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We study the Kondo effect in a CNT(left lead)-CNT(QD)-CNT(right lead) structure. Here CNT is a single-wall
metallic carbon nanotube, for which (1) the valence and conduction bands of electrons with zero orbital angular
momentum (m = 0) coalesce at the two valley points K and K′ of the first Brillouin zone and (2) the energy
spectrum of electrons with m �= 0 has a gap whose size is proportional to |m|. Following adsorption of hydrogen
atoms and application of an appropriately designed gate potential, electron energy levels in the CNT(QD) are
tunable to have (1) twofold spin degeneracy; (2) twofold isospin (valley) degeneracy; and (3) threefold orbital
degeneracy m = 0,±1. As a result, an SU(12) Kondo effect is realized with remarkably high Kondo temperature.
Unlike the SU(2) case, the low temperature conductance and magnetic susceptibility have a peak at finite
temperature. Moreover, the magnetic susceptibilities for parallel and perpendicular magnetic fields (with respect
to the tube axis) display anisotropy with a universal ratio χ ‖

imp/χ
⊥
imp = η that depends only on the electron’s

orbital and spin g factors.
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I. INTRODUCTION

Background: Kondo tunneling through carbon nanotube
quantum dots [CNT(QD)] has recently become a subject of
intense theoretical [1–6] and experimental [7–12] studies.
One of the motivations for pursuing this research direction
is the quest for achieving an exotic Kondo effect with
SU(N ) dynamical symmetry [13–17], based on the peculiar
properties of electron spectrum in CNT [18,19]. Achieving
SU(4) symmetry is natural because the energy spectrum of
metallic CNT consists of two independent valleys that touch
at the K and K′ points of the Brillouin zone. The energy levels
possess degeneracy in both spin (↑,↓) and isospin (or valley
K,K′) quantum numbers. Thus, due to both spin and isospin
degeneracy, an SU(4) Kondo effect takes place [1–3,10–12].

Motivation: Achieving even higher degeneracy SU(N > 4)
of the QD is highly desirable. First, the Kondo temperature
dramatically increases with N . Second, there is a hope to
expose novel physical observables that are peculiar to these
higher symmetries. In the present device, higher degeneracy
may be obtained by employing the orbital (cylindrical)
symmetry of electron states in CNT, an option which so far
has not been effectively employed in this quest. In order
to manipulate these orbital features, we use the fact that
adsorption of oxygen, hydrogen, or fluorine atoms on the
surface of the CNT gives rise to a gap opening in the spectrum
of the metallic CNT [20,21]. Realization of SU(N > 4) Kondo
effect then becomes feasible, since there is now spin, isospin
(valley), and orbital degeneracy.

The main objectives: The main goals of the present work
are (1) to show that SU(12) Kondo effect in the CNT(left lead)-
CNT(QD)-CNT(right lead) structure is indeed achievable and
(2) to elucidate the physical content of this structure at the
Kondo regime as encoded by tunneling conductance and
the magnetic susceptibility. The first goal is obtained by
designing the electron spectrum in the CNT(QD) to have a
12-fold degeneracy following adsorption of hydrogen atoms
combined with an application of a nonuniform gate potential.
Namely, the energy levels of the central element CNT(QD)
are tunable into a threefold orbital degeneracy for m = 0,±1

(where m is the component of the orbital angular momentum
along the CNT axis). The second goal is achieved through
quantitative analysis, based on perturbation theory at high
temperatures and mean field slave boson formalism at low
temperature.

The main results: The energy spectrum of the CNT(QD)
gated by a spatially modulated potential is elucidated, and the
possibility to get a CNT(QD) with 12-fold degenerate quantum
states is substantiated. This CNT(QD) is then integrated
into a tunneling junction CNT(left lead)-CNT(QD)-CNT(right
lead) as shown in Fig. 1. When the ground state of the
interacting CNT(QD) is occupied by a single electron, Kondo
tunneling with SU(12) dynamical symmetry is realized. This
exotic Kondo effect is quantitatively analyzed. First, the
corresponding Kondo temperature is calculated and shown to
be much higher than in the standard SU(2) Kondo effect. The
tunneling conductance G(T ) and the magnetic susceptibilities
χ

‖
imp(T ), χ⊥

imp(T ) for respective magnetic fields parallel and
perpendicular to the CNT axis are calculated in the weak
(T � TK ) and strong (T < TK ) coupling regimes.

The low temperature dependencies of both G(T ) and χ (T )
are entirely distinct from their analogs pertaining to the SU(2)
Kondo effect in quantum dot [22]. More concretely, the
temperature dependence of both quantities is shown to have
a peak at finite temperature, unlike the familiar monotonic
behavior encountered in the ordinary SU(2) Kondo effect in
quantum dots. Moreover, inspection of the magnetic suscepti-
bility exposes an observable peculiar to the SU(12) symmetry
[or other SU(N ) symmetry with N > 2]: It is shown that the
magnetic response is anisotropic, that is, χ

‖
imp(T ) �= χ⊥

imp(T ).

Even more remarkable, the ratio η ≡ χ
‖
imp(T )/χ⊥

imp(T ) is a
“universal number” depending only on gorb and gspin, that are
the orbital and spin g factors of electrons in the CNT(QD) (and
not on temperature).

These distinctions open the door for experimental manifes-
tation of this peculiar junction. This is helped by the unusually
high Kondo temperature that enables the measurement of the
tunneling conductance in the Kondo regime at relatively high
temperature.
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FIG. 1. (Color online) CNT(left lead)-CNT(QD)-CNT(right
lead) junction.

Organization: This paper is structured as follows: In Sec. II
we describe the basic structure of an infinitely long metallic
CNT with adsorbed hydrogen atoms. The energy spectrum of
the CNT(QD) is discussed in Sec. III. The Anderson model
for the tunnel junction is introduced in Sec. IV, followed
by Sec. V in which the Anderson Hamiltonian in the local
moment regime is mapped on a spin Hamiltonian, poor-man
scaling equations for the coupling constants are derived, and
the Kondo temperature is evaluated. In Secs. VI and VII
the results of our calculations of the tunneling conductance
and the magnetic susceptibilities are, respectively, presented
both in the weak and strong coupling regimes. The main
achievements of the present work are summarized in Sec. VIII.
Analysis of the electron wave functions in the CNT(QD) with
adsorbed hydrogen atoms under the appropriate gate potential
is relegated to Appendix A. Zeeman splitting for electrons
in CNT subject to an external magnetic field is calculated
in Appendix B. The ratio χ

‖
imp(T )/χ⊥

imp(T ) is derived in
Appendix C using the fluctuation-dissipation theorem.

II. MODEL

Characteristic energy dispersion relation for an electron in
CNT is derivable from the special band structure of a graphene
sheet [18,19,23,24]. Let cn1n2 denote the chiral vector that
represents a possible rolling of graphene into a CNT. When
n1 − n2 is an integer multiple of 3, a CNT becomes a zero-gap
semiconductor. Else, it becomes a semiconducting nanotube
with a finite band gap [18,19]. The band structure of a metallic
CNT exhibits two Dirac points with a right- and left-moving
branch around each Dirac point. A peculiar consequence of
the Dirac nature of charge carriers in CNT is that electrons can
tunnel through a potential barrier without reflection [25]. This
Klein paradox prevents a practical aspect of CNT: It is virtually
impossible to trap an electron in between potential barriers,
as it can escape out. It also hinders the formation of a gap
in the band spectrum. Fortunately, this can be circumvented
by chemical modification of the CNT. In Refs. [20,21] it is
shown that when radicals such as atomic oxygen, hydrogen,
or fluorine are adsorbed on the graphene surface they form
covalent bonds with the carbon atoms. These covalent bonds
are realized since the carbon atoms change their hybridization
from sp2 to sp3, and that results in the opening of a band
gap (similar to the situation in diamond crystals). Its size
can reach 2�g ∼ 1 eV depending on the density of adsorbed
atoms [20,26].

