prototypical semiconductors, Si, C, SiC, and Ge. The blue dashed
line and triangles indicate the iterative procedure that starts with no
inclusion of exact exchange: α = 0 (sc-hybrid@PBE); the red solid
line and circles correspond to the iterative procedure started with a
quarter of exact exchange α = 0.25 (sc-hybrid@PBE0). The blue and
red arrows shown in the first panel indicate the PBE and PBE0 values
of ε∞. The solid black lines represent the value of the experimental
macroscopic dielectric constant.

solid line and circles). Generally only three to four iterations
are required to reach convergence [41] with the only notable
exceptions being the antiferromagnetic transition metal oxides
CoO, MnO, and NiO, which respectively required five, five,
and nine iterations to reach convergence.

B. Evaluation of the static dielectric constant

The static dielectric constant is the central quantity in the
sc-hybrid scheme and its accurate computation is critical for
the performance of our approach. It is therefore useful to briefly
recall the techniques and the levels of approximation that are
usually employed in evaluating ε∞.

We consider the dielectric response of a system subject to a
macroscopic electric field Eext, where the total potential acting
on the system vtot includes both the perturbing macroscopic
potential vmacro = er · Eext, and the self-consistent generalized
Kohn-Sham electronic potential vGKS :

vtot = vGKS + vmacro. (15)

The dielectric response to an external field may be computed
using finite field methods, e.g., the Berry phase technique
(known as the modern theory of polarization) [42,43], or first-
order perturbation theory, which is our method of choice in the
present work. Within linear response, both density functional
perturbation theory (DFPT) [44] and the coupled perturbed
Kohn-Sham (CPKS) [45,46] equations [the coupled-perturbed
Hartree-Fock method (CPHF) [47–49] extended to DFT]
have been commonly employed to compute the macroscopic
dielectric constants of solids. In this work we computed the
dielectric constants using the CPKS method as implemented in
CRYSTAL09 [50], where the perturbed KS orbitals are obtained

195112-3



JONATHAN H. SKONE, MARCO GOVONI, AND GIULIA GALLI PHYSICAL REVIEW B 89, 195112 (2014)

TABLE I. The electronic dielectric constant (ε∞) determined using several levels of theory. The hybrid heading with α = 1/εPBE
∞ refers to

a hybrid calculation using α = 1/ε∞, where the dielectric constant was evaluated at the PBE level of theory. Similarly, the hybrid heading with
α = 1/εPBE0

∞ refers to a hybrid calculation where the dielectric constant was evaluated at the PBE0 level of theory. The sc-hybrid heading refers
to hybrid calculations where the fraction of exact exchange is self-consistently determined from the dielectric constant. All local-field effects
are included in the evaluation of the dielectric constant so that all ε∞ hybrid functional entries in the table are at the level of RPA + fxc−nl. ME,
MAE, MRE, and MARE are the mean, mean absolute, mean relative, and mean absolute relative error, respectively. The experimental geometry
was used for each solid, with the structure or polytype indicated by the abbreviation in the second column: dC-diamond cubic; RS-rock salt
cubic structure; ZB–zinc blende; M–monoclinic; Ru-rutile; WZ–wurtzite; Cr–corundum; XI–the XI proton ordered phase of ice; and cF–fcc,
face-centered cubic. Note that CoO, NiO, and MnO are magnetic with AFM-II magnetic ordering.

PBE PBE0 hybrid hybrid sc-hybrid
Type α = 0 α = 0.25 α = 1/εPBE

∞ α = 1/εPBE0
∞ α = 1/sc-ε∞ Exp.

