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The few determinant (FED) approximation introduced in our previous work [Phys. Rev. B 87, 235129 (2013)] is
used to describe the ground state, characterized by well-defined spin and space group symmetry quantum numbers
as well as doping fractions Ne/Nsites, of one-dimensional Hubbard lattices with nearest-neighbor hopping and
periodic boundary conditions. Within this multireference scheme, each ground state is expanded in a given number
of nonorthogonal and variationally determined symmetry-projected configurations. The results obtained for the
ground-state and correlation energies of half-filled and doped lattices with 30, 34, and 50 sites compare well
with the exact Lieb-Wu solutions as well as with those obtained with other state-of-the-art approximations. The
structure of the intrinsic symmetry-broken determinants resulting from the variational procedure is interpreted
in terms of solitons whose translational and breathing motions can be regarded as basic units of quantum
fluctuations. It is also shown that in the case of doped one-dimensional lattices, a part of such fluctuations can
also be interpreted in terms of polarons. In addition to momentum distributions, both spin-spin and density-density
correlation functions are studied as functions of doping. The spectral functions and density of states, computed
with an ansatz whose quality can be well controlled by the number of symmetry-projected configurations used
to approximate the Ne ± 1 electron systems, display features beyond a simple quasiparticle distribution, as well
as spin-charge separation trends.
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I. INTRODUCTION

Disentangling the effects of electron-electron interactions
in the ground and excited states of low-dimensional systems
has become an exciting challenge in contemporary condensed
matter physics [1,2]. In particular, the discovery of high-Tc

superconductivity in the cuprates [3] has acted as a driving
force to develop theoretical models able to account for the
most relevant correlations in many-electron systems in the
simplest possible way. Within this context, the repulsive
Hubbard model [4] has been widely studied for several reasons
including that it represents a prototype for the Mott transition
between a metal and an antiferromagnetic insulator [5] and
the suggestion [6] that it contains the basic physics associated
with high-Tc superconductivity. The phenomenon of colossal
magnetic resistance [7] has also attracted considerable atten-
tion. On the other hand, the study of the high-Tc iron-based
superconductors [8,9] has become a very active research
area [10]. Here, calculations in terms of multiorbital Hubbard-
type models have already provided valuable insight into the
interplay between doping and the strength of the electronic
correlations in these exotic superconductors [2]. Hubbard
models represent valuable tools to study cold fermionic
atoms in optical lattices [11] as well as the properties of
graphene [12]. It has also become clear that their strong
coupling limits, i.e., the Heisenberg models [13], can be quite
useful to study low-dimensional magnets whose properties
might be relevant for real materials found in nature and/or
synthesized by means of crystal growing [14].

The previous examples already show the central role
of Hubbard-type lattice models and their strong coupling
versions to obtain insight into the properties associated
with the emergent complexity in many-electron problems.
Precisely, it is this complexity that requires the use of different

approximations to describe low-dimensional systems. Among
the available theoretical tools we have, for example, exact
diagonalizations for small lattices [1,15], while for the larger
ones, we can resort to quantum Monte Carlo [16,17], varia-
tional Monte Carlo [18], coupled cluster [19,20], variational
reduced-density-matrix [21] and density-matrix renormaliza-
tion group [22–24] methods, as well as approximations based
on matrix product and tensor network states [25–29]. Both
frequency-dependent and frequency-independent embedding
approaches [30–39] are also actively pursued.

The exact Bethe ansatz solution of the one-dimensional
(1D) Hubbard Hamiltonian is well known [40,41], which is
not the case for the two-dimensional (2D) model. On the
other hand, in spite of the considerable progress already made,
the exact 1D wave functions still remain difficult to handle
in practice when computing several physical properties [13].
It has also remained difficult to obtain an intuitive physical
picture of the basic units of quantum fluctuations [42–45]
using the Lieb-Wu solutions [40] and/or within the theoretical
frameworks already mentioned above. This task is further
complicated by the fact that quantum fluctuations can exhibit
unconventional features in low-dimensional systems. A typical
example is the spin-charge separation in the strong coupling
regime of the 1D Hubbard model [13,46,47]. Angle-resolved
photoemission spectroscopy results also reveal a complex
pattern of spin-charge coupling/decoupling both in 1D and
2D systems [48,49] in the weak and intermediate-to-strong
interaction regimes.

Therefore, it is highly desirable to explore the performance
of alternative wave-function-based approaches that, on the one
hand, could complement existing state-of-the-art theoretical
tools and, on the other hand, lead us to compact states whose
(intrinsic) structures are simple enough to be interpreted in
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terms of basic units of quantum fluctuations in half-filled and
doped lattices. Within this context, the 1D Hubbard model
represents a challenging testing ground since both its exact
solution and highly accurate density-matrix renormalization
group results are available. The last years have seen some
progress in this direction within the framework of the single-
reference (SR) and multireference (MR) symmetry-projected
approximations [43–45,50–53] which are routinely used in
nuclear structure physics [54–57]. Note that in quantum
chemistry, the names single component and multicomponent
have been adopted [58,59] instead of single reference and
multireference, respectively.

Recently, a hierarchy of symmetry-projected variational
approaches [55] has been applied to describe both the ground
and excited states of the 1D and 2D Hubbard models
[50–53]. In its simplest (i.e., SR) form, the symmetry-projected
variation-after-projection (VAP) method [50] resorts to a
Hartree-Fock–type [54] (HF) trial state |D〉 that deliberately
breaks several symmetries of the considered Hamiltonian. The
method then superposes, with the help of projection opera-
tors [50], a degenerate manifold of Goldstone states R̂|D〉, with
R̂ being a symmetry operation. In this way, one recovers a set
of quantum numbers associated with the original symmetries
of the Hamiltonian. Already at this SR level, genuine defects
are induced in the intrinsic determinant |D〉 resulting from the
VAP procedure. Therefore, its structure differs from the one
obtained within the standard HF approximation [52]. This kind
of SR symmetry-projected framework has already enjoyed
considerable success in quantum chemistry [60–62].

An extension of the SR method [55] has been previously
used [51] to describe half-filled and doped 2D Hubbard lattices.
With the help of chains of VAP calculations, it provides
a (truncated) basis consisting of a few (orthonormalized)
symmetry-projected configurations which can then be used to
further diagonalize the considered Hamiltonian. In this way,
one can account on an equal footing for additional correlations
in both ground and excited states keeping well-defined
symmetry quantum numbers. The method also provides a
well-controlled ansatz to compute both spectral functions
(SFs) and density of states (DOS) [51]. In quantum chemistry,
the first benchmark calculations on the C2 dimer have shown
that, with a modest basis set, this methodology provides a
high-quality description of the low-lying spectrum for the
entire dissociation profile. In addition, the same methodology
has been applied to obtain the full low-lying spectrum of
formaldehyde as well as to a challenging model C2ν insertion
pathway for BeH2 [58].