The energy spectrum of the metallic CNT with adsorbed
atoms can adequately be approximated (at least at low energy)
from that of a graphene sheet with adsorbed atoms using the
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FIG. 2. (Color online) Observation of a gap opening in hydro-
genated graphene. Density plot denotes photoemission intensity along
the A-K-A′ direction of the Brillouin zone (see inset) measured
in Ref. [27], whereas the dashed line is the spectrum calculated
according to Eq. (1). Inset: The Brillouin zone of graphene.

formula

εkxky
=

√
(�vkx)2 + (�vky)2 + �2

g. (1)

In the above equation we keep kx to be a continuous wave
number for electron motion along the CNT axis and ky =
m/r0 as a discrete wave number for the motion along the
circumference direction. Here v is the Fermi velocity, r0 is the
CNT radius, and the integer m is an orbital quantum number.
The energy spectrum of hydrogenated graphene measured in
Ref. [27] is shown in Fig. 2. It is seen that Eq. (1) (dashed line)
agrees well with experimental data.

With the present experimental facilities, the density of
adsorbed atoms can be manipulated to be dependent on x

in such a way that the gap �g is approximately given by the
following function of x:

�g(x) =
{
M0, if |x| < h or |x| > h + a,

N0, if h < |x| < h + a,
(2)

where N0 > M0. The Fermi level εF is tuned to satisfy the
inequality N0 > εF > M1. Thereby, the CNT is divided into
five intervals numbered 1–5, with the following respective
electronic properties: Two intervals (1 and 5), with |x| >

h + a, serve as left and right metallic leads. Two insulating
intervals (2 and 4), with h < |x| < h + a, serve as left and
right tunneling barriers. Finally, interval 3, with |x| < h, serves
as quantum dot (see Fig. 3).

III. ENERGY LEVELS OF CNT(QD)

We describe the quantum states of electrons in the CNT
in the long-wave k · p approximation. This approximation
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FIG. 3. (Color online) Left and right tunnel barriers separating
left and right leads from the quantum dot. Here M0 = 2�0, M1 =√

3�0, N0 = 3�0, and N1 = √
10�0. The 12-fold degenerate level is

εd = 2.3635�0 (red line) and the Fermi level is εF = 2.4013�0. The
QD half-length is h = 5.6826r0 and the barrier width is a = 1.73r0.

is good when the wave vector k of the electron is close to
the K or K′ point of the first Brillouin zone (BZ) of the
hexagonal lattice of the CNT, i.e., when |k − K| � K or
|k − K′| � K (see Fig. 4 for illustration). However, when an
electron is rejected from the edges of the CNT QD, the possible
transitions between the valleys K and K′ cannot be described
in the framework of long-wave approximation. Therefore, it
will be useful to start our discussions from the microscopic
tight-binding model [18,19].

A CNT is specified by a chiral vector

cn1n2 = n1a1 + n2a2, (3)

where a1 and a2 are the basis vectors (|a1| = |a2| = a0 =
2.46 Å), and n1 and n2 are integers. A CNT is obtained by
rolling a two-dimensional (2D) graphene sheet such that the
atom at the origin coincides with the atom at cn1n2 . Then
|cn1n2 | = 2πr0 is the length of the CNT circumference and
r0 is the CNT radius. We specify the CNT by a chiral angle

φ0, the angle between cn1n2 and the basis vector a1, as shown
in Fig. 4. The hexagonal symmetry of graphene gives us the
condition −π

6 < φ0 � π
6 . Two special values of φ0 are φ0 = 0

and φ0 = π
6 . For φ0 = 0, a zigzag CNT is constructed, while

for φ = π
6 , one has an armchair CNT [18,19].

When an electron is scattered off an effective potential given
in Eq. (2), the component kx of the 2D wave vector k is not
a good quantum number, whereas ky is still a good quantum
number. As a result, for most types of nanotubes with φ0 �= π

6
(that is, except armchair ones) the vectors K and K′ are not
collinear to the CNT axis [see Fig. 4(b)], and therefore the
electron that is localized by the potential (2) can change its
wave vector from K + q to K − q or from K′ + q to K′ − q,
and there is no quantum transitions between the valleys K and
K′. For an armchair CNT, the vectors K and K′ are collinear
with the axis of the CNT, and therefore there are quantum
transitions from K to K′ which lift the intervalley degeneracy.
In what follows, we will consider the CNT QDs which possess
the intervalley degeneracy (that is, φ0 �= π

6 ).
When |q| � K , the single electron wave functions and the

corresponding energy spectrum of the CNT(QD) are deduced
from the corresponding analog of the Dirac equation which in
the present geometry takes the form

H̃d	mn(x,φ) = ε	mn(x,φ). (4)

Here 	mn(x,φ) is the wave function with principal quantum
number n (n = 1,2,3, . . .) and magnetic quantum number m

(m = 0,±1,±2, . . .). The Hamiltonian of the QD in the k · p
approximation is H̃d = d(x) · τ , where

d(x) = dinϑ(h − |x|) + doutϑ(|x| − h),

din = �v(exkx + eyky) + ezM0,

dout = �v(exkx + eyky) + ezN0.

Here τ = (τx,τy,τz) is the vector of Pauli matrices acting in
the pseudospin space (corresponding to sublattices A and B),

a1

a2

cn1 n2

ex

ey

φ0

KK q K q

K'K' q K' q
kx

ky

φ0

(a) (b)

FIG. 4. (Color online) (a) A monoatomic layer of graphene. The red and blue dots denote carbon atoms of the sublattice A and B. The
primitive vectors of graphene are a1 and a2. The nanotube is obtained by choosing the chiral vector cn1n2 , Eq. (3). The unit vectors ex and ey

are fixed in the CNT in such a way that ex is along the CNT axis, and ey is along the circumferential direction cn1n2 . The chiral angle between
a1 and cn1n2 is φ0. (b) The first Brillouin zone of graphene. kx is the component of the 2D wave vector k along the CNT axis and ky is the
component of k in the circumferential direction. The angle between K and the axis kx is φ0 − π

6 . K ± q and K′ ± q (green dots) are degenerate
quantum states in the valleys K and K′.
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FIG. 5. (Color online) Parametric diagram ε-h describing ener-
gies ε of the discrete levels of the quantum dot for m = 0 (light red
and dark red curves) and m = ±1 (light blue and dark blue curves)
and different values of the CNT(QD) half-length h. The crossing
points (green dots) denote energies with threefold orbital degeneracy
for which SU(12) symmetry is expected. Here we use M0 = 2�0

and N0 = 3�0. The light red and light blue curves correspond to
even principal quantum number n and dark red and dark blue curves
correspond to odd n.

ϑ(x) is the step function, and

kx = −i∂x, ky = − i

r0
∂φ. (5)

The function 	mn(x) is calculated in Appendix A. The energy
levels of the QD are obtained by solving the equation

F↓(ε)
√

ε + Mm cos

(
kxh + nπ

2

)

= F↑(ε)
√

ε − Mm sin

(
kxh + nπ

2

)
, (6)

where

Fσ (ε) =
∑
σ ′

√
ε(Nm + σ ′ε)√

2Nm

(
χ (1)

σ · χ
(2)
σ ′

)
. (7)

χ (ν)
σ (ν = 1,2) are eigenspinors of the operators

M̂ν
m = m�0τy + Mν

0 τz,

M1
m = Mm, M2

m = Nm. Explicitly,

χ
(ν)
↑ = 1√

2Mν
m

(
Mν

m + Mν
0

)
(

Mν
m + Mν

0

im�0

)
, (8)

χ
(ν)
↓ = iτ xχ

(ν)
↑ .