Ge (dC) – 12.77 – 15.33 15.65 15.9 [66]
Si (dC) 12.62 10.53 11.81 11.67 11.76 11.9 [67]
AlP (ZB) 7.82 6.85 7.26 7.20 7.23 7.54 [67]
SiC (ZB) 6.94 6.28 6.53 6.49 6.50 6.52 [67]
TiO2 (Ru) 7.91 5.96 6.75 6.46 6.56 6.34 [68]
NiO (RS) 16.98 4.74 9.20 5.12 5.49 5.76 [69]
C (dC) 5.83 5.54 5.61 5.61 5.61 5.70 [67]
CoO (RS) – 4.52 – 4.73 4.92 5.35 [69]
GaN (ZB) 5.78 5.00 5.19 5.12 5.14 5.30 [70]
ZnS (ZB) 5.58 4.84 5.01 4.94 4.95 5.13 [67]
MnO (RS) 7.62 4.32 5.11 4.41 4.45 4.95 [71]
WO3 (M) 5.46 4.60 4.79 4.68 4.72 4.81 [72]
BN (ZB) 4.59 4.37 4.40 4.39 4.40 4.50 [73]
HfO2 (M) 4.54 3.97 4.03 3.97 3.97 4.41 [74]
AlN (WZ) 4.54 4.15 4.18 4.16 4.16 4.18 [75]
ZnO (WZ) 4.66 3.54 3.63 3.47 3.46 3.74 [76]
Al2O3 (Cr) 3.27 3.07 3.03 3.01 3.01 3.10 [77]
MgO (RS) 3.12 2.89 2.83 2.81 2.81 2.96 [78]
LiCl (RS) 2.96 2.82 2.78 2.77 2.77 2.70 [66]
NaCl (RS) 2.49 2.37 2.31 2.30 2.29 2.40 [79]
LiF (RS) 1.97 1.87 1.79 1.78 1.77 1.90 [66]
H2O (XI) 1.80 1.73 1.66 1.65 1.65 1.72 [80]
Ar (cF) 1.74 1.70 1.66 1.66 1.66 1.66 [81]
Ne (cF) 1.28 1.24 1.21 1.21 1.21 1.23 [82]
ME 0.96 –0.41 0.13 –0.20 –0.15 –
MAE 0.96 0.43 0.27 0.22 0.18 –
MRE (%) 18.5 –5.1 1.4 –3.8 –3.1 –
MARE (%) 18.5 6.2 5.6 4.5 4.0 –

using the potential of Eq. (15). The vGKS potential implicitly
depends on the applied electric field through the perturbed
charge density and orbitals. The perturbation of the equilibrium
charge density caused by the presence of the external field is
related to vmacro by the reducible polarizability χ :

nind(r) =
∫

χ (r,r′)vmacro(r′)dr′. (16)

χ is a nonlocal operator that describes the many-body polariza-
tion effects of the interacting electron gas. The polarizability
χ may include retardation effects, giving rise to a frequency
dependence of the dielectric tensor. Such dependence is not
considered in the present work since we focus on the evaluation
of the static dielectric screening. The static dielectric tensor
ε−1
ij can be expressed in terms of χ [51]:

ε−1
ij = δij + 4πe2

�

∫
dr

∫
dr′riχ (r,r′)r ′

j , (17)

where i,j denote Cartesian components and � is the volume
of the cell. This result can be derived by relating the external
electric field Eext to the total electric field E = Eext − 4πP and
by computing the induced polarization field P by integrating
the induced charge density

P = −e

�

∫
nind(r)rdr . (18)

The approximations adopted in the computation of the static
dielectric constant arise from the approximation chosen for χ

in Eq. (17):

χ = χ0 + χ0
δvGKS

δn
χ0 + χ0

δvGKS

δn
χ0

δvGKS

δn
χ0 + · · ·

= χ0 + χ0
δvGKS

δn
χ, (19)

where χ0 is the irreducible polarizability [52]. The reducible
and irreducible polarizabilities are also called interacting
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TABLE II. The electronic dielectric constant evaluated using the
sc-hybrid functional scheme is compared with results obtained from
many-body perturbation theory. The scGW (e-h) calculations [84]
used the HSE hybrid functional eigenvalues and orbitals as input,
and the G0W0 (RPA) calculations [83] used the PBE functional
eigenvalues and orbitals as input. The sc-hybrid (NLF) heading refers
to a hybrid calculation where the uncoupled-perturbed Kohn-Sham
equation is used, resulting in no inclusion of the local-field effects.
The sc-hybrid (RPA +fxc−nl) heading refers to a sc-hybrid calculation
where the polarizability includes all local-field effects. ME, MAE,
MRE, and MARE are the mean, mean absolute, mean relative, and
mean absolute relative error, respectively. The experimental geometry
was used for each solid, with the structure or polytype used indicated
in Table I.

sc-hybrid
G0W0 [83] scGW [84]

(NLF) (RPA +fxc−nl) (RPA) (e-h) Exp.

