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Unconventional quantum criticality in the kicked rotor
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The quantum kicked rotor (QKR) driven by d incommensurate frequencies realizes the universality class of
d-dimensional disordered metals. For d > 3, the system exhibits an Anderson metal-insulator transition which has
been observed within the framework of an atom-optics realization. However, the absence of genuine randomness
in the QKR reflects in critical phenomena beyond those of the Anderson universality class. Specifically, the
system shows strong sensitivity to the algebraic properties of its effective Planck constant h̃ ≡ 4π/q. For integer
q, the system may be in a globally integrable state, in a “supermetallic” configuration characterized by diverging
response coefficients, Anderson localized, metallic, or exhibit transitions between these phases. We present
numerical data for different q values and effective dimensionalities, with the focus on parameter configurations
which may be accessible to experimental investigations.
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I. INTRODUCTION

The (quasiperiodic) quantum kicked rotor is a quantum
particle on a unit radius ring whose dynamics is described by
the time-dependent Hamiltonian

Ĥ (t) = 1

2
(h̃n̂)2 + K cos θ̂fd (t)

∑
m

δ(t − m), (1)

where θ̂ and n̂ = −i∂θ are coordinate and angular momentum
operator, respectively. The Hamiltonian Ĥ describes kicking of
the particle at unit time intervals with an amplitude depending
on the angular position. The quasiperiodic quantum kicked ro-
tor given by Eq. (1) differs from its more widely known sibling,
the standard quantum kicked rotor (QKR) (d = 1) [1], in that
the kicking strength itself ∼Kfd (t) is explicitly time depen-
dent, where the modulating function fd (t) = ∏d−1

i=1 cos(ωit +
φi) depends on d − 1 incommensurate frequencies ωi . (φi are
constant phase offsets.) Much like the fact that the standard
QKR has been shown to lie in the universality class of quasi-
one-dimensional disordered metals [2–7], the quasiperiodic
QKR corresponds to a d-dimensional metal [8]. (The mapping
to a d-dimensional effective system will be made explicit
below.) The Anderson localization phenomena characteristic
for both one-dimensional [9] and higher-dimensional [10–12]
metallic systems have been seen in cold-atom experiments.
Strikingly, a three-dimensional quasiperiodic QKR has been
experimentally shown to undergo an Anderson metal-insulator
transition upon variation of the kicking amplitude.

The fact that the rotor is a deterministic chaotic rather
than a stochastic disordered system manifests itself in various
anomalies emerging at specific values of the global kicking
strength K and Planck’s constant h̃. Of particular interest
are values h̃/(4π ) = p/q, where p,q are coprime integers.
At these “resonant” values, the Hamiltonian (1) commutes
with translations n̂ → n̂ + q in angular momentum space,
and the d = 1 rotor effectively behaves like a ring in angular
momentum space of circumference q. If q is smaller than the
localization length ξ , it ceases to be localized, and an observ-
able consequence of this phenomenon is a quadratic growth

of the rotor’s energy at large times; see Refs. [2,7,13,14]
for review. (For the exceptional case (p = 1,q = 2) of the
“quantum antiresonance,” cf. Refs. [2,15,16].) For q larger
than ξ , the quantum resonance reduces to an exponentially
small [in exp(−q/ξ )] correction to a localized background,
and it vanishes as irrational values of h̃/(4π ) are approached.

In Refs. [8,17], we have analytically shown that in d > 1,
the same mechanism may lead to a type of quantum criticality,
outside the Anderson universality class. Basic features of
this phenomenon can be understood by observing that at
the resonant values, the rotor becomes effectively finite in
the n coordinate, while it remains infinitely extended in
the d − 1 auxiliary dimensions associated to the additional
driving frequencies [8]. Upon compactification of the “unit
cell” in the n direction, the system assumes the topology of a
d-dimensional cylinder (cf. Fig. 1), and physical observables
such as the expectation value of the rotor’s energy, E(t) ≡
〈n̂(t)2〉, can be computed by probing its sensitivity to changes
in the boundary conditions in the compact n direction.

Equivalently, we may characterize the system’s behavior
in terms of the Fourier transform, E(t) = − ∫

dω
2π

e−iωt

ω2 σ (ω),
where σ (ω) plays a role analogous to the optical conductivity
of a metal [7,8]. Specifically, the difference between a linear
and a quadratic temporal increase of E(t) manifests itself in
the optical conductivity as

σ (ω)
ω→0−→

⎧⎨
⎩

vanishing, insulator

finite constant, metal
1/(−iω), supermetal.