The energy spectrum of the QD for different values of
the dot length 2h is shown in Fig. 5. The red or blue curves
denote energy levels for m = 0 or m = ±1 and different
spatial parities. The light red and light blue curves describe
quantum states with even principal quantum number n (the
wave functions of such states are symmetric with respect to
the inversion x → −x), whereas the dark red and dark blue
curves correspond to odd n. The level crossing points (green
dots) are threefold (orbital) degenerate. At these points, SU(12)
symmetry is expected.

IV. ANDERSON MODEL

We now consider the tunnel junction consisting of left and
right CNT metallic leads (CNT), and a CNT quantum dot
(QD), as shown in Fig. 1. The Anderson Hamiltonian of the
CNT-CNT (QD)-CNT junction has the form

H = H0 + Ht, H0 = Hl + Hr + Hd, (9)

Hα =
∑
kλ

εkmc
†
αkλcαkλ, α = l,r, (10)

Hd = εd

∑
λ

d
†
λdλ + UdN̂d (N̂d − 1), (11)

Ht =
∑
αλ

tm{ψ†
αλdλ + H.c.}, (12)

where

N̂d =
∑

λ

d
†
λdλ.

Here λ = {ξ,m,σ }, where ξ = K,K′ (the isospin) corresponds
to electrons with wave vectors near the K and K′ corner points
in the 2D Brillouin zone, m is the magnetic quantum number,
and σ is the spin. Finally, ψαλ ≡ ψαλ(x = 0) is a field operator
at x = 0,

ψαλ(x) = 1√
Lcnt

∑
k

cαkλe
ikx,

Lcnt is the length of the CNT lead. The tunneling rates tm are
estimated as

tm ∼= �v√
h

Mm

εF

exp

{
− a

�v

√
N2

m − ε2
F

}
.

We choose the parameters N0, εF , and a such that the resonance
width

� = 4πt2
mρm(εF ) (13)

does not depend on m. Here ρm(ε) is the density of states of
electrons with magnetic quantum number m,

ρm(ε) = |ε|ϑ(|ε| − Mm)

2π�v
√

ε2 − M2
m

. (14)

V. SPIN HAMILTONIAN, SCALING EQUATIONS,
AND KONDO TEMPERATURE

The properly tuned CNT(QD) in its ground state has one
electron whose energy εd is 12-fold degenerate (m = 0,±1,
ξ = K,K′, and σ = ↑,↓). Tunneling of electrons between the
CNT(QD) and the CNT leads, encoded by Ht [Eq. (12)],
changes the number of electrons in the dot. In the local
moment regime, the Schrieffer-Wolff transformation is then
used [28,29] to project out zero and two electron states
(|0〉 and |λλ′〉). It maps the Hamiltonian H [Eq. (9)] onto
an effective Hamiltonian H̃ = Hl + Hr + HK . Here HK , the
Coqblin-Shrieffer spin Hamiltonian with the dot states |0〉 and
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|λλ′〉 frozen out, has the following form [29,30]:

HK = 1

24

∑
αα′

∑
λ

Kmmψ
†
α′λψαλ + 1

2

∑
αα′

∑
λ

JmmZλλψ
†
α′λψαλ

+ 1

2

∑
αα′

∑
λ �=λ′

Jmm′Xλλ′
ψ

†
α′λ′ψαλ, (15)

where Xλλ′ = |λ〉〈λ′| are Hubbard operators coupling different
degenerate dot states, and

Zλλ = Xλλ − 1

N

∑
λ′

Xλ′λ′
, N = 12.

The couplings Kmm and Jmm′ are

Jmm′ = J
(1)
mm′ + J

(2)
mm′ ,

Kmm = J
(1)
mm′ − (N − 1)J (2)

mm′ ,

J
(1)
mm′ = 2tmtm′

εF − εd

,

J
(2)
mm′ = 2tmtm′

Ud − εF + εd

.

Employing the simplifying assumption (13) we introduce
the dimensionless coupling constant

j = Jmm′
√

ρm(εF )ρm′(εF )

= Ud�

2π (εF − εd )(Ud − εF + εd )
> 0. (16)

By Eq. (13) j does not depend on the orbital quantum number
m while Jmm′ and ρm do. Within the standard poor man’s
scaling technique, the coupling j (D) is renormalized as the
original bandwidth D̄ is reduced to D < D̄ by integrating
out high energy excitations. Within the same assumption on
�, the constants Kmm are not renormalized and therefore the
interaction terms proportional to Kmm can be considered as
part of potential scattering.

The scaling equation for j (D) supported by the initial
condition at D̄ reads

∂j

∂ ln D
= −Nj 2

2
,

(17)

j (D̄) = Ud�

2π (εF − εd )(Ud − εF + εd )
.

Equation (17) has the solution

j (T ) = 2

N ln(T/TK )
, (18)

where the Kondo temperature (the scaling invariant of the RG
equation) is given by

TK = D̄ exp

[
−4π (εF − εd )(Ud − εF + εd )

NUd�

]
. (19)

The argument of the exponent is six times smaller than
the one obtained for SU(2) Kondo effect, implying the
TK [SU(12)] � TK [SU(2)].

VI. CONDUCTANCE

In this section we will calculate the tunneling conduc-
tance G(T ) of the CNT(left lead)-CNT(QD)-CNT(right lead)
junction in the Kondo regime. The calculation is carried
out in the weak and strong coupling regimes characterized
respectively by T � TK and T < TK . In the weak coupling
regime, perturbation RG formalism is used to calculate the
nonlinear conductance within the Keldysh nonequilibrium
Green’s function formalism. In the strong coupling regime
the mean field slave boson formalism is employed, which is
appropriate only within linear response.

Conductance in the weak coupling limit: Calculations of
the tunneling conductance in the weak coupling regime are
carried out below using the Keldysh technique in order to treat
a system out of equilibrium. The required quantities to be used
below are the Keldysh electron matrix Green’s functions (GF)
ga for a = lm,rm,f standing for left lead, right lead, and dot,
respectively,

ga =
(

gR
a gK

a

0 gA
a

)
, (20)

where the superscripts refer to retarded (R), advanced (A), and
Keldysh (K) types of the GF. The explicit expressions are

gR
αm = −gA

αm = −iπρm,
(21)

gK
αm(ε) = −2iπρm[1 − 2f (ε)],

g
R/A

f (ε) = 1

ε − εd ± iη
,

(22)

gK
f (ε) = −2iη[1 − 2f (ε)]

(ε − εd )2 + η2
,

where f (ε) is the Fermi function. Within the Keldysh
formalism, the tunneling current from the left to the right
lead is

I = ie

24�

∑
λ

Kmm(ψ†
lλψrλ − ψ

†
rλψlλ)

+ ie

2�

∑
λ

JmmZλλ(ψ†
lλψrλ − ψ

†
rλψlλ)

+ ie

2�

∑
λ �=λ′

Jmm′Xλλ′
(ψ†

lλ′ψrλ − ψ
†
rλ′ψlλ). (23)

In addition to the exchange constant j [Eq. (16)] the conduc-
tance depends also on the dimensionless parameter k, defined
as [see comment after Eq. (16)]

k = Kmmρm = �(2Ud − 13εF + 13εd )

4π (εF − εd )(U − εF + εd )
. (24)

To second order in j and k the conductance G = ∂〈I 〉/∂V is

G2 = πe2

2N�
[k2 + (N2 − 1)j 2], (25)

while only j contributes to the third order correction to the
conductance,

G3 = (N2 − 1)πe2

4�
j 3 ln

[
D̄√

T 2 + (eV)2

]
. (26)
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Due to the large prefactor and the logarithmic term, which,
strictly speaking, is not small either, G3 is not small as
compared with G2. Hence, expansion up to third order in
j is inadequate. Instead, we derive an expression for the
conductance in the leading logarithmic approximation using
the RG equations (17).