Ge 15.05 15.65 – 15.30 15.9
Si 11.24 11.76 12.09 11.40 11.9
AlP 6.91 7.23 7.53 7.11 7.54
SiC 5.96 6.50 6.56 6.48 6.52
C 5.08 5.61 5.54 5.59 5.70
GaN 4.49 5.14 5.68 5.35 5.30
ZnS 4.54 4.95 5.62 5.15 5.13
BN 3.93 4.40 4.30 4.43 4.50
ZnO 2.89 3.46 5.12 3.78 3.74
MgO 2.42 2.81 2.99 2.96 2.96
LiF – 1.77 1.96 1.98 1.90
Ar 1.60 1.66 1.66 1.69 1.66
Ne 1.17 1.21 1.25 1.23 1.23
ME –0.57 –0.14 0.19 –0.12 –
MAE 0.57 0.14 0.25 0.15 –
MRE (%) –10.7 –3.0 4.5 –0.7 –
MARE (%) 10.7 3.0 5.8 2.0 –

and noninteracting density-density response functions, respec-
tively [53]. The difference between χ and χ0 is given by
so-called local-field effects [54,55], defined by the functional
derivative

δvGKS
δn

, which is the sum of the functional derivative
of the Hartree and exchange-correlation potential with respect
to the density:

δvGKS

δn
= δvH

δn
+ δvxc

δn
, (20)

where δvxc
δn

≡ fxc. If local fields are neglected (NLF, i.e., no

local fields),
δvGKS

δn
= 0 and the polarizability is equal to the

irreducible polarizability

χNLF = χ0 . (21)

χ0 can then be computed in the independent particle ap-
proximation (IPA), which assumes the electron-hole (e-h)
interactions are negligible [56]. This approximation is formally
equivalent to the one adopted for the calculation of ε∞
by Koller et al. [39], who used the Fermi’s golden rule
to compute the frequency-dependent imaginary part of the
dielectric screening, and the Kramers-Kronig relation to derive
the static dielectric constant.

If only the Hartree term is included in Eq. (20) and the
derivative of the exchange-correlation potential is set to zero
(fxc = 0), one obtains the RPA for the polarizability:

χRPA = [1 − χ0v]−1χ0 . (22)

If both the Hartree and the exchange-correlation terms are
included in Eq. (20), one obtains RPA + fxc [57]. In linear
response calculations of the dielectric screening with nonlocal
operators in the KS potential, the functional derivative of
vxc with respect to the density is usually neglected; the
resulting, approximate fxc is denoted as fxc−l . If the functional
derivative of the nonlocal operator is instead included, fxc is
denoted as fxc−nl. We note that when using local/semilocal
functionals, the exchange-correlation potential entering fxc

depends explicitly on the density and its functional derivative
may be readily evaluated; its inclusion in the calculation of
the polarizability for some semiconductors and insulators was
previously observed to be negligible [57]. However, nonlocal
exchange-correlation potentials, e.g., derived from hybrid
functionals, depend implicitly on the density through the KS
orbitals and their functional derivative is not straightforward to
compute. Within the CPKS method, this difficulty is overcome
by calculating explicitly the perturbed orbitals and using them
to evaluate the linear variation of the exact exchange with
respect to the single-particle wave functions; hence, within the
CPKS scheme, local-field effects are easily included [58].

The importance of including nonlocal contributions to fxc

in the calculation of band gaps of some semiconductors and
insulators was pointed out by Paier et al. [57], following
the suggestion of Bruneval et al. [59]; these authors derived
fxc from many-body perturbation theory and related it to the
inclusion of e-h interactions in the many-body calculations of
χ0, beyond the IPA.

Finally, we note that the CPKS scheme adopted here is
efficient when used in conjunction with moderate size basis
sets, e.g., the Gaussian basis sets we used with CRYSTAL09.
However, this would be less practical when plane-wave basis

TABLE III. The calculated electronic dielectric tensor components for the optically anisotropic wurtzite phases of ZnO, AlN, and GaN are
shown and compared with their respective experimental values.

ZnO AlN GaN

ε⊥(∞) ε‖(∞) ε⊥(∞) ε‖(∞) ε⊥(∞) ε‖(∞)

PBE 4.64 4.68 4.46 4.69 5.55 5.72
PBE0 3.53 3.57 4.10 4.27 4.86 5.00
sc-hybrid 3.45 3.48 4.10 4.27 4.99 5.13
Experiment [75,76] 3.70 ± 0.01 3.78 ± 0.05 4.13 ± 0.02 4.27 ± 0.05 5.18 ± 0.02 5.31 ± 0.06
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TABLE IV. The Kohn-Sham (KS) energy gaps (eV) evaluated with the dielectric-dependent hybrid functionals are compared with the
experimental electronic gaps for a wide range of materials. The experimental values correspond to either photoemission measurements or to
optical measurements where the excitonic contributions were removed, with alumina the only exception (see text). The KS gaps were computed
as the energy difference of the single-particle energies of the conduction band minimum and the valence band maximum. The solids are listed
in the order of largest to smallest experimental ε∞. The hybrid heading with α = 1/εPBE