(2)

(In solid-state physics, a ∼ ω−1 divergent optical conductivity
would be observed, e.g., for the perfect resonant transport
through a clean quantum dot with a discrete spectrum—hence
the terminology “supermetal.” Within the present context,
the divergence is a manifestation of the discreteness of the
spectrum in a system localized in the auxiliary dimensions,
but finite in the physical direction [7,8]).

A saturation of the energy in large times reflects in the
vanishing of the low-frequency conductivity—the insula-
tor. Whether the system displays metallic or supermetallic
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(a) (b)

FIG. 1. (Color online) Angular momentum space of the
quasiperiodic QKR at a resonant value h̃ = 4πp/q. The system
becomes effectively finite in the n direction, but remains infinite
in its d − 1 auxiliary dimensions (d = 2 in the figure.) Physical
observables can be computed by probing the sensitivity to boundary
conditions in the n direction or, equivalently, to a Bloch phase,
φ ∈ [0,2π/q], which may be interpreted as an Aharonov-Bohm flux
piercing the system. The ensuing physics then crucially depends
on whether wave functions are a) extended or b) localized in the
auxiliary directions.

behavior crucially depends on the localization properties in
the infinitely extended d − 1 dimensions of the cylinder (cf.
Fig. 1.) In dimensions d > 3, above the Anderson metal-
insulator transition, wave functions are extended in the d − 1
auxiliary dimensions; the system then resembles an (ordi-
nary) metal, with finite (zero-frequency) optical conductivity
manifesting itself in a linear energy growth in large times.
However, below the Anderson transition, or in low dimensions
d � 3, wave functions are localized in the d − 1 auxiliary
dimensions, which means that “transport” in the n direction is
via a discrete spectrum of (localized) states. In this phase, the
system has much in common with a supermetallic quantum
dot and the discreteness of its spectrum implies a diverging
optical conductivity manifesting in a quadratic energy growth
in large times. Somewhat counterintuitively, this supermetallic
conduction behavior is rooted in strong Anderson localization
in the transverse directions. As such, a supermetal simulates
a perfect one-dimensional crystal of lattice constant q, with
complex unit cell structures of finite spatial extension in other
d − 1 dimensions.

In Ref. [8], the existence of a supermetallic phase in
low dimensions, and of a metal-supermetal transition in
dimensions d > 3, was predicted on the basis of a field
theoretic analysis. The purpose of the present paper is to put
these results to a numerical test. We will also pay attention to

anomalies arising at small values q = 1,2 where the system is
integrable (nonchaotic) and, at the same time, exactly solvable.
For these values, quasiperiodic oscillatory patterns rather than
localization are observed (cf. the left column of Table I in
which the main observations of this paper are summarized).
We have also found anomalies at q = 4, where the motion
is partially regular, the generic picture breaks down, and
metallic regimes are absent (Table I, right column.) The general
conclusion will be that the adjustability of the two principal
parameters (K,h̃) provides us with a spectrum of opportunities
to realize critical phenomena pertaining to the physics of
regular versus chaotic dynamics, and localization. The physics
addressed in the present paper should be well in reach of
current experiments [10–12].

The rest of the paper is organized as follows: in Sec. II,
we introduce the Floquet operator underlying our analysis.
In Secs. III–V, we simulate its dynamics to explore the
behavior at the smallest resonant values q = 1,2, “generic”
resonant values q = 3,5, . . . , and the anomalous value q = 4,
respectively. We conclude in Sec. VI, and a number of technical
details are presented in the Appendix A. The physics discussed
in this work is insensitive to the value of p and we set p = 1
throughout.