In the following analysis we split the second order contri-
bution to the conductance [Eq. (25)] in two parts: The first part
results from exchange cotunneling, which is proportional to
j 2, while the second part is due to regular cotunneling, which
is proportional to k2. The regular cotunneling contribution
containing k2 does not grow at low temperatures and/or
bias, and therefore it does not contribute to the Kondo
effect. The exchange cotunneling contains a term j 2 which
demonstrates logarithmic enhancement of the conductance at
low temperatures [see Eq. (18)] and contributes to the Kondo
effect. Therefore, we single out the exchange contribution in
the second order term,

Gexch
2 (D) = (N2 − 1)πe2

2N�
j 2(D). (27)

The condition imposing invariance of the conductance under
“poor man’s scaling” transformation has the form

∂

∂ ln D

{
Gexch

2 (D) + (N2 − 1)πe2

4�
j 3

× ln

[
D√

T 2 + (eV)2

]}
= 0. (28)

Within the accuracy of this equation, when differentiating the
second term, we should neglect any implicit dependence on
D through the couplings j . Equation (28) yields the scaling
equation (17). The renormalization procedure should proceed
until the bandwidth D is reduced to a quantity

d(T ,V ) =
√

(eV)2 + T 2.

At this point, the third order correction to the conductance
vanishes and the current and conductance can be calculated in
the Born approximation, as in Eq. (27) [31]. The expression
for the conductance for Max(T ,|eV|) � TK is

G(T ,V ) = π2NG0

ln2[d(T ,V )/TK ]
, (29)

where

N = 2(N2 − 1)

N3
, G0 = e2

π�
. (30)

The total differential conductance (29) is displayed in
Fig. 6 for V = 0 (zero bias differential conductance). The
conductance increases when the temperature is lowered, which
is typical to the standard scenario of Kondo tunneling through
the tunnel junction [31]. The nonlinear conductance (29)
as a function applied bias is shown in Fig. 7 for several
temperatures T . The zero bias peak of the conductance is
typical for the ordinary SU(2) Kondo effect.

It should be noted that the conductance (29) has a factor
N , Eq. (30), which is 3

4 for N = 2 or 143
864 for N = 12. In other

words, as far as the conductance in the weak coupling regime
is concerned, the main difference between the SU(12) and the

10 15 20 25 30
T TK

0.15

0.20

0.25

0.30

0.35

0.40

G G0

FIG. 6. (Color online) The zero bias conductance (29) as a
function of temperature in the weak coupling regime.

SU(2) Kondo tunneling is the substantial difference of the cor-
responding Kondo temperatures (19). This similarity no longer
holds in the strong coupling regime as we will now show.

Conductance in the strong coupling limit: For T < TK , the
mean field slave boson approximation (MFSBA) is employed
to calculate the zero bias tunneling conductance. In the limit
U → ∞, the dot can be either empty or singly occupied. The
dot electron annihilation and creation operators are written as
dλ = b†fλ and d

†
λ = f

†
λ b, where the slave fermion operators fλ

and the slave boson operator b satisfy the constraint condition

Q =
∑

λ

f
†
λ fλ + b†b = 1.

This condition is encoded by including a Lagrange multiplier
ω in the total action S. In the mean field approximation we
replace the Bose operators b and b† by their expectation values,
b0 =

√
〈b†b〉. At the mean field level the constraint condition

is satisfied only on the average.
The current operator reads

I = ieb0

�

∑
λ

tm[ψ†
lλ(0)fλ − H.c.]. (31)

It can be derived from the partition function that is formally
written as

Z(αq) =
∫

D[ff †cc†]e−βS(αq ). (32)

a

b

c
d

30 20 10 0 10 20 30
eV TK

0.15

0.20

0.25

0.30

0.35

0.40

G G0

FIG. 7. (Color online) The nonlinear conductance (29) as a func-
tion of applied bias in the weak coupling regime for T = 7.5TK

(curve a), T = 10TK (curve b), T = 12.5TK (curve c), and T = 15TK

(curve d).
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Here S(αq) is the action (written explicitly below) that contains
a term αqI where αq is a source field, and integration is carried
out over lead (c,c†) and slave fermion (f,f †) fields (treated
here as Grassman variables). The action is given explicitly as

S =
∫ ∞

−∞
dtL(t), (33)

where L = Ll + Lr + Ld − Lt − αqI ,

Lα =
∑
kλ

c
†
αkλ{i�∂t − εkm}τ zcαkλ, α = l,r,

Ld =
∑

λ

f
†
λ {i�∂t − εf }τ zfλ, εf = εd + ω,

Lt = b0√
Lcnt

∑
αkλ

tm{c†αkλτ
zfλ + f

†
λ τ zcαkλ}.

The action in the MFSBA is Gaussian and depends on
two real numbers, the boson field b0 and the chemical
potential (Lagrange multiplier) ω. Carrying out the integration
according to Eq. (32) yields the partition function

ln Z(αq) = −2
∑
m

tr ln

{
G−1

f m − eαqt
2
mb2

0

�
[glm,τx]

}
,

where

G−1
f m = g−1

f − t2
mb2

0(glm + grm).

Here gf is the GF (22) of the (noninteracting) electron in the
QD with shifted energy level, εd → εf = εd + ω.

The MFSBA is reliable in equilibrium, V = 0. Therefore,
we will consider below the temperature dependence of the zero
bias conductance. In equilibrium, the mean field solutions for
b0 and ω minimize the free energy,

F = −2T
∑
mωn

tr lnG−1
f m(iωn) + ωb2

0, (34)

where the last term is the slave boson kinetic part of the free
energy due to the constraint, and G−1

f m(iωn) is the Matsubara’s
GF. The mean field equations,

N

π
arctan

(
b2

0�

2εf

)
= 1 − b2

0,

(35)

N�

8π
ln

⎛
⎝ D̄2( b2

0�

2

)2 + ε2
f

⎞
⎠ = ω

are solved for ω and b0 with the solutions,

ω = −εd + TK cos

(
π

N

)
, b2

0 = 2TK

�
sin

(
π

N

)
,

where TK is the Kondo temperature given by Eq. (19) and �

is given in Eq. (13). The expression for the linear conductance
for T < TK is now obtained as

G(T ) = NG0

8T

∫
dε

cosh2
(

ε
2T

)
(

πTK

N

)2

(ε − εf )2 + (
πTK

N

)2 , (36)

where εf = TK cos(π/N ) and G0 is given by Eq. (30).
The zero bias conductance as a function of temperature
is shown in Fig. 8. It is seen that the conductance has a

0.0 0.2 0.4 0.6 0.8 1.0
T TK

0.4

0.5

0.6

0.7

0.8

0.9

1.0

G G0

FIG. 8. (Color online) The zero bias conductance as a function
of temperature in the strong coupling limit (T < TK ).

peak at T ≈ 0.57TK due to the constraint imposed by the
Friedel sum rule [29,32]. In addition to the different Kondo
temperatures (19) for the SU(12) and SU(2) Kondo effects, this
behavior indicates a remarkable distinction from the standard
SU(2) Kondo tunneling [22]. In the latter case, the conductance
is monotonically increasing towards the unitary limit as T →
0. It should be noted that we define G0 as e2/(6h) per spin
projection [see Eq. (30)], so that the unitary limit corresponds
here to 6G0 = 12e2/h. A close inspection shows that this
limit is not perfectly reached. The reason is that while the
DOS has a peak that is shifted from the Fermi level by TK ,
the peak of the “thermal” function cosh−2(ε/2T ) sits right at
the Fermi level. As a result, the peak of the conductance occurs
at finite temperature, and its value is slightly lowered by the
thermal function.