∞ refers to a hybrid calculation using a fixed α with
the dielectric constant evaluated at the PBE level of theory. Similarly, the hybrid heading with α = 1/εPBE0

∞ refers to a hybrid calculation
with a fixed α and the dielectric constant evaluated at the PBE0 level of theory. The sc-hybrid heading refers to the hybrid calculation where
the fraction of exact exchange is determined self-consistently from ε∞. ME, MAE, MRE, and MARE are the mean, mean absolute, mean
relative, and mean absolute relative error, respectively. The experimental geometry was used in all calculations, with the structure or polytype
indicated in the second column: dC–diamond cubic; RS–rock salt cubic structure; ZB–zinc blende; M–monoclinic; Ru–rutile; WZ–wurtzite;
Cr–corundum; XI–the XI proton ordered phase of ice; cF–fcc, face-centered cubic. Note that CoO, NiO, and MnO are magnetic with AFM-II
magnetic ordering.

PBE PBE0 hybrid hybrid sc-hybrid
Type α = 0 α = 0.25 α = 1/εPBE

∞ α = 1/εPBE0
∞ α = 1/sc-ε∞ Exp.

Ge (dC) 0.00 1.53 – 0.77 0.71 0.74 [85]
Si (dC) 0.62 1.75 0.96 1.03 0.99 1.17 [85]
AlP (ZB) 1.64 2.98 2.31 2.41 2.37 2.51 [86]
SiC (ZB) 1.37 2.91 2.23 2.33 2.29 2.39 [87]
TiO2 (Ru) 1.81 3.92 2.83 3.18 3.05 3.3 [88]
NiO (RS) 0.97 5.28 2.00 4.61 4.11 4.3 [89]
C (dC) 4.15 5.95 5.37 5.44 5.42 5.48 [90]
CoO (RS) 0.00 4.53 – 4.01 3.62 2.5 [91]
GaN (ZB) 1.88 3.68 3.10 3.30 3.26 3.29 [92]
ZnS (ZB) 2.36 4.18 3.65 3.85 3.82 3.91 [85]
MnO (RS) 1.12 3.87 2.55 3.66 3.60 3.9 [93]
WO3 (M) 1.92 3.79 3.24 3.50 3.47 3.38 [94]
BN (ZB) 4.49 6.51 6.24 6.34 6.33 6.25 [95]a

HfO2 (M) 4.32 6.65 6.38 6.68 6.68 5.84 [96]
AlN (WZ) 4.33 6.31 6.07 6.24 6.23 6.28 [97]
ZnO (WZ) 1.07 3.41 3.06 3.73 3.78 3.44 [98]
Al2O3 (Cr) 6.31 8.84 9.42 9.65 9.71 8.8 [99]
MgO (RS) 4.80 7.25 7.97 8.24 8.33 7.83 [100]
LiCl (RS) 6.54 8.66 9.42 9.57 9.62 9.4 [101]
NaCl (RS) 5.18 7.26 8.55 8.73 8.84 8.6 [102]
LiF (RS) 9.21 12.28 15.48 15.83 16.15 14.2 [103]
H2O (XI) 5.57 8.05 11.19 11.44 11.71 10.9 [104]
Ar (cF) 8.78 11.20 14.40 14.54 14.67 14.2 [105]
Ne (cF) 11.65 15.20 23.32 22.99 23.67 21.7 [105]
ME (eV) −2.7 −0.3 0.0 0.3 0.3 –
MAE (eV) 2.67 1.08 0.5 0.4 0.5 –
MRE (%) −46.9 10.8 −1.1 4.9 3.3 –
MARE (%) 46.9 21.1 9.6 7.4 7.8 –

aThe experimental value used here is the average of two reported values 6.1 and 6.4 eV.

sets are employed. Within a plane-wave pseudopotential
approach with hybrid functionals, one may, for example,
evaluate the dielectric constant by applying the modern theory
of polarization and computing derivatives with respect to the
applied field by finite differences. In this way all local-field
effects are automatically included [42,43].