However, being already more sophisticated than the SR
framework [50,60–62], the extension [51,58] mentioned above
still essentially describes a given ground and/or excited state
in terms of a single symmetry-projected configuration. This
certainly limits the amount of correlations that can be accessed
for those states. A more correlated description is encoded
in a MR scheme [43–45,53]. Here, one resorts to a set
of symmetry-broken HF states |Di〉 and superposes their
Goldstone manifolds R̂|Di〉. In this way, a given state with a
well-defined set of quantum numbers is expanded in terms of
n nonorthogonal symmetry-projected configurations [43,53]
that are optimized with the help of the Ritz variational
principle [63] applied to the projected energy.

There are several ways to perform the self-consistent
optimization of the intrinsic HF states |Di〉 within a MR
approach. One possible VAP strategy is represented by the
resonating HF [43–45,64–67] (ResHF) scheme within which
all the determinants |Di〉 are optimized at the same time.
Another VAP strategy is represented by the few determi-
nant [53,55] (FED) approach where, the HF transformations
Di are optimized one at a time. In both the ResHF and FED
schemes, the corresponding configuration mixing coefficients
are determined through resononlike equations [68]. We note
that there is no need for the FED expansion to be short, as
its name would imply, although this is a desirable feature. In
this study, we keep the acronym to remain consistent with the
literature [55]. Hybrid MR approximations are also possible.
For example, one could optimize n − k states using the ResHF
scheme and k states using the FED one. Let us stress that
the ResHF and FED wave functions have the same form. The
difference between the two methods arises from the variational
strategies adopted to optimize such wave functions.

The FED methodology has already been used [53] to
compute ground-state energies, spin-spin correlation functions
(SSCFs) in real space, magnetic structure factors (MSFs),
as well as spin-charge separation tendencies in the SFs of
half-filled 1D Hubbard lattices of different sizes in the weak,
intermediate-to-strong, and strong interaction regimes. We
have shown [59] that short ResHF and FED expansions can
provide an accurate description of chemical systems such as
the nitrogen and water molecules along the entire dissociation
profile, as well as an accurate interconversion profile among
the peroxo and bis(μ-oxo) forms of [Cu2O2]2+ comparable
to other state-of-the-art quantum chemical methods. Recent
calculations [69] have also considered the complex binding
pattern in the Mo2 molecule.

In addition to ground-state properties, the excited few
determinant [55] (EXCITED FED) scheme has also been
used [53] to treat excited states, with well-defined quantum
numbers, as expansions in terms of nonorthogonal symmetry-
projected configurations. As a by-product of VAP calculations,
the EXCITED FED provides a (truncated) basis consisting of
a few Gram-Schmidt orthonormalized states, each of them
expanded in a given number of nonorthogonal symmetry-
projected configurations, which may be used to perform a
final diagonalization of the Hamiltonian to account for a more
correlated description of both ground and excited states.

Each of the MR approaches already mentioned has its
own advantages and drawbacks. A ResHF wave function
is stationary with respect to arbitrary changes in the HF
transformations [54] Di (i = 1, . . ., n) while a FED one
displays stationarity only with respect to the last added
transformation. Therefore, the ResHF wave functions become
easier to work with in the evaluation of those properties
depending on derivatives of the wave function. However, in
a ResHF optimization, O(n2) Hamiltonian and norm kernels
have to be recomputed at every iteration, while only O(n)
kernels are required in an efficient implementation of the FED
method [53,59].

Regardless of the FED and/or ResHF VAP strategy adopted,
the MR approximations are not restricted by the dimension-
ality (i.e., they can be equally well applied to 1D and 2D
systems) and/or the topology of the considered lattices. On
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the other hand, one of the most attractive features of the MR
approximations is that they offer compact wave functions, with
well-defined quantum numbers, whose quality can be sys-
tematically improved by increasing the number of symmetry-
projected configurations included in the corresponding ansatz
[43–45,53,59]. Obviously, one is always limited in practical
applications to a finite number n of symmetry-projected
terms in the FED and/or ResHF expansions. However, it
should also be kept in mind that both the ResHF and
FED wave functions are nothing other than a discretized
form of the exact coherent state representation of a fermion
state [70] and, therefore, become exact in the limit n → ∞.
All in all, we believe that symmetry-projected approximations,
already quite successful in nuclear physics [54–57], lead to
a rich conceptual landscape and deserve further attention in
quantum chemistry [58–62] and condensed matter physics
[50–53]. They also provide [71] high-quality trial states that
can be used within the constrained-path Monte Carlo [72]
scheme, increasing the energy accuracy and decreasing the
statistical variance as more symmetries are broken and
restored.

In this paper, we apply the FED methodology introduced
in our previous study [53] to doped 1D Hubbard systems.
Therefore, our main goal is to test the performance of the FED
scheme using benchmark calculations to understand to which
extent it captures the relevant physics associated with doping as
well as the crossover from doped systems to half-filled lattices.
To this end, we have selected the 1D Hubbard model for which
both exact and highly accurate density-matrix renormalization
group (DMRG) results can be obtained. For the sake of
completeness and comparison, we will also discuss half-filling
results. In Sec. II, we briefly describe the key ingredients of
our MR approach. For a more detailed account, the reader
is referred to our previous works [53,59]. In Sec. III, we
discuss the results of our calculations. We have first paid
attention to lattices with Nsites = 30 sites and Ne = 14, 18,
22, 26, 30 electrons as illustrative examples. Calculations
have been performed for the onsite repulsions U = 2t , 4t ,
and 8t representing the weak, intermediate-to-strong (i.e.,
noninteracting bandwidth), and strong interaction regimes,
respectively. In Sec. III A, we compare our ground-state and
correlation energies with the exact ones as well as with those
obtained using other theoretical methods. The dependence of
the correlation energies predicted for doped lattices with the
number of transformations included in our MR ansatz is also
discussed in the same section. The basic units of quantum
fluctuations in the case of doped lattices are discussed in
Sec. III B, where we consider the structure of the symmetry-
broken determinants resulting from the FED VAP procedure.
Next, in Secs. III C and III D, we benchmark our results
for momentum distributions, SSCFs, and density-density
(DDCFs) correlation functions with DMRG ones obtained
with the open-source ALPS software [73]. A typical outcome
of our calculations for SFs and DOS N (ω) is presented in
Sec. III E, where we consider a lattice with Nsites = 30 sites
and Ne = 26 electrons at U = 4t . Next, in Sec. III F, we
illustrate the performance of the FED method in the case
of larger lattice sizes and also compare with DMRG results.
Finally, Sec. IV is devoted to the concluding remarks and work
perspectives.