VII. MAGNETIC SUSCEPTIBILITY

While in bulk metals, the Kondo effect manifests itself
through measurements of electrical resistivity and magnetic
susceptibility, in quantum dots it manifests itself mainly
through the properties of the conductance. Designing exper-
iments aimed at studying magnetic response of quantum dot
in the Kondo regime is rather difficult because they require
an STM technique in which the tip is close to the magnetic
impurity. Appropriate STM techniques have already been
worked out for impurities composed of added magnetic atoms
on metallic surface [33]. We are unaware of their applications
in quantum dots. The discussion below is therefore motivated
by our hope that measurement of magnetic response of a single
magnetic impurity in quantum dot will eventually materialize.

In the CNT-CNT(QD)-CNT junction the magnetic response
is encoded by the static impurity magnetic susceptibility χ of
the CNT(QD) (defined explicitly below). Unlike the discussion
pertaining to the conductance, there is no source-drain bias
present here, and the leads just serve as a source of electron
gas that acts to screen the impurity. The distinction between
the present structure and that of Kondo effect in bulk CNT [7]
is that here the impurity is composed of a trapped electron with
a 12-fold degenerate ground state.

The Zeeman splitting �mσ of electron energy levels in
a carbon nanotube subject to an external magnetic field
B depends on whether the magnetic field is parallel or
perpendicular to the CNT axis (see Appendix B for details).
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Explicitly,

�mσ = −gorbmμBB‖ − gspinσμBB, (37)

where B = |B|, B‖ is the component of the magnetic field
parallel to the CNT axis, μB is the Bohr magneton, and gorb

and gspin are orbital and spin g factors,

gspin ≈ 2, gorb = mevr0

π�

�0

εF

, (38)

where me is the mass of free electron.
The Zeeman splitting (37) results in an anisotropy of the

magnetic susceptibility: In other words, χ is a tensor, which in
the principal frame of the CNT has parallel and perpendicular
components, χ

‖
imp and χ⊥

imp, responding to the magnetic field
parallel or perpendicular to the CNT axis. This anisotropy is
absent in the ordinary SU(2) Kondo effect, and is one of the
hallmarks of a higher symmetry such as SU(12) discussed here
that involves orbital symmetry.

The impurity magnetization is defined through the rela-
tion [29]

Mimp = gspinμB

{〈
S +

∑
α

�α

〉
−

〈∑
α

�α

〉
0

}

+ gorbμBex

{〈
Lx +

∑
α

�x
α

〉
−

〈∑
α

�x
α

〉
0

}
, (39)

where S and �α (α = l,r) are, respectively, the spin operators
of the dot and the lead electrons,

S =
∑
λλ′

sσσ ′δmm′δξξ ′Xλλ′
,

(40)
�α =

∑
kλλ′

c
†
αkλsσσ ′δmm′δξξ ′cαkλ′ ,

while Lx and �x
α are, respectively, the operators of the x

component of the orbital moment of the dot or the lead,

Lx =
∑

λ

mXλλ, �x
α =

∑
kλ

mc
†
αkλcαkλ. (41)

In Eq. (39) 〈· · · 〉 indicates thermal averaging with respect
to the full Hamiltonian H̃ = H0 + HK [Eqs. (9) and (15)],
whereas 〈· · · 〉0 indicates thermal averaging respect to H0. It
is reasonably assumed that electrons in the dot and the leads
have the same g factors.

Susceptibility in the weak coupling regime: Using a similar
analysis as for the conductance, we derive an expression for
the zero-field magnetic susceptibility to second order in j ,

χ‖
imp =

(
g2

spin

4
+ 2g2

orb

3

)
χ (T ), (42)

χ⊥
imp = g2

spin

4
χ (T ), (43)

where, to second order in j ,

χ (T ) = χ0TK

T

{
1 − j − Nj 2

2
ln

(
D

T

)}
, (44)

χ0 = μ2
B

TK

. (45)

χ imp
χ imp

15 20 25 30 35
T TK0.00

0.02

0.04
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0.08
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FIG. 9. (Color online) Impurity susceptibility χ ‖
imp (red curve)

and χ⊥
imp (blue curve), as a function of temperature in the weak

coupling regime [Eqs. (42), (43), and (47)].

The second term on the right-hand side of Eq. (42) reflects the
orbital degeneracy, and is absent in the SU(2) Kondo effect.
This anisotropy of the magnetic response is one of our main
results, as it constitutes an observable that is a hallmark of the
SU(12) symmetry of the pertinent Kondo effect. It is compactly
encoded by the temperature independent ratio

χ
‖
imp

χ⊥
imp

= 1 + 8

3

g2
orb

g2
spin

. (46)

As we shall see below, this relation holds also in the strong
coupling regime T < TK . It is then suspected that this result is
“universal” in the sense that it holds for the crossover region
T ≈ TK as well. In Appendix C it is indeed shown that this
ratio can be derived quite generally (in this model) by using the
fluctuation-dissipation formula for the susceptibility (which
relates the susceptibility to the spin correlations).

At high temperatures, the logarithmic term causes a reduc-
tion of the effective magnetic moment as compared with that
for a free spin. With decreasing temperature, the second order
perturbation theory becomes inadequate. In order to derive an
expression for χimp in the leading logarithmic approximation,
we use the RG equations (17). The condition imposing the
invariance of the susceptibility under the poor man’s scaling
transformation is

χ0TK

T

∂

∂ ln(D)

{
1 − j − Nj 2

2
ln

(
D

T

)}
= 0.

Within the accuracy of this equation, when differentiating the
third term, we should neglect any implicit dependence on D

through the coupling j . The renormalization procedure should
proceed until the bandwidth D is reduced to the temperature
T . At this point, the second order of the perturbation theory
vanishes and the susceptibility takes the form

χ (T ) = χ0TK

T

{
1 − 2

N ln(T/TK )

}
. (47)

The impurity susceptibility in the weak coupling regime,
Eqs. (42), (43), and (47), is shown in Fig. 9.

Susceptibility in the strong coupling regime: For T <

TK , the magnetic susceptibility can be calculated in the
framework of the MFSBA. For this purpose, we take into
account the dependence of the right-hand side of Eq. (34)
for the free energy on the external magnetic field B. Because
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FIG. 10. (Color online) Impurity susceptibility χ ‖
imp (red curve)

and χ⊥
imp (blue curve) as a function of temperature in the strong

coupling regime [Eqs. (42), (43), and (48)].

the susceptibility tensor is diagonal, we may write χi
imp =

−[∂2F (B)/∂B2
i ]B=0, where i = ‖,⊥. Thereby we get the zero

field susceptibility χ
‖
imp or χ⊥

imp. Explicitly, for magnetic field
parallel or perpendicular to the CNT axis, the susceptibility is
given by Eq. (42) or (43), with χ (T ) given by

χ (T ) = χ0

4T

∫
dε

cosh2
(

ε
2T

)
(

TK

N

)2

(ε + TK )2 + (
πTK

N

)2 . (48)

The magnetic susceptibilities in the strong coupling regime
are shown in Fig. 10. They display a peak at finite temperature,
commensurate with the constraint imposed by the Friedel sum
rule [29,32,34].