C. Computational details

All hybrid functional calculations were carried out within
an all-electron approach using the CRYSTAL09 [50] electronic
structure package. We thus avoided possible inconsistencies
generated by the use of pseudopotentials derived within PBE
for hybrid functional calculations. We used Gaussian basis

sets modified starting from Ahlrichs’ def2-TZVPP molecular
basis [60], with the only exception being the rare gases Ne
and Ar basis sets, which were modified starting from the
def2-QZVPD set [61]. The highly contracted core shells were
not modified, while the valence shells were modified, when
necessary, to avoid possible linear dependencies caused by
the use of diffuse functions, which are utilized in the case of
molecules to represent the tail of the wave functions in the
vacuum region. In particular, we constrained the most diffuse
exponents to be larger than or equal to 0.09 bohr−2. In most
cases, we kept the size of the valence shell basis set to be
the same as that of the uncontracted original def2 sets by
augmenting the truncated basis sets accordingly. The Gaussian
basis functions added to the original set were chosen so as to
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TABLE V. The Kohn-Sham (KS) energy gaps (eV) evaluated in the present work (see Table IV) and quasiparticle gaps from Refs. [83]
and [84] are compared with the measured electronic gaps for a subset of semiconductors and insulators. Both the scGW (RPA) and scGW
(e-h) calculations used the HSE hybrid functional eigenvalues and orbitals as input, and the G0W0 (RPA) calculations used the PBE functional
eigenvalues and orbitals as input. The sc-hybrid (NLF) heading refers to a hybrid calculation where the uncoupled-perturbed Kohn-Sham
equation was used, thus neglecting all local-field effects. The sc-hybrid (RPA +fxc−nl) heading refers to a sc-hybrid calculation where the
polarizability includes all local-field effects. MRE and MARE stands for the mean relative and the mean absolute relative error, respectively.
The experimental geometry was used for each solid, with the structure or polytype indicated in Table IV.

sc-hybrid G0W0 [83] scGW [84] scGW [84]

(NLF) (RPA +fxc−nl) (RPA) (RPA) (e-h) Exp.

Ge 0.72 0.71 – 0.95 0.81 0.74
Si 1.00 0.99 1.12 1.41 1.24 1.17
AlP 2.42 2.37 2.44 2.90 2.57 2.51
SiC 2.38 2.29 2.27 2.88 2.53 2.39
GaN 3.47 3.26 2.80 3.82 3.27 3.29
ZnO 4.35 3.78 2.12 3.8 3.2 3.44
ZnS 3.96 3.82 3.29 4.15 3.60 3.91
C 5.55 5.42 5.50 6.18 5.79 5.48
BN 6.55 6.33 6.10 7.14 6.59 6.25 a

MgO 8.93 8.33 7.25 9.16 8.12 7.83
LiF – 16.15 13.27 15.9 14.5 14.2
Ar 14.88 14.67 13.28 14.9 13.9 14.2
Ne 24.05 23.67 19.59 22.1 21.4 21.7
ME (eV) 0.45 0.36 –0.58 0.63 0.03 –
MAE (eV) 0.49 0.46 0.58 0.63 0.21 –
MRE (%) 4.0 0.8 –9.4 13.9 1.6 –
MARE (%) 7.5 5.9 9.5 13.9 4.6 –

aDenotes that the experimental value used here is the average of two reported values, 6.1 and 6.4 eV.

generate a basis set as even tempered as possible. The orbital
exponents of the augmented uncontracted valence shells were
variationally optimized for all solids in the current study using
the GGA functional PBE.

We note that a much denser k-point mesh is required for
the convergence of the electronic dielectric constants than
for the ground-state energies and electronic energy gaps (see
Supplemental Material [62]). In all calculations carried out
with the sc-hybrid scheme, we used the k-point mesh required
to converge ε∞.

We also carried out plane-wave calculations at the GGA
level of theory using the QUANTUM-ESPRESSO plane-wave
pseudopotential package [63] to compare with the results

of CRYSTAL09. We employed both the projector-augmented
wave function (PAW) pseudopotentials and norm-conserving
pseudopotentials, which were either generated using the ATOM-
PAW program [64] or obtained from the QUANTUM-ESPRESSO

pseudopotential library [65]. For the transition metal atoms,
unless otherwise noted, the (n − 1)s and (n − 1)p electrons,
where n is the highest principle quantum number, were
always included in the valence. A comparison of planewave
pseudopotential and localized Gaussian basis set results can
be found in the Supplemental Material [62].

With the exception of the lattice optimizations, all cal-
culations were performed at the experimental geometry and
T = 0 K.

TABLE VI. The valence bandwidths (VBW, eV) are shown for a subset of the solids. For a description of the dielectric-dependent
exact-exchange mixing scheme hybrid functional column headings see text and Table IV.