II. THEORETICAL FRAMEWORK

We consider the 1D Hubbard Hamiltonian [4]

Ĥ= − t
∑

j,σ=↑,↓
{ĉ†j+1σ ĉjσ + ĉ

†
jσ ĉj+1σ }+U

∑
j

n̂j↑n̂j↓, (1)

where the first term represents the nearest-neighbor hopping
(t > 0) and the second is the repulsive onsite interaction (U >

0). The fermionic [63] spin- 1
2 operators ĉ

†
jσ and ĉjσ create and

destroy an electron with spin projection σ = ↑,↓ on a lattice
site j = 1, . . ., Nsites. The operators n̂jσ = ĉ

†
jσ ĉjσ are the local

number operators. We assume periodic boundary conditions
and a lattice spacing � = 1.

The starting point [53] of our FED approach is a set of GHF
determinants [74,75] |Di〉 (i = 1, . . ., n), which deliberately
break several symmetries of the Hamiltonian like rotational
(in spin space) and spatial ones. To restore these broken
symmetries, we explicitly use the spin

P̂ S

��
′ = 2S + 1

8π2

∫
d�DS∗

��
′ (�)R(�) (2)

and space group

P̂ k

mm
′ = h

L

L∑
g=1

	k∗
mm

′ (g)R̂(g) (3)

projection operators [53]. In Eq. (2), R(�) is the rotation
operator in spin space, the label � stands for the set of
Euler angles, and DS

��
′ (�) are Wigner matrices [76]. In

Eq. (3), h and L represent the dimension of the irreducible
representation and the number of space group operations for a
given lattice. On the other hand, 	k

mm
′ (g) is an irreducible rep-

resentation [15,43] while R̂(g) represents the corresponding
point group symmetry operations parametrized in terms of the
label g. The linear momentum k = 2π

Nsites
ξ is given in terms of

the quantum number ξ which takes the values allowed inside
the Brillouin zone (BZ) [77]. The high-symmetry momenta
k = 0,π are also labeled by the parity of the corresponding
irreducible representation [15,43]. In what follows, we will
not explicitly write this label. The total projection operator
can then be written in the following shorthand form:

P̂ S

��
′ P̂

k

mm
′ = P̂ �

KK
′ , (4)

where � = (S,k) represents the set of (spin and linear
momentum) symmetry quantum numbers and K = (�,m).
The key idea of the FED approach is to superpose the set of
degenerate Goldstone states [53] |Di(�,g)〉 = R̂(�)R̂(g)|Di〉
through the following ansatz:

∣∣φn�
K

〉 =
∑
K

′

n∑
i=1

f i�

K
′ P̂

�

KK
′ |Di〉, (5)

which expands a given ground state |φn�
K 〉, with well-defined

symmetry quantum numbers �, in terms of n nonorthogonal
symmetry-projected configurations P̂ �

KK
′ |Di〉. The sum over

K
′

in Eq. (5) is necessary in order to remove an unphysical
dependence of |φn�

K 〉 on the orientation of the GHF states
|Di〉 [78].

The FED wave function is formally similar to the one
adopted within the ResHF method [43–45,64–67]. However,
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it is determined through a different variational strategy [53].
We apply the Ritz variational principle [63] to the energy
(independent of K)

En� = f n�†Hn�f n�

f n�†N n�f n�
(6)

written in terms of Hamiltonian and norm kernels

Hn�

iK,jK
′ = 〈Di |Ĥ P̂ �

KK
′ |Dj 〉,

(7)
N n�

iK,jK
′ = 〈Di |P̂ �

KK
′ |Dj 〉,

which require the knowledge of the symmetry-projected
matrix elements between all the GHF determinants used in
the expansion (5). In the case of the mixing coefficients, we
obtain a resononlike [68] eigenvalue equation

(Hn� − En�N n�)f � = 0 (8)

with the constraint f n�†N n�f n� = 1 ensuring the nor-
malization of the solution. Within the FED approach, the
energy (6) is varied only with respect to the last added
GHF determinant |Dn〉 keeping all the other transformations
Di (i = 1, . . . ,n − 1), obtained in previous chains of VAP
calculations, fixed [53]. Note that at variance with the ResHF
approximation [43–45,64–67] where all the transformations
Di are optimized at the same time, the FED VAP strategy
optimizes them one at a time. This is particularly relevant for
alleviating our numerical effort if one keeps in mind that we use
the most general symmetry-broken GHF states and therefore
a full three-dimensional (3D) spin projection [Eq. (2)] is
required. Regardless of the adopted FED and/or ResHF
strategy, the variation with respect to the transformations Di

can be efficiently parametrized with the help of the Thouless
theorem [50–53,58,59].

All the FED calculations discussed in this paper have been
carried out with an in-house parallel implementation [53]
of our VAP procedure. We have used a limited-memory
quasi-Newton method [79] to handle the optimization. Note
that the FED expansion of a given ground state |φn�

K 〉 by
n nonorthogonal symmetry-projected GHF configurations
enlarges the flexibility in our wave functions, with respect to
a SR description, to a total number nvar = 2n(2Nsites − Ne) ×
Ne + 4nS + 2(n − 1) of variational parameters.

In Sec. III E, we will also discuss both the SFs and
DOS N (ω). The key point is to superpose the Gold-
stone hole |Di

h (�,g)〉 = R̂(�)R̂(g)b̂h

(
Di

) |Di〉 and parti-

cle |Di
p (�,g)〉 = R̂(�)R̂(g)b̂†p(Di)|Di〉 (i = 1, . . . ,nT ) man-

ifolds in the wave functions of the Ne − 1 and Ne + 1 electron
systems, respectively. The amplitudes of these superpositions
are then determined through the corresponding generalized
eigenvalue equations similar to Eq. (8). With these ingredients
at hand, as well as the FED solution |φn�

K 〉, the SFs and
DOS can be computed according to Eqs. (25) and (26) in
our previous work [53].

Finally, for the convenience of the reader, we summarize
the acronyms used in this study for different types of Slater
determinants:

(i) RHF is used for those symmetry-adapted states preserv-
ing all the symmetries of the Hamiltonian (1).

(ii) UHF is used for those states preserving the Ŝz symme-
try while possibly breaking all others.

(iii) GHF states are those that break all the symmetries of
the considered Hamiltonian.