VIII. CONCLUSIONS

Whereas the theoretical framework of the Coqblin-
Schrieffer model is intensively studied, the present work
focuses on one of its special facets that is less explored,
namely, its possible realization in a transport device with
a Dirac spectrum and peculiar DOS. We substantiate the
possibility of tuning a metallic CNT into a tunnel junction
consisting of two CNT metallic leads and a CNT(QD). The
spin, isospin (valley), and orbital degeneracy of the CNT(QD)
energy spectrum gives rise to the Kondo effect with SU(12)
dynamical symmetry. The high symmetry of the CNT(QD)
leads to an enhanced Kondo temperature. The conductance
through the junction is evaluated using Keldysh technique.
Renormalization group analysis is performed in the weak
coupling regime (T � TK ) while the MFSBA is used at
the strong coupling regime T < TK . In the weak coupling
regime, the behavior of G(T ) as function of temperature
for the SU(12) Kondo effect is qualitatively the same as
that for the ordinary SU(2) Kondo effect, and the main
difference is that TK [SU(12)] � TK [SU(2)]. In the strong
coupling regime the situation is different. Due the constraints
imposed by the Friedel sum rule, the conductance has a
peak at finite temperature that becomes sharper the higher
is N . This distinction of the conductance between SU(2) and
SU(12) Kondo effect in quantum dot should be experimentally
observable.

The magnetic response exposes yet another remarkable
distinction between the SU(12) and the SU(2) Kondo effects.

For the SU(12) Kondo effect, the response is anisotropic and
the susceptibility is a tensor. It has two components, χ

‖
imp

and χ⊥
imp, according to whether the magnetic field is along

the CNT axis or perpendicular to it. Moreover, the ratio
χ

‖
imp/χ

⊥
imp = 1 + 8g2

orb/(3g2
spin) depends only on the orbital

and spin g factors. This result is demonstrated in the weak
coupling regime based on RG calculations and in the strong
coupling regime based on the MFSBA. A proof that this result
is true in every order of perturbation theory is derived in
Appendix C employing the fluctuation-dissipation theorem.
An experimental search for such anisotropy would constitute
a confirmation of this unusual Kondo effect, but as was pointed
out earlier, observing magnetic response of a single impurity
is quite difficult.

The Kondo physics in systems with Dirac spectrum proves
to be rather rich. While the Kondo effect in bulk graphene
reveals peculiar equilibrium properties such as the existence
of two distinct classes of Kondo quantum critical points [35],
analysis of nonequilibrium transport in correlated CNT(left
lead)-CNT(QD)-CNT(right lead) junction reveals another
facet, namely, Kondo tunneling with an SU(12) dynamical
symmetry.
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APPENDIX A: WAVE FUNCTIONS OF CNT
QUANTUM DOT

For electrons in CNT(QD), the single electron wave
functions and the corresponding energy spectrum are derived
from the Dirac equation (4). The solution 	mn(x,φ) of the
Dirac equation is written as

	mn(x,φ) =

⎧⎪⎨
⎪⎩

	(1)
mn(x)eimφ if |x| < h,

	(2)
mn(x)eimφ if x > h,

	(3)
mn(x)eimφ if x < −h,

(A1)

where m = 0,±1,±2, . . . is a magnetic quantum number, n =
0,1,2, . . . is a radial quantum number.

The function 	(1)
mn(x) is given by

	(1)
mn(x) = Amn√

ε

{
χ

(1)
↑

√
ε + Mm cos

(
kxx + nπ

2

)

+χ
(1)
↓

√
ε − Mm sin

(
kxx + nπ

2

)}
, (A2)

where Mm and M0 are defined through the relations

�vkx =
√

ε2 − M2
m, Mm =

√
M2

0 + m2�2
0.

The expressions for the spinors χ (1)
σ and χ (2)

σ (to be used later)
are given in Eq. (8).

The function 	(1)
m (x) has the following symmetry:

M̂m	(1)
m (−x) = (−1)nMm	(1)

m (x).
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Similarly, the function 	(2)
m (x) (for x > h) reads

	(2)
mn(x) = Bme−κ(x−h)

√
2Nm

{
χ

(2)
↑

√
Nm + ε + χ

(2)
↓

√
Nm − ε

}
,

(A3)

where Nm and N0 are defined through

�vκ =
√

N2
m − ε2, Nm =

√
N2

0 + m2�2
0.

Finally, the function 	(3)
mn(x) (for x < −h) is

	(3)
mn(x) = (−1)n

Nm

N̂m	(2)
mn(−x).

Applying the continuity condition for 	mn(x,φ), Eq. (A1)
at the points x = ±h, we obtain the set of equations,

Amn

√
ε + Mm cos

(
kxh + nπ

2

)
= BmnF↑(ε), (A4a)

Amn

√
ε − Mm sin

(
kxh + nπ

2

)
= BmnF↓(ε), (A4b)

where Fσ (ε) is given by Eq. (7).
The set of equations (A4) has nontrivial solutions when its

determinant vanishes. This condition gives us Eq. (6) for the
energy levels in the quantum dot.

APPENDIX B: MAGNETIZATION OF THE
TUNNEL JUNCTION

It order to describe electronic properties of a carbon
nanotube in an external magnetic field B, we should add to
the CNT Hamiltonian the term HB describing spin-Zeeman
splitting,

Hspin = −gspinμB(s · B), (B1)

and replace the wave vector k by the operator k′ [18,19],

k → k′ = −i∇ − e

�c
A.

Here s is a vector of the spin operators, A is a vector potential,
B = ∇ × A. Then the motion of electron in a CNT with the
wave vector close to the K point of the first Brillouin zone can
be described by the Hamiltonian,

H = �v

(
k − e

�c
A

)
τ + �gτz + Hspin. (B2)

Here we use use the cylindrical system of coordinates where
k = (kx,ky) with kx = −i∂x and ky = − i

r0
∂φ . The Hamilto-

nian for the motion of electron with the wave vector near
K′ point can be obtained from Eq. (B2) just by replacing
ky → −ky .

In what follows, we will calculate Zeeman splitting for the
magnetic field parallel and perpendicular to the CNT axis.

Magnetic field parallel to the CNT axis: When the magnetic
field is parallel to the CNT axis, B‖ = Bex , the vector potential
can be written as

A‖ = Br

2
eφ. (B3)

The eigenfunction of the Hamiltonian (B2) is

|�‖
skmσ (ϕ)〉 = |χσ 〉 ⊗ |ψskm(ϕ)〉, (B4)

where ϕ = πBr2
0 is the magnetic flux through the cross section

of the CNT. Here |χσ 〉 is a spin wave function of electron with
spin parallel or antiparallel to the magnetic field,

|χ↑〉 =
(

1
0

)
, |χ↓〉 =

(
0
1

)
. (B5)

|ψskm(ϕ)〉 is the spatial wave function of electron in the
conduction (s = +1) or valence (s = −1) band with orbital
quantum number m (m = 0,±1), and wave number k,

|ψskm(ϕ)〉 = eikx+imφ

√
4πL

(
sbkm(ϕ)

1

)
,

bkm(ϕ) = κm(ϕ) − ik√
κ2

m(ϕ) + k2
, (B6)

κm(ϕ) = m − ϕ

r0
.