PBE PBE0 hybrid hybrid sc-hybrid
α = 0 α = 0.25 α = 1/εPBE

∞ α = 1/εPBE0
∞ α = 1/sc-ε∞ Exp.

Si 11.9 13.4 12.4 12.5 12.4 12.5 [107]
C 13.4 23.6 23.0 23.0 23.0 23.0 [108]
Ge – 14.0 – 13.0 12.9 12.9 [107]
SiC 15.4 17.0 16.3 16.4 16.4 16.9 [109]a

LiF 3.1 3.3 3.3 3.4 3.4 3.5 [110]
MgO 4.6 5.0 5.1 5.2 5.2 4.8 [111]
ZnO 6.1 7.0 6.7 7.0 7.2 9.0 [98]
TiO2 5.7 6.4 6.1 6.2 6.1 ∼6.0 [88]

aThe value listed for SiC in the last column is the VBW obtained from G0W0 calculations using the plasmon-pole approximation and a model
dielectric function (within IPA).
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TABLE VII. The d-band position relative to the valence band maximum (eV) is shown for a subset of solids with d electrons. The G0W0

and GW0 results, as well as the experimental values, are taken from Ref. [83]. For a description of the dielectric-dependent exact-exchange
mixing scheme hybrid functionals column headings see Table IV.

PBE PBE0 hybrid hybrid sc-hybrid G0W0 [83] GW0 [83]
α = 0 α = 0.25 α = 1/εPBE

∞ α = 1/εPBE0
∞ α = 1/sc-ε∞ RPA RPA Exp.

GaN − 13.8 − 15.7 − 16.0 − 16.2 − 16.6 − 16.0 − 16.9 −17.0
ZnO − 5.0 − 6.0 − 5.9 − 6.2 − 6.3 − 6.2 − 6.6 −7.5, −8.81
ZnS − 6.3 − 7.8 − 7.5 − 7.5 − 7.5 − 7.0 − 7.5 −9.03

III. RESULTS AND DISCUSSION

A. Static electronic dielectric constant

The static electronic dielectric constant (ε∞) of several
crystalline materials was evaluated with PBE, PBE0, the fixed-
α hybrid functionals (α = 1/εPBE

∞ and α = 1/εPBE0
∞ ), and the

self-consistent version (sc-hybrid). In Table I results are shown
for 24 solids, which cover a broad range of static dielectric
constants (1.23–15.9) and band gaps (0.7–21.7 eV). In the
case of noncubic systems, we report the average of the trace
of the dielectric tensor. Results obtained with the semilocal
PBE and the hybrid PBE0 functionals exhibit the poorest
agreement with experiment, with the PBE error being at least
twice as large as those of other hybrid functionals. The closest
agreement with experiment is obtained with the sc-hybrid,
although using α = 1/εPBE

∞ or α = 1/εPBE0
∞ also yields satis-

factory results. We note that the absence of values for CoO and
Ge in both the PBE and hybrid (α = 1/εPBE

∞ ) columns is due to
the fact that these systems turn out to be erroneously metallic
when using semilocal functionals and thus εPBE

∞ cannot be
evaluated.

We also compared the sc-hybrid results with those of
many-body perturbation theory in the GW approximation
for a subset of solids for which previous G0W0 and self-
consistent GW results were reported [83,84] (see Table II).
The G0W0 (RPA) calculations were carried out by evaluating
the dielectric response in the random phase approximation,
without updating the electronic wave functions. The scGW
(e-h) calculations were carried out self-consistently, using
a frequency-independent (static approximation) dielectric

response with a vertex correction in W that effectively
includes the electron-hole interaction (e-h). The dielectric
constants evaluated with sc-hybrid have similar errors as
those obtained with the scGW (e-h) approach. The agreement
between sc-hybrid and scGW (e-h) results suggests that the
inclusion of nonlocal-field effects in the evaluation of fxc when
computing ε∞ may play a similar role as the inclusion of the
vertex corrections in W , when carrying out GW calculations.
This interpretation is also supported by the comparison of
sc-hybrid with G0W0(RPA) results, which show the poorest
agreement with experiments. We recall that within RPA only
the local-field effects coming from the Hartree potential
are included. The sc-hybrid scheme with local-field effects
neglected in χ [Eq. (21)] is shown in the column heading
under sc-hybrid (NLF) in Table II. In the NLF case, the error
is about three times as large as the case where local fields are
included.