III. DISCUSSION OF RESULTS

In this section, we discuss the results of our FED calcula-
tions. First, we pay attention to lattices with Nsites = 30 sites
and Ne = 14, 18, 22, 26, 30 electrons. Results are presented for
onsite repulsions U = 2t , 4t , and 8t , respectively. In Sec. III A,
we compare the ground-state and correlation energies with
the exact ones, as well as with results obtained using other
theoretical approaches. We also discuss, for the case of
doped lattices, the dependence of the correlation energies
on the number n of nonorthogonal symmetry-projected GHF
configurations. Next, in Sec. III B, we consider the structure
of the intrinsic GHF determinants resulting from our VAP
procedure in the case of doped lattices. The momentum
distributions are presented in Sec. III C while the Fourier
transforms of the SSCFs and DDCFs in real space are shown in
Sec. III D. They are compared with those obtained within the
DMRG framework retaining 1024 states in the renormalization
procedure. On the other hand, in Sec. III E, we discuss spin-
charge separation tendencies in the SFs and DOS N (ω) of a
lattice with Nsites = 30 sites and Ne = 26 electrons. Finally, in
Sec. III F, we illustrate the performance of the FED method in
the case of larger lattices and compare with the corresponding
DMRG results.

A. Ground-state and correlation energies

In Table I, we compare the exact [40,41] and the predicted
FED ground-state energies for half-filled and doped lattices
with Nsites = 30 sites and Ne = 14, 18, 22, 26, 30 electrons.
The corresponding � = (0,0) ground states have A1 symmetry,
i.e., they are symmetric under the reflection x → −x. For
U = 2t and 4t , the FED energies shown in the table have
been obtained by including n = 60 nonorthogonal symmetry-
projected GHF configurations in the ansatz (5). On the other
hand, n = 150 GHF transformations have been used for U =
8t . Aside from the RHF energies, we have included in Table I
the lowest possible HF solution for completeness. At U = 2t ,
the lowest-energy HF solution coincides with the RHF one in
the case of doped systems while an UHF solution is obtained
at half-filling. At U = 4t the HF state corresponds to an UHF
wave function while for U = 8t we have found a GHF solution
with predominant ferromagnetic character. In the same table,
we also show our previous results [53] (FED∗), based on n =
25 GHF transformations, and the ResHF ones [43] obtained
with n = 30 UHF transformations. We have computed the ratio

κFED = ERHF − EGHF-FED

ERHF − EExact
× 100 (9)

in order to check how well the FED correlation energies
reproduce the exact ones. For the other approximations, such
a ratio is obtained from a similar expression.

The first noticeable feature from Table I is that, at most, the
standard HF solutions account for 93.65% of the exact corre-
lation energy. Regardless of the filling and/or the interaction
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TABLE I. Ground-state energies for half-filled and doped lattices with Nsites = 30 sites and Ne = 14, 18, 22, 26, 30 electrons predicted
with the FED scheme (n = 60 GHF transformations for U = 2t , 4t and n = 150 for U = 8t) are compared with exact values. Results obtained
with the FED∗ (n = 25 GHF transformations) (Ref. [51]), and ResHF (n = 30 UHF transformations) (Ref. [41]) approximations as well as the
energies corresponding to the RHF and other HF solutions are also included in the table. Energies are always in t units. The ratio of correlation
energies κ is computed according to Eq. (9).

U Ne = 30 κ (%) Ne = 26 κ (%) Ne = 22 κ (%) Ne = 18 κ (%) Ne = 14 κ (%)

2t RHF − 23.2671 − 26.1642 − 26.8921 − 25.5587 − 22.3390
HF − 23.4792 10.02 − 26.1642 0 − 26.8921 0 − 25.5587 0 − 22.3390 0

FED − 25.3800 99.83 − 28.0201 99.72 − 28.4391 99.68 − 26.7816 99.69 − 23.2365 99.74
FED∗ − 25.3730 99.50
ResHF − 25.3436 98.11 − 27.9979 98.52 − 28.4268 98.88
Exact − 25.3835 − 28.0253 − 28.4441 − 26.7854 − 23.2388

4t RHF − 8.2671 − 14.8975 − 18.8254 − 20.1587 − 19.0723
HF − 14.0732 64.75 − 17.3756 34.96 − 20.1328 23.42 − 21.1011 22.45 − 19.8855 27.84

FED − 17.2081 99.71 − 21.9193 99.04 − 24.3497 99.03 − 24.3222 99.19 − 21.9824 99.63
FED∗ − 17.1789 99.39

ReSHF − 17.0542 98.00 − 21.5720 94.15 − 24.1582 95.56
Exact − 17.2335 − 21.9868 − 24.4057 − 24.3561 − 21.9932

8t RHF 21.7329 7.6358 − 2.6921 − 9.3587 − 12.5390
HF − 7.8329 93.65 − 11.2049 79.45 − 14.9299 69.32 − 18.1922 70.12 − 19.0005 77.96

FED − 9.8260 99.95 − 15.8927 99.22 − 20.1711 99.01 − 21.8777 99.38 − 20.8062 99.75
FED∗ − 9.7612 99.75
ResHF − 9.5378 98.46 − 15.4059 97.17 − 19.5552 95.52
Exact − 9.8387 − 16.0761 − 20.3462 − 21.9555 − 20.8271

strength, the MR FED expansion clearly recovers a very large
portion of correlation energy (i.e., κFED � 99%) in all cases
studied. For the half-filled case as well as for the lattices with
26 and 22 electrons, the ground-state and correlation energies
improve the ResHF and FED∗ ones obtained in previous
studies [43,53]. On the other hand, the DMRG energies (not
shown in the table) are exact to all the quoted figures. We
have further used the DMRG results in Secs. III C and III D to
benchmark our calculations for momentum distributions and
correlation functions.

From these results and the ones obtained in our previous
work [53], we conclude that the FED scheme provides a rea-
sonable starting point to obtain correlated ground-state wave
functions, with well-defined symmetry quantum numbers, in
both half-filled and doped 1D Hubbard lattices. In addition, the
method offers a systematic way to improve, through chains
of VAP calculations, the quality of such wave functions by
increasing the number n of nonorthogonal symmetry-projected
GHF configurations included in the FED ansatz. This is
illustrated in Fig. 1 where we have plotted, as a function of the
inverse 1/n of the number of transformations, the ratio κFED for
a doped lattice with Nsites = 30 sites and Ne = 22 electrons.
One sees that κFED increases smoothly and approaches the
exact result as the number of symmetry-projected configura-
tions is increased. For example, a single symmetry-projected
configuration provides κFED= 93.14%, 85.67%, 87.08% while
increasing the number of GHF transformations up to n = 10
we obtain κFED = 98.37%, 96.23%, and 94.35% for U = 2t ,
4t and 8t , respectively.