The corresponding energy is

ε̃skλ = s

√
(�vk)2 + (m − ϕ)2�2

0 + �2
g − 2σμBB. (B7)

For weak magnetic fields (ϕ � 1), εskλ can be expanded to
linear with B correction,

ε̃skλ = εskm − �2
0mϕ

εskm

− 2σμBB + O(ϕ2),

εskm = s

√
(�vk)2 + m2�2

0 + �2
g.

Then for εskm close to the Fermi level, we get Eq. (37).
Then the magnetization (39) in linear with B approximation

is

Mx
imp = g2

spinμ
2
BB

{
〈(�̃x)2〉 −

〈∑
α

(
�x

α

)2

〉
0

}

+ g2
orbμ

2
BB

{
〈(�̃x)2〉 −

〈∑
α

(
�x

α

)2

〉
0

}
, (B8)

where �̃ = (�̃x,�̃y,�̃z) is the total spin of the tunnel junction,

�̃ = S +
∑

α

�α, (B9)

�̃x is the orbital momentum of the total system,

�̃x = Lx +
∑

α

�x
α. (B10)

Magnetic field perpendicular to the CNT axis: Let us
consider now the magnetic field perpendicular to the CNT
axis. For definiteness, we take B⊥ = B[er cos φ − eφ sin φ],
so that A⊥ = Br sin φex . Then the Hamiltonian (B2) takes the
form

H = H0 + Hspin + Horb, H0 = �vτ · k + �gτz, (B11)

where Hspin is given by Eq. (B1),

Horb = −�0r
2
0

l2
B

sin φτx, (B12)
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lB is the magnetic length given by

lB =
√

c�

Be
. (B13)

When lB � r0, the field can be regarded as a small perturba-
tion.

The eigenfunction of the Hamiltonian H0 + Hspin are
|χσ 〉 ⊗ |ψskm〉, where |χσ 〉 describes the quantum state with
the spin parallel or antiparallel to the magnetic field B, |ψskm〉
is the spatial wave function of electron with wave number k,
orbital number m in the conduction or valence band, s = ±1.

In order to estimate the contribution of Horb, we note that
the nontrivial matrix elements of Horb are

〈ψskm|Horb|ψskm+1〉, 〈ψskm+1|Horb|ψskm〉,
i.e., Horb change the orbital quantum number by ±1 keeping
the other quantum numbers (wave number, band index, spin,
etc.) unchanged. The quantum transitions from the state |ψskm〉
to the state |ψskm+1〉 costs the energy εskm+1 − εskm ∼ �0. As
a result, for low magnetic fields (lB � r0), corrections of Horb

to the energy spectrum is of order l−4
B ∼ B2 and the energy

dispersion in linear with B approximation is given by Eq. (37).
The magnetization (39) in linear with B approximation is

M⊥
imp = g2

spinμ
2
BB

{〈(
�̃y

α

)2〉 −
〈∑

α

(
�y

α

)2

〉
0

}
, (B14)

where we take the y component of the spin operators for
definiteness, �̃y is given by Eq. (B9).

APPENDIX C: MAGNETIC SUSCEPTIBILITY OF CNT QD:
FLUCTUATION-DISSIPATION THEOREM

In this section we derive the universal relation (46) using
the fluctuation dissipation theorem.

1. Magnetic susceptibility

According to the fluctuation-dissipative theorem, the tensor
of the magnetic susceptibility of the quantum dot is defined as

χij = − ∂2F

∂Bi∂Bj

= 1

T

{〈mimj 〉 − 〈mi〉〈mj 〉

− 〈
m

(0)
i m

(0)
j

〉
0 + 〈

m
(0)
i

〉
0

〈
m

(0)
j

〉
0

}
. (C1)

Here 〈· · · 〉 denotes the thermal average with respect to the
Hamiltonian of interacting quantum dot and leads, 〈· · · 〉0 is
the average with respect to the Hamiltonian of the isolated
leads. i,j = x,y,z are Cartesian indices, m = (mx,my,mz) is
magnetic momentum of the quantum dot and the lead, m(0) =
(m(0)

x ,m(0)
y ,m(0)

z ) is magnetic moment of isolated leads,

m = gspinμB

{
S +

∑
α

�α

}
+ gorbμBex

{
Lx +

∑
α

�x
α

}
,

(C2)

m(0) = gspinμB

∑
α

�α + gorbμBex

∑
α

�x
α, (C3)

where the spin operators of the dot and the lead electrons (S
and �α , α = l,r) are given by Eq. (40), while the operators

of the x component of the orbital moment of the dot and
the lead (Lx and �x

α , α = l,r) are given by Eq. (41). The
Hubbard operator Xλλ′ = |λ〉〈λ′| is defined after Eq. (15). It
is reasonably assumed that electrons in the dot and the leads
have the same g factors.

We choose the set of coordinates in such a way that the
x axis is parallel to the CNT axis, whereas the y and z axes
are perpendicular. In this set of coordinates, the tensor of the
susceptibility is diagonal,

χ̂ =
⎛
⎝χ‖ 0 0

0 χ⊥ 0
0 0 χ⊥

⎞
⎠ .

We will prove that the zero-field susceptibilities satisfy the
ratio

χ‖
χ⊥

= 1 + 8

3

g2
orb

g2
spin

. (C4)

For this purpose, we note the following: The Kondo
Hamiltonian (15) describes the cotunneling process such that
an electron with the quantum number λ (the spin σ , the orbital
quantum number m, and the valley number ξ ) exits from the
dot to the lead and another electron with the quantum number
λ′ (the spin σ ′, the orbital quantum number m′, and the valley
number ξ ′) enters the quantum dot from the lead. That mean
that the total spin and the total orbital momentum of the lead
and the quantum dot are the good quantum numbers.

Proof. Let us consider first χ⊥,

χ⊥ = g2
spinμ

2
B

T

{〈
SzSz + 2

∑
α

Sz�z
α

+
∑
αα′

�z
α�z

α′

〉
−

∑
αα′

〈
�z

α�z
α′

〉
0

}
. (C5)

The total Hamiltonian satisfies the SU(12) symmetry, so that
we can apply such a unitary transformation that make the
spin operators Sz and �z

α become diagonal. This unitary
transformation does not change the thermal average of the
spin operators, so that χ⊥ (C5) is

χ⊥ = g2
spinμ

2
B

T

∑
λλ′

σσ ′

4

{〈
Xλλδλλ′ + 2

∑
αk

c
†
αkλcαkλX

λ′λ′

+
∑

αα′kk′
c
†
αkλcαkλc

†
α′k′λ′cα′k′λ′

〉

−
∑

αα′kk′
〈c†αkλcαkλc

†
α′k′λ′cα′k′λ′ 〉0

}
. (C6)

We will estimate each term on the right-hand side of Eq. (C6)
in turn. The first term gives

Xdd =
∑

λ

σ 2

4
〈Xλλ〉 = 1

4
, (C7a)

where 〈Xλλ〉 = 1
N

(N = 12) does not depend on the quantum
number λ.
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The second term on the right-hand side of Eq. (C6) is

Xdα =
∑
kλλ′

σσ ′

2
〈c†αkλcαkλX

λ′λ′ 〉.