Overall, the agreement between sc-hybrid and scGW (e-h)
results suggests that the static approximation captures most
of the screening in the bulk materials considered here, and
that including the dynamical frequency dependence in the
dielectric response is not critical to obtain accurate static
dielectric constants.

To further evaluate the accuracy of the static electronic
dielectric constants obtained with the sc-hybrid functional,
we compared the computed individual tensor components
for the optically anisotropic wurtzite phases of GaN, AlN,
and ZnO in Table III. The agreement with experimental
results is very good for each of the individual tensor
components.

TABLE VIII. The equilibrium lattice constant (Å) for a subset of solids compared with experiment. For a description of the dielectric-
dependent exact exchange mixing scheme hybrid functionals column headings see Table IV. The first column corresponds to the lattice constant
evaluated with plane-wave (PW) basis and PAW pseudopotentials. All other results were obtained with Gaussian basis sets (GTO). The α fixed
sc-hybrid column indicates the value of α is kept fixed throughout the lattice optimization to the value of α determined self-consistently at the
experimental geometry. The experimental lattice constants are from Ref. [112]. The (0 K) column corresponds to the experimental measured
lattice constant extrapolated to 0 K. The ZPAE column is obtained by removing from the experimental (0 K) column the zero-point anharmonic
expansion effects, determined from first principles. Our calculated results should be compared with the experimental (ZPAE) column, since in
our calculations we do not include zero-point energy contributions.

PBE PW PBE GTO PBE0 hybrid hybrid sc-hybrid Exp.

α = 0 α = 0 α = 0.25 α = 1/εPBE
∞ α = 1/εPBE0

∞ α fixed (0 K) (ZPAE)

Si 5.47 5.47 5.44 5.46 5.46 5.46 5.43 5.42
C 3.57 3.57 3.55 3.55 3.55 3.55 3.57 3.54
SiC 4.38 4.38 4.35 4.37 4.36 4.36 4.36 4.34
MgO 4.26 4.26 4.21 4.20 4.19 4.19 4.21 4.19
LiCl 5.15 5.15 5.11 5.10 5.10 5.10 5.11 5.07
NaCl 5.69 5.68 5.63 5.61 5.61 5.61 5.60 5.57
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B. Electronic energy gaps and band structure

We now turn to the comparison of the Kohn-Sham gaps
evaluated using the fixed dielectric-dependent hybrid func-
tionals and the self-consistent dielectric-dependent functional
(sc-hybrid) at the experimental geometries (Table IV). We also
include in Table IV the results obtained with the GGA func-
tional PBE and the fixed α = 0.25 hybrid functional PBE0.
In most cases, we found a considerable improvement over
GGA with hybrid functionals, with the best results obtained
for the dielectric-dependent hybrid functionals. The largest
relative errors were found for the insulators alumina (Al2O3)
and hafnia (HfO2). This discrepancy with experiments may be
due, at least in part, to the poor crystallinity of the samples
used experimentally. The presence of “band tail states” was
investigated for hafnia, and a corrected photoemission gap
obtained by removing the band tails was reported (6.7 eV) [96],
which is very similar to that computed with the sc-hybrid
functional (6.8 eV). The alumina experimental gap reported
in Table IV is an optical gap (excitonic contributions present).
However, the exciton binding energy of alumina was estimated
to be similar to that of excitons in MgO (0.06 eV) [106] and
hence the optical and photoemission gaps are expected to differ
at most by ∼0.1 eV.

Table V compares the electronic gaps evaluated with the
present sc-hybrid scheme and with the GW approximation.
The scGW (G0W0) calculations used the HSE (PBE) hybrid
functional eigenvalues and wave functions as input. The error
of the sc-hybrid functional in predicting band gaps is similar
to that introduced by the scGW method where e-h interactions
are included in W .

We also computed the valence bandwidths for a subset of
the solids listed in Tables I and IV; these are shown in Table VI.
The results of the dielectric dependent hybrid functionals agree
remarkably well with experiment, whereas the PBE and PBE0
functionals systematically underestimate and overestimate the
bandwidths, respectively. There is an outlier, i.e., ZnO, for
which none of the computed valence bandwidths agree with
experiment. Both hybrid density functionals, as well as GW,
incorrectly describe the localized occupied d band, with a
tendency to underbind (see Table VII). Though scGW results
are not shown in Table VII, the authors of Ref. [84] reported
that the scGW band positions are underbound by a similar
magnitude as the G0W0 results.