Some comments are in order here. First, since the nature of
the quantum correlations varies for different doping fractions
x = Ne/Nsites and onsite repulsions, one can expect that the
number of GHF transformations required to obtain a given
κFED ratio depends on both of them. As already mentioned,

the FED wave functions become exact in the limit n → ∞.
In practice, we are always limited to a finite number of
nonorthogonal symmetry-projected configurations in the FED
expansion and it is difficult to assert beforehand how many
of them are required. Therefore, their number n should be
tailored, through chains of VAP calculations, so as to reach
a reasonable accuracy not only in the ground-state energy,
but also in other physical quantities such as, for example,
the spin-spin correlators. In this study, we have used a fixed
number n = 60 for both the weak and intermediate-to-strong
interaction regimes while a larger number n = 150 is required

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1/n
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FIG. 1. (Color online) The ratio of correlation energies κ ob-
tained with the FED approximation is plotted as a function of the
inverse of the number of GHF transformations for a lattice with
Nsites = 30 sites and Ne = 22 electrons. Results are shown for onsite
repulsions of U = 2t , 4t , and 8t . For details, see the main text.
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FIG. 2. (Color online) The quantities ξ i(j ) [(a)–(d)] and ξ i
cd (j ) [(e)–(h)] are plotted for a 1D lattice with Nsites = 30 sites and Ne = 18

electrons at U = 2t , as a function of lattice site j for some typical symmetry-broken GHF determinants resulting from the FED VAP
optimization. Results corresponding to the standard RHF approximation are plotted in red for comparison. For more details, see the main text.

to obtain the energies reported in Table I at U = 8t . As we will
see later on in Sec. III D, a larger number of transformations
are also required, especially close to half-filling, to improve
the quality of the predicted correlation functions. This can be
qualitatively understood from the crossover in the SSCFs [80]
that explains how the antiferromagnetic spin correlation at
half-filling grows near half-filling. One may then expect strong
quantum fluctuations near half-filling, whose basic units (see
Sec. III B) can only be captured with larger FED expansions.
The performance of the FED method for larger lattices will be
discussed in Sec. III F.

B. Structure of the intrinsic determinants and basic units
of quantum fluctuations in doped lattices

In our previous study [53] of the half-filled 1D Hubbard
model we have considered two orders parameters, i.e., the
spin density (SD)

ξ (j ) = (−)j−1〈D|Ŝ(j )|D〉 · 〈D|Ŝ(1)|D〉 (10)

and the charge density (CD)

ξcd (j ) = 1 −
∑

σ

〈D|n̂jσ |D〉 (11)

associated with an arbitrary symmetry-broken determinant
|D〉, with j = 1, . . ., Nsites being the lattice index. The com-
parison of the SD and CD computed with the standard UHF
solution and the ones obtained using the GHF determinants
|Di〉 resulting from the FED VAP procedure, reveals that ξ i(j )
displays neutral [i.e., ξ i

cd (j ) = 0] solitons [81] whose trans-
lational and breathing motions can be regarded [43,53,65,67]
as the basic units of quantum fluctuations in the FED wave
functions [Eq. (5)].

The question naturally arises as to what are the basic units
of the quantum fluctuations captured within the FED VAP
optimization in the case of doped 1D lattices. Among all
the GHF transformations Di used to describe the lattice with
Nsites = 30 sites and Ne = 18 electrons (see Sec. III A), we
have selected some typical examples to plot in Figs. 2, 3, and 4
the corresponding SD ξ i(j ) [panels (a)–(d)] and CD ξ i

cd (j )
[panels (e)–(h)] as functions of lattice site. Results obtained
with the lowest-energy standard HF solutions are also included
in the plots (red) for comparison.

In the case of the RHF solution (Fig. 2) at U = 2t , the
corresponding SD vanishes while the CD takes the constant
value 0.4. Due to the symmetry-broken nature of the UHF
solution (Fig. 3), the corresponding SD and CD exhibit
oscillating patterns around the expected values (i.e., 0 and
0.4, respectively) at U = 4t . In the case of the intrinsic GHF
solution (Fig. 4) at U = 8t the SD displays a very fast oscillat-
ing pattern, which is a direct consequence of its predominant
ferromagnetic character [note the presence of the factor (−)j−1

in the definition (10)]. In fact, the energy of this intrinsic GHF
solution (i.e, −18.1922t) is only slightly lower than the one
(i.e., −18.0974t) corresponding to a fully ferromagnetic UHF
solution with all the spins aligned along the z direction. On the
other hand, the CD takes the constant value 0.4.

Regardless of the considered interaction regime, the GHF
determinants |Di〉 associated with the FED solution (5) exhibit
pairs of solitons (black squares) where the SD ξ i(j ) changes
its sign. The space group projection operator provides a
translational motion for such soliton pairs. When different
determinants show soliton pairs with different widths, this
can be interpreted as a breathing mechanism. Isolated points
(blue circles) where ξ i(j ) becomes zero are also apparent from
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FIG. 3. (Color online) Same as Fig. 2 but for U = 4t . Results corresponding to the standard UHF approximation are plotted in red for
comparison.

Figs. 2, 3, and 4. In the case of doped lattices, these new
defects represent polarons [43]. In addition, the CD ξ i

cd (j )
displays local variations around the constant value 0.4 for
all the considered onsite repulsions. Other GHF determinants
|Di〉 (not shown in the figures) display the same qualitative
features. Similar results also hold for other U values and
lattices.

Therefore, in the case of doped 1D lattices, the ansatz (5) su-
perposes manifolds |Di (�,g)〉 = R̂(�)R̂(g)|Di〉 containing
both solitons and polarons. One is then left with an intuitive
physical picture [43,53] in which the basic units of quantum
fluctuations in 1D lattices can be mainly associated with the
translational and breathing motions of neutral and charged soli-
tons. However, in the case of doped 1D systems, a part of such
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FIG. 4. (Color online) Same as Fig. 2 but for U = 8t . Results corresponding to the standard GHF approximation are plotted in red for
comparison.
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fluctuations can also be described by polarons. Within both the
FED [53] and the ResHF [43,65,67] schemes, the interference
between the defects belonging to different symmetry-broken
determinants |Di〉 is accounted for through Eq. (8).

C. Momentum distribution

For a given set of quantum numbers �, the momentum
distribution nn�(q) can be computed as

nn�(q) =
∑

σ

〈
φn�

K

∣∣n̂qσ

∣∣φn�
K

〉
〈
φn�

K

∣∣φn�
K

〉 , (12)

where n̂qσ is the σ -occupation operator at wave vector q.
Note that, due to the particular form of the operator n̂qσ , the
momentum distribution (12) does not depend explicitly on K .

The ground-state momentum distributions for Nsites = 30
lattices with 14 (orange triangles), 18 (magenta triangles), 22
(cyan triangles), 26 (green triangles), and 30 (red triangles)
electrons are plotted in Figs. 5(a), 5(b), and 5(c) for onsite
repulsions U = 2t , 4t , and 8t , respectively. Regardless of
the interaction strength, the FED and DMRG (open black
circles) momentum distributions agree well. In all cases,
we have obtained a jump at q = kF , with kF being the
Fermi momentum, that becomes less pronounced, especially
at half-filling, for larger U values. Such a jump is also found
in calculations based on the exact solution at U = ∞ [46] as
well as in previous studies [82,83]. As can seen from Fig. 5(c),
the momentum distribution presents a slight nonmonotonic
behavior close to half-filling (i.e., Ne = 26) due to a small
feature near q = 2kF .