II. FLOQUET OPERATOR

Below, we will apply fast Fourier transform techniques to
simulate the quantum evolution of the initial state |n ≡ 0〉 at
integer times t as

|ψ(t)〉 =
t∏

s=1

Û ′(s)|0〉, (3)

Û ′(s) ≡ e− ih̃n̂2

2 e− iK

h̃
fd (s) cos θ̂ . (4)

Using these states, we numerically compute the expectation
value E′(t) = 〈n̂2(t)〉 = −〈ψ(t)|∂2

θ |ψ(t)〉 to learn about the
physical properties of the system. The operator (4) explicitly
depends on the discrete time s, and in this nonautonomicity
hides the effective dimensionality of the system. Following
ideas introduced in Refs. [8,18], we briefly review how the
time dependence of Û ′ may be eliminated at the expense of
introducing d − 1 additional dimensions. To this end, let us
interpret |θ0 ≡ θ,θ1, . . . ,θd−1〉 as a d-dimensional coordinate
vector, comprising a “real” angular coordinate θ and a gener-
alization of the parameters θi�1 entering the definition of the
kicking function fd to “virtual” coordinates. Corresponding
to the “coordinate state,” we have a d-dimensional angular
momentum state, |n0 ≡ n,n1, . . . ,nd−1〉, where n̂i ≡ −i∂θi

is

TABLE I. Summary of main results.

q = 1,2 q = 3,5,6, . . . q = 4

Parameter 〈n̂2(t)〉 Phase 〈n̂2(t)〉 Phase Crossover time 〈n̂2(t)〉 Phase Crossover time

d = 2 Quasiperiodic Insulator ∼t2 Supermetal tξ ∼ K2 ∼t2 Supermetal tξ ∼ K

d = 3 oscillation (non-Anderson) ln tξ ∼ K2

d = 4 ∼t2 (K < Kc) Supermetal tξ ∼ (Kc − K)−α

∼t (K � Kc) Metal ∞
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conjugate to θi . The gauge transformed operator,

Û ≡ e−i(s+1)
∑d−1

i=1 ωi n̂i Û ′(s)eis
∑d−1

i=1 ωi n̂i

= e−i( h̃n̂2

2 +∑d−1
i=1 ωi n̂i )e− iK

h̃

∏d−1
i=0 cos θ̂i , (5)

then turns out to be time independent. This is the Floquet
operator acting in the effectively d-dimensional Hilbert space
corresponding to the states above.

Physical observables are to be computed at a fixed value
of the phases (θ1, . . . ,θd−1), which means a trace over the
conjugate momenta. In the definition of our observables E(t),
this trace is implicit. In the following sections, we will explore
the behavior of the expectation value for various values of
the parameters q,K,d. In doing so, we will be met with

different types of behavior, where a saturation E(t)
t→∞−→ const

indicates Anderson localization, E(t) ∼ t is a characteristic
for diffusive dynamics in the angular momentum space, and
E(t) ∼ t2 is a characteristic for supermetallic behavior. In
cases with localization, the time t ∼ tξ at which saturation sets
in marks the localization time. Finally, persistent quasiperiodic
fluctuations in E(t) are indicative of integrable dynamics.

In our simulations below, we will employ both representa-
tions, Û and Û ′, and the expectation values 〈n̂2(t)〉 obtained
in this way will be denoted E(t) and E′(t), respectively.
The gauge equivalence of the two representations implies
E(t) = E′(t).

III. QUASIPERIODIC OSCILLATION AT q = 1,2

For q = 1,2, it is straightforward to verify (see Appendix A
for details of the derivation) that

〈n̂2(t)〉
1
2 (K/h̃)2

=
{[∑t

s=1 fd (s)
]2

, q = 1[∑t
s=1(−)sfd (s)

]2
, q = 2.

(6)

This shows that E(t)/[ 1
2 (K/h̃)2] collapses onto a universal

curve, independent of K but dependent on d. Figure 2
compares simulations and the analytical result (6) for d = 3,
q = 2, and parameters (ω1,φ1) = 2π [(

√
5 − 1)/2,

√
3 − 1],

(ω2,φ2) = 2π (
√

2,
√

11 − 3). Analytical results and numerics
are in perfect agreement. The curves illustrate how the rotor’s

FIG. 2. (Color online) Both simulations and analytic results—in
perfect agreement—show that 〈n̂2(t)〉 [in units of 1

2 (K/h̃)2] exhibits
quasiperiodic oscillations.

energy exhibits quasiperiodic oscillations of rather small
amplitude. The immobility of the system in n space effectively
makes it a (non-Anderson) insulator. In the Appendix A, we
calculate the right-hand side of Eq. (6) analytically to explicitly
show that E(t) exhibits quasiperiodic oscillations for d