C. Lattice constants

We further used the dielectric-dependent hybrid functionals
to perform structural optimizations of a subset of solids. In
most cases, including exact exchange improves the agree-
ment of the computed lattice constants with experiment for
nonmetallic systems, as compared to the semilocal functional
(PBE) results (see Table VIII). For the sc-hybrid functional,
the total derivative of the energy E(R,α(R)) with respect to
the lattice constant R is expressed as

dE

dR
=

(
∂E

∂R

)
+

(
∂E

∂α

)
dα

dR
. (23)

When the second term on the right-hand side of Eq. (23) is
much smaller than the first term, e.g., when α is almost constant
as a function of R, close to the minimum, the total derivative
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FIG. 3. (Color online) Total energy of MgO as a function of
the lattice constant (Å). The black dotted vertical line indicates
the experimental value extrapolated to 0 K, where the zero-point
anharmonic contribution has been removed. The colored arrows point
to the minima of each surface. The PBE and PBE0 total energy curves
were shifted by –0.027 and –0.006 hartrees, respectively, in order to
fit on the same plot.

of the energy can be approximated as

dE

dR
∼=

(
∂E

∂R

)
. (24)

The sc-hybrid lattice constants shown in Table VIII and the
sc-hybrid potential energy surface plotted for MgO in Fig. 3
were evaluated using Eq. (24). We note that the derivative
in Eq. (24) is to be evaluated at constant α and its root
is nearly insensitive to which α is chosen, whether the one
determined self-consistently at the experimental equilibrium
positions or a parameter α computed for a lattice constant
close to the experimental equilibrium. This can be seen, for
example, by comparing the results obtained with PBE0, hybrid,
and sc-hybrid functionals and shown in Table VIII, which were
obtained for different fixed values of α and yet yielded optimal
lattice constants that differ by less than 0.02 Å.

For most of the systems shown in Table VIII, Eq. (24) is
a good approximation to the total derivative. However, in the
case of NaCl and LiCl, the second term on the right-hand side
of Eq. (23) is non-negligible and the roots of Eqs. (23) and (24)
are different. In this case the root of Eq. (23) yields results in
poor agreement with the experimental lattice constants [e.g.,
using Eq. (23) we obtain 5.96 Å for NaCl, and 5.35 Å for
LiCl].

IV. SUMMARY AND CONCLUSIONS

We presented a full-range hybrid functional for the calcu-
lation of the electronic properties of nonmetallic condensed
systems which yielded results in excellent agreement with
experiments for the band gaps and dielectric constants of a
wide range of semiconductors and insulators. The exchange-
correlation functional is defined in a way similar to the PBE0
functional, but the mixing parameter is set equal to the inverse
macroscopic dielectric constant and it is determined self-
consistently by computing the optimal dielectric screening. We
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showed that convergence is usually achieved in 3–4 iterations,
regardless of whether the initial value of the dielectric constant
is computed at the PBE or PBE0 level of theory. In many
cases, the results for α = 1/εPBE0

∞ are of similar accuracy to
the sc-hybrid results [113] which suggests that for certain
systems self-consistency may be avoided, further reducing
computational cost. The presence of fxc in the local fields
was investigated in detail, with particular emphasis on the
nonlocal exchange contribution fx−nl, which yields an accurate
description of the static dielectric constant, when included. Our
results suggest that including the nonlocal contributions in fxc

is an effective way of including long-range interaction effects
in condensed phase systems, without resorting to expensive
vertex corrections. The computed band gaps and dielectric
constants are in general much improved with respect to those
obtained with the PBE and PBE0 functionals, with errors with
respect to experiments similar in magnitude to those of fully
self-consistent GW (e-h) calculations.

All results presented here were obtained within an all-
electron scheme (except for W and Hf, for which we
used effective-core pseudopotentials) and using first-order
perturbation theory within the CPKS scheme to compute
the dielectric constant. Work is in progress to implement
finite field methods for the dielectric constant in plane-wave
pseudopotential codes, which will allow for the use of the
sc-hybrid scheme for liquids, in general disordered systems,

and in ab initio molecular dynamics calculations. Though
here we chose a full-range hybrid functional, our approach
may be easily extended to range-separated hybrid functionals,
where the static dielectric constant is used to define the mixing
parameter of the long-range component. The computational
cost of the sc-hybrid scheme is similar to that of hybrid
calculations, making it a computationally cheaper alternative
to GW calculations. We note that a self-consistent dielectric
screened hybrid functional provides a means to compute an
effective statically screened Coulomb interaction W , and thus
it offers a suitable starting point for G0W0 calculations.
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