Previous works [46,82–85] have shown that, contrary to an
ordinary Fermi liquid, the momentum distribution of the 1D
Hubbard model exhibits a power-law behavior around q = kF

given by

n(q) = n(kF ) + C|q − kF |τ sgn(q − kF ) (13)

at half-filling or U → ∞. We have used the momentum distri-
butions obtained with the FED approach to fit the functional
dependence (13). The results are shown in Fig. 5(d) for U = 8t .
Despite the fact that the functional form (13) has been obtained
using the exact U = ∞ solution, we observe that it nicely
reproduces the trends in the FED (and also DMRG) results.

D. Correlation functions

Let us now turn our attention to the predicted FED SSCFs
and DDCFs. We compare them with the corresponding DMRG
values in the case of Nsites = 30 lattices with 14 (orange tri-
angles), 18 (magenta triangles), 22 (cyan triangles), 26 (green
triangles), and 30 (red triangles) electrons. This comparison
will allow us to reveal to which extent the FED scheme can
capture the main short-, medium-, and long-range features in
these correlators, especially in the case of doped lattices. We
have resorted to the momentum space representation (i.e., the
Fourier transforms) of the SSCFs and DDCFs in real space.
For a discussion of the predicted FED SSCFs in the case of
half-filled lattices, the reader is also referred to our previous
work [53].
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FIG. 5. (Color online) The ground-state momentum distributions
[Eq. (12)] for Nsites = 30 lattices with 14 (orange triangles), 18
(magenta triangles), 22 (cyan triangles), 26 (green triangles), and 30
(red triangles) electrons are shown for U = 2t (a), 4t (b), and 8t (c).
DMRG results (open black circles) are also included in panels (a)–(c)
for comparison. The FED values (filled triangles) are compared in
panel (d) with a power-law [Eq. (13)] fitting (dashed lines) of the
momentum distributions.

The SSCFs in real space are given by

Sn�
m (j ) =

〈
φn�

K |Ŝ(j ) · Ŝ(1)|φn�
K

〉
〈
φn�

K

∣∣φn�
K

〉 , (14)

where the subindex m accounts for the dependence with
respect to the particular row of the space group irreducible
representation used in the projection. Let us stress that the wave
functions |φn�

K 〉 [Eq. (5)] are pure spin states where orbital
relaxation is allowed. Both conditions have already been
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FIG. 6. (Color online) Fourier transforms of the ground-state
spin-spin correlation functions in real space for Nsites = 30 lattices
with 14 (orange diamonds), 18 (magenta diamonds), 22 (cyan
diamonds), 26 (green diamonds), and 30 (red triangles) electrons
are shown for U = 2t (a), 4t (b), and 8t (c). DMRG results (black
triangles) are also included for comparison. Starting with 26 electrons,
all the curves have been successively shifted by 0.3 to accommodate
them in a single plot.

shown to be important ingredients to improve the description
of the long-range behavior of the SSCFs [43,53,65,67].
The Fourier transforms (FT-SSCFs) Sn�

m (q) of the SSCFs
[Eq. (14)] are depicted in Figs. 6(a), 6(b), and 6(c) for the
ground states of the lattices considered in this study at U = 2t ,
4t and 8t , respectively.

The first feature apparent from Fig. 6 is the prominent
antiferromagnetic peak at the wave vector q = π in the case
of the half-filled system. The peaks of the FT-SSCFs always
occur at q = 2kF . Such peaks have also been found [46] with
the exact U = ∞ solution of the 1D Hubbard model as well as
in previous calculations [83,86,87]. They are shifted towards
smaller linear momenta as we move away from half-filling. In
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FIG. 7. (Color online) Maxima of Fourier transforms of the FED
ground-state spin-spin correlation functions in real space [Eq. (14)]
plotted as functions of lnδ, with δ being the corresponding doping
parameter. Results are shown for onsite repulsions U = 2t (red
diamonds), 4t (blue diamonds), and 8t (green diamonds). DMRG
values are plotted with open circles. A straight line has been fitted to
guide the eye. For more details, see the main text.

the same plot, we have also included the results of our DMRG
calculations (black triangles) for comparison. It is satisfying to
observe that the predicted FED values closely follow the trend
obtained within the DMRG approach. The largest differences
between the FED and DMRG FT-SSCFs arise in the values
of the corresponding peaks near half-filling for large U . For
the lattice with 26 electrons, the FED peak, obtained with
n = 150 GHF transformations, at U = 8t overestimates the
DMRG one by 5%. On the other hand, using a smaller
number n = 60 of transformations, we obtain a poorer (10%
overestimation) description of the SSCFs and FT-SSCFs in the
strong interaction regime.

A previous study [80] has shown the universal character
of the crossover in the SSCFs as we approach half-filling.
As a result of this crossover, the peaks observed in the FT-
SSCFs at q = 2kF display a linear logarithmic dependence
with the doping parameter δ = 1 − x. The results of our FED
calculations are compared in Fig. 7 with the DMRG ones. For
each U value, we have fitted a straight line to guide the eye.
For U = 2t and 4t , the FED and DMRG values agree well
(we have therefore included only the fitting of the former in
the plot) and exhibit an almost linear behavior as a function
of lnδ. The same linear trend is observed at U = 8t although
in this case the discrepancy between the FED and DMRG
values, arising from a poorer description of the FT-SSCFs in
the former (see Fig. 6), is larger.

The DDCFs in real space can be computed as

Nn�
m (j ) =

〈
φn�

K

∣∣δn̂(j )δn̂(1)
∣∣φn�

K

〉
〈
φn�

K

∣∣φn�
K

〉 , (15)

where δn̂(j ) = n̂(j ) − 〈n̂(j )〉 and n̂(j ) = ∑
σ n̂jσ . Their FT-

DDCFs Nn�
m (q) are shown in Figs. 8(a), 8(b), and 8(c)
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FIG. 8. (Color online) Same as Fig. 6 but for the Fourier trans-
forms of the ground-state density-density correlation functions in real
space. Starting with 26 electrons, all the curves have been successively
shifted by 0.2 to accommodate them in a single plot.

for U = 2t , 4t , and 8t , respectively. DMRG values (black
triangles) are also plotted for comparison. Similar to the
momentum distributions and FT-SSCFs already discussed
above, the FED FT-DDCFs closely follow the trends observed
in the DMRG ones, with the largest differences arising for
q � π/2 in the case of the lattice with 26 electrons at
U = 8t . From Figs. 8(a), 8(b), and 8(c), we also observe the
appearance of inflection points around q = 2kF which become
less pronounced as U increases. They are plotted in Fig. 9 as
functions of lnδ. We observe a shift down of the curves as
U increases reflecting that the charge fluctuations decrease
for larger-U values. In addition, we note that the curves bend
down more for larger onsite repulsions.