The antiferromagnetic Kondo interaction makes the difference
between the two-particle states with parallel and antiparallel
spins, therefore Xdα is not zero. In Appendix C 2 it is a proof
that

P1 = 〈c†αkλcαkλX
λλ〉 (C7b)

does not depend on λ, whereas

P2 = 〈c†αkλcαkλX
λ′λ′ 〉 (C7c)

does not depend on λ and λ′ (just we should keep λ �= λ′).
Using these equalities, we can write

Xdα = N

2
{P1 − P2}. (C7d)

The third term on the right-hand side of Eq. (C6) is

Xαα′ =
∑
kk′λλ′

σσ ′

4
〈c†αkλcαkλc

†
α′k′λ′cα′k′λ′ 〉.

Xαα′ can be estimated similarly to Xdα . The exchange
interaction between the leads and the dot generates an effective
interaction between electrons in the leads. As a result, the
expectation value 〈c†αkλcαkλc

†
α′k′λ′cα′k′λ′ 〉 depends on either λ is

equal to λ′ or not. Defining K1αα′ and K2αα′ ,

K1αα′ =
∑
kk′

〈c†αkλcαkλc
†
α′kλcα′kλ〉

−
∑
kk′

〈c†αkλcαkλc
†
α′kλcα′kλ〉0,

(C7e)
K2αα′ =

∑
kk′

〈c†αkλcαkλc
†
α′k′λ′cα′k′λ′ 〉

−
∑
kk′

〈c†αkλcαkλc
†
α′k′λ′cα′k′λ′ 〉0, λ �= λ′

(K1αα′ and K2αα′ do not depend on λ [36]), we get

Xαα′ = N

4
{K1αα′ − K2αα′ }. (C7f)

With Eqs. (C7a), (C7d), and (C7f), the susceptibility χ⊥
takes the form

χ⊥ = g2
spinμ

2
B

4T

{
1 + 4N (P1 − P2)

+ N
∑
αα′

(K1αα′ − K2αα′ )

}
. (C8)

Now consider χ‖,

χ‖ = g2
spinμ

2
B

T

{〈
SxSx + 2

∑
α

Sx�x
α +

∑
αα′

�x
α�x

α′

〉

−
∑
αα′

〈
�x

α�x
α′

〉
0

}

+ gspingorbμ
2
B

T

{〈
SxLx +

∑
α

(
Sx�x

α + Lx�x
α

)

+
∑
αα′

�x
α�x

α′

〉
−

∑
αα′

〈
�x

α�x
α′

〉
0

}

+ g2
orbμ

2
B

T

{〈
LxLx + 2

∑
α

Lx�x
α

+
∑
αα′

�x
α�x

α′

〉
−

∑
αα′

〈
�x

α�x
α′

〉
0

}
. (C9)

The right-hand side of Eq. (C9) consists of three blocks of
terms consisting of the spin-spin, spin-orbital, and orbital-
orbital correlation functions. The Kondo Hamiltonian (15)
does not contain the spin-orbital interactions, so that the
spin-orbital correlation functions are zero. In order to derive
the spin-spin part of χ‖, we apply the unitary transformations
to make the spins Sx and �x diagonal. It is easy to see that the
spin part of χ‖ gives Eq. (C8). Consider now the last block of
terms coming from the orbital-orbital correlations. Applying
the unitary transformations to make the orbital moments Lx

and �x
α diagonal, we can write the orbital moment contribution

to χ‖ as

χorb
‖ = g2

orbμ
2
B

T

∑
mm′

mm′
{〈

Xmmδmm′ + 2
∑
αk

c
†
αkλcαkλX

λ′λ′

+
∑

αα′kk′
c
†
αkλcαkλc

†
α′k′λ′cα′k′λ′

〉

−
∑

αα′kk′
〈c†αkλcαkλc

†
α′k′λ′cα′k′λ′ 〉0

}
. (C10)

The right-hand side of Eq. (C10) consists of the terms coming
from the dot-dot, dot-lead, and lead-lead correlations. We will
consider all of them in turn.

The dot-dot correlation is

Odd =
∑

λ

m2〈Xλλ〉 = 2

3
= 8

3
Xdd. (C11a)

The dot-lead correlation is

Odα = 2
∑
kλλ′

mm′〈c†αkλcαkλX
λ′λ′ 〉.

Similarly to Xdα , Odα can be expressed in terms of P1 and P2

[Eqs. (C7b) and (C7c)] as

Odα = 16(P1 − P2) = 8
3Xdα. (C11b)
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Finally, the lead-lead correlation gives

Oαα′ =
∑
kk′λλ′

mm′〈c†αkλcαkλc
†
α′k′λ′cα′k′λ′ 〉.

Similarly to Xαα′ , Oαα′ can be expressed in terms of K1αα′ and
K2αα′ [Eqs. (C7e) and (C7e)] as

Oαα′ = 8(K1αα′ − K2αα′ ) = 8
3Xαα′ . (C11c)

Combining Eqs. (C10) and (C11), we get χ‖ in the form

χ‖ = μ2
B

T

(
g2

spin

4
+ 2g2

spin

3

)

×
{

1 + 4N (P1 − P2) + N
∑
αα′

(K1αα′ − K2αα′ )

}
.

(C12)

Equations (C12) and (C8) prove Eq. (C4).

2. Proof of Eqs. (C7b) and (C7c)

In order to prove Eq. (C7b), we prove that two expected
values, Gλλ and Gλ′λ′ , are equal to one another,

Gλλ = 〈c†αkλcαkλX
λλ〉, Gλ′λ′ = 〈c†αkλ′cαkλ′Xλ′λ′ 〉, (C13)

where λ �= λ′. Let us, for brevity, enumerate the quantum states
of the quantum dot in such a way that λ = 1 and λ′ = 2. The
expected value Gλ′λ′ is invariant with respect to any unitary
transformations,

cαkλ′ →
∑
λ′′

Uλ′λ′′cαkλ′′ ,

c
†
αkλ′ →

∑
λ′′

c
†
αkλ′′Uλ′′λ′ ,

Xλ′λ′ →
∑
λ′′λ′′′

Uλ′λ′′
Xλ′′λ′′′

Uλ′′′λ′
,

where Uλ′λ′′ is a unitary N × N matrix. In particular,
it is invariant with respect to the transformation given

by the matrix,

U =
⎛
⎝0 1 0

1 0 0
0 0 Î10

⎞
⎠ ,

where Î10 is the 10 × 10 identity matrix. Applying this
transformation to the expected value Gλ′λ′ , we get the expected
value Gλλ, so that Gλλ = Gλ′λ′ .

In order to prove Eq. (C7c), we consider two expected
values, Gλλ′ and Gλλ′′ , are equal to one another,

Gλλ′ = 〈c†αkλcαkλX
λ′λ′ 〉,

(C14)
Gλλ′′ = 〈c†αkλcαkλX

λ′′λ′′ 〉,
where λ �= λ′, λ �= λ′′, and λ′ �= λ′′. Let us, for brevity,
enumerate the quantum states of the quantum dot in such a
way that λ = 1, λ′ = 2, and λ′′ = 3. The expected value Gλλ′′

is invariant with respect to any unitary transformations,

cαkλ →
∑
λ1

Uλλ1cαkλ1 ,

c
†
αkλ →

∑
λ1

c
†
αkλ1

Uλ1λ,

Xλ′′λ′′ →
∑
λ1λ2

Uλ′′λ1Xλ1λ2Uλ2λ
′′
,

where Uλ′λ′′ is a unitary N × N matrix. In particular, it is
invariant with respect to the transformation given by the matrix

U =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 Î9

⎞
⎟⎟⎠ ,

where Î9 is the 9 × 9 identity matrix. Applying this transfor-
mation to the expected value Gλλ′′ , we get the expected value
Gλλ′ , so that Gλλ′′ = Gλλ′ .
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