E. Spectral functions and density of states

A typical outcome of our calculations is shown in Fig. 10(a),
where we have plotted the hole (black) and particle (blue)
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FIG. 9. (Color online) Inflection points at wave vector q = 2kF

of the FED Fourier-transformed density-density correlation functions
in real space [Eq. (15)] are plotted as functions of lnδ for U = 2t (red
diamonds), 4t (blue diamonds), and 8t (green diamonds). DMRG
values are plotted with open circles. For more details, see the main
text.

SFs, as functions of the excitation energy ω, for a lattice
with Nsites = 30 sites and Ne = 26 electrons at U = 4t .
Calculations have been performed along the lines described
in our previous work [53]. The FED ground state of the
system with Ne = 26 electrons has been approximated by
n = 60 GHF transformations while for the systems with
Ne ± 1 electrons we have superposed nT = 25 hole and
particle manifolds (see Sec. II). Smaller values nT = 5 and 15
have also been investigated. However, increasing the number
of hole and particle manifolds to nT = 25 leads to a shift of
the main peaks and a redistribution of the strength of some
of the peaks found for nT = 5 and 15 as a result of the small
number of configurations used in the calculations. In all cases,
a Lorentzian folding of width 	 = 0.05t has been used.

We observe prominent hole peaks belonging to the spinon
band. Such a band resembles the one found in the half-filled
case [53] although the spectral weight of some of the hole
peaks found in the latter is redistributed to the particle sector
due to the presence of doping. Another prominent feature of
the SFs shown in Fig. 10(a) is the very extended distribution of
the spectral weight for linear momenta |k| > kF . The splitting
of the strength in the corresponding particle SFs reveals that
the present finite-size results at the intermediate-to-strong
interaction regime already display spin-charge separation
tendencies beyond a simple quasiparticle distribution as well
as shadow features. This agrees well with results obtained
using other theoretical approximations [88–90].

In Fig. 10(b), we have plotted the DOSN (ω) corresponding
to the lattice with Nsites = 30 sites and Ne = 26 electrons
(black). For the sake of comparison, we have also included
in the same panel the DOS in the half-filled case (red). The
last one has also been computed using n = 60 and nT = 25.
It exhibits the characteristic Hubbard gap [34–36,88] and

195109-10



MULTIREFERENCE SYMMETRY-PROJECTED VARIATIONAL . . . PHYSICAL REVIEW B 89, 195109 (2014)

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
ω (in t units)

0

π/3

-π/3

2π/3

-2π/3

π

U=4t (a)

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
ω (in t units)

U=4t

(b)

FIG. 10. (Color online) The hole (black) and particle (blue) SFs for a lattice with Nsites = 30 sites and Ne = 26 electrons are plotted in
panel (a) as functions of the excitation energy ω (in t units). The DOS (black) N (ω) is compared in panel (b) with the one (red) corresponding to
half-filling. The latter has been shifted [i.e., N (ω) + 40] for the sake of clarity. Results are shown for the onsite repulsion U = 4t . A Lorentzian
folding of width 	 = 0.05t has been used. For more details, see the main text.

particle-hole symmetry [13]. As can be seen from the figure,
this particle-hole symmetry is lost in the doped case. As a
result of states intruding the original gap, a smaller pseudogap
is developed at U = 4t . However, our calculations indicate
that such a pseudogap progressively disappears for increasing
doping fractions x. Similar results also hold for both U = 2t

and 8t although the effect is less pronounced in the latter due
to the larger value of the gap at half-filling.

F. Larger lattices

Now, we turn our attention to larger lattices. Let us stress
that our aim in this section is not to be exhaustive but to show
that the FED approach can also be used for such lattices and to
illustrate the corresponding results. To this end, the predicted
ground-state energies are compared with the exact ones in
Table II. Results are presented for Nsites = 34 lattices with
Ne = 14, 18, 22, 26, 30, 34 electrons as well as for the half-
filled lattice with Nsites = 50 sites. For the considered onsite
repulsions we have restricted ourselves to FED calculations
based on n = 60 and 100 GHF transformations. The ratio
of correlation energies κ has been computed according to
Eq. (9). For the same lattices, we have also carried out DMRG
calculations retaining 1024 states in the renormalization
procedure. The DMRG energies are listed in Table II in
parentheses besides the exact ones. Obviously, these energies
can still be further improved by increasing the number of states
retained in the DMRG calculations.

As can be seen from the table, although our results are less
accurate than the DMRG ones, the FED approach based on
n = 60 symmetry-projected configurations already provides
κFED > 98%. These values significantly improve the ones
obtained with the standard HF approximation. For example, for
the half-filled lattice with Nsites = 50, the UHF approximation
accounts for κUHF = 12.02%, 65.02%, 92.26%, while κFED=
98.46%, 96.62%, 98.84% at U = 2t , 4t , and 8t , respectively.

Note that, for the same onsite repulsions, the variational Monte
Carlo method provides κ values of around 87%, 92%, and
96%, respectively [91]. For the same half-filled lattice, the
ground-state energies obtained with n = 60 also improve the

TABLE II. The ground-state energies predicted within the FED
scheme are compared with the exact ones. Results are presented for
Nsites = 34 lattices with Ne = 14, 18, 22, 26, 30, 34 electrons as well
as for the half-filled lattice with Nsites = 50 sites. In each case, the
number n of transformations used in the FED ansatz [Eq. (5)] is
indicated. DMRG results are shown in parentheses besides the exact
ones. Energies are always in t units. The ratio of correlation energies
κ is computed according to Eq. (9). For more details, see the main
text.

Nsites Ne U FED n Exact (DMRG) κ (%)

34 14 4t −23.0991 60 −23.1137 (−23.1137) 99.46
34 14 4t −23.1048 100 −23.1137 (−23.1137) 99.67
34 18 4t −26.4440 60 −26.4842 (−26.4841) 98.99
34 18 4t −26.4587 100 −26.4842 (−26.4841) 99.35
34 22 4t −27.8402 60 −27.9207 (−27.9203) 98.48
34 22 4t −27.8673 100 −27.9207 (−27.9203) 98.99
34 26 4t −27.1248 60 −27.2553 (−27.2545) 98.05
34 26 4t −27.1634 100 −27.2553 (−25.2545) 98.63
34 30 4t −24.2555 60 −24.3967 (−24.3957) 98.28
34 30 4t −24.2966 100 −24.3967 (−24.3957) 98.78
34 34 4t −19.4646 60 −19.5258 (−19.5257) 99.40
34 34 4t −19.4876 100 −19.5258 (−19.5258) 99.62
34 34 8t −11.0562 60 −11.1473 (−11.1473) 99.74
34 34 8t −11.0883 100 −11.1473 (−11.1473) 99.83
50 50 2t −42.1748 60 −42.2443 (−42.2406) 98.46
50 50 2t −42.1957 100 −42.2443 (−42.2406) 98.62
50 50 4t −28.1924 60 −28.6993 (−28.6980) 96.62
50 50 4t −28.2999 100 −28.6993 (−28.6980) 97.33
50 50 8t −15.7739 60 −16.3842 (−16.1701) 98.84
50 50 8t −15.9770 100 −16.3842 (−16.1701) 99.22
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values reported in our previous work [53] using a smaller
number (i.e., n = 25) of nonorthogonal symmetry-projected
GHF configurations in the FED expansion (5) as well as
those provided by the ResHF approximation [43] based on
n = 30 UHF transformations. Moreover, further increasing up
to n = 100 leads to κFED � 99.35% in the case of lattices
with Nsites = 34 sites. In the case Nsites = Ne = 50, we have
obtained κFED = 98.62%, 97.33%, 99.22% for U = 2t , 4t ,
and 8t , respectively. The previous results show that the FED
scheme also provides a reasonable starting point to obtain
correlated wave functions in lattices larger than the ones
considered in Sec. III A. In particular, one sees that for
increasing lattice sizes, the quality of the FED wave functions
can also be systematically improved, for different doping
fractions, by increasing the number of symmetry-projected
configurations included in the MR ansatz [Eq. (5)]. We are
unable at the moment to anticipate the number of symmetry-
projected configurations necessary to achieve a given quality in
the FED wave functions for arbitrary lattice sizes and doping
fractions. Nevertheless, we stress once more that the exact
answer can always be approached in a systematic constructive
way.

Finally, as a typical example of the results obtained for the
lattices considered in this section, we have plotted in Fig. 11
the FED momentum distributions corresponding to Nsites = 34
sites with 18 (magenta triangles), 26 (green triangles), and
34 (red triangles) electrons at U = 4t . We have resorted
to n = 100 nonorthogonal symmetry-projected states in the
calculations. The corresponding DMRG results are also plotted
in the same figure (open black circles). As can be seen, both
the FED and DMRG momentum distributions follow similar
trends and still display the main feature already discussed in
Sec. III C for the case of half-filled and doped lattices with
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FIG. 11. (Color online) The ground-state momentum distribu-
tions [Eq. (12)] for Nsites = 34 lattices with 18 (magenta triangles),
26 (green triangles), and 34 (red triangles) electrons are shown for
U = 4t . DMRG results (open black circles) are also included for
comparison.

Nsites = 30 sites, i.e., a jump at q = kF that becomes less
pronounced at half-filling.

IV. CONCLUSIONS

In this study, we have applied the FED approach to
doped Hubbard systems. Our main goal has been to test its
performance using benchmark calculations in 1D Hubbard
lattices. Half-filled systems have also been discussed. We have
compared the results of our calculations for ground-state and
correlation energies with those obtained using other theoretical
approximations. From the results of our previous study [53]
and those obtained in this work based on a larger number
of nonorthogonal symmetry-projected GHF configurations
in the MR expansion, we conclude that the FED scheme
provides a reasonable starting point to obtain (compact)
correlated wave functions in both half-filled and doped 1D
Hubbard lattices. We have shown that the quality of such wave
functions can be systematically improved, through chains of
VAP calculations, in a constructive manner by increasing the
number of transformations in the corresponding FED ansatz.

The analysis of the structure of the (intrinsic) symmetry-
broken Slater determinants resulting from our VAP procedure
reveals that they differ from that provided by the standard HF
approximation. In particular, in the case of doped lattices they
contain defects (i.e., solitons and polarons). The translational
and breathing motions of such solitons can be regarded as
the basic units of quantum fluctuations for the considered
lattices. In addition, in the case of doped 1D systems, a
part of the quantum fluctuations can also be described by
polarons. On the other hand, although the FED results are not
as accurate as the DMRG ones for the considered 1D lattices,
our benchmark calculations for momentum distributions and
correlations functions show that the former captures the main
physics trends found in the latter.

We have also shown that the FED scheme can be used
to access dynamical properties of doped 1D Hubbard lattices
such as SFs and the DOS. To this end, in addition to the
corresponding FED ground state based on n GHF trans-
formations, we have considered ansätze for the Ne + 1 and
Ne − 1 electron systems that superpose nT particle and hole
manifolds, respectively. For the case of a doped lattice with
Nsites = 30 sites and Ne = 26 electrons, our scheme provides
hole and particle SFs that qualitatively agree with results
obtained using other theoretical frameworks. They point to
a distribution of the spectral strength beyond the one expected
for a simple quasiparticle distribution and display spin-charge
separation tendencies in all the considered interaction regimes.

We believe that the finite-size FED calculations already
show that VAP MR expansions, based on nonorthogonal
symmetry-projected Slater determinants, represent a useful
theoretical tool to study low-dimensional correlated electronic
systems with different doping contents that complement
other existing approaches and could even be combined with
them. Within this context, we have recently used [71] SR
symmetry-projected wave functions as trial states within the
constrained-path Monte Carlo framework. It has been shown
that the use of such SR symmetry-projected states increases
the energy accuracy while decreasing the statistical variance
in calculations for large lattices. Given the fact that short
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FED-like expansions encode a more correlated description
of the considered systems, they might be seen as plausible
candidates for further improving the previous results.

The MR expansions used in this study still offer a rich
conceptual landscape for further development. In particular,
small vibrations around symmetry-projected mean fields (i.e.,
symmetry-projected Tamm-Dancoff and random phase ap-
proximations) can be consistently formulated [92,93]. Such
approximations can then be used to access a large number of
excited states as required in studies of the optical conductivity
in lattice models [94–96]. Such calculations are in progress
and will be reported elsewhere.

Let us stress that symmetry-projected approximations are
not restricted by the dimensionality of the considered lattices.
In this respect, our studies have paved the way for applying
the MR methodology to the systematic description of both
ground and excited states of 2D square, honeycomb, kagome,
and triangular lattices, as well as more involved multiorbital
Hubbard models relevant to iron-based superconductors [2].

In the realm of quantum chemistry, we plan to further
enlarge our current developments [58,59] for the molecular
Hamiltonian.
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[58] C. A. Jiménez-Hoyos, R. Rodrı́guez-Guzmán, and G. E.

Scuseria, J. Chem. Phys. 139, 224110 (2013).
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[61] C. A. Jiménez-Hoyos, T. M. Henderson, T. Tsuchimochi, and

G. E. Scuseria, J. Chem. Phys. 136, 164109 (2012).
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[89] D. Sénéchal, D. Perez, and M. Pioro-Ladriére, Phys. Rev. Lett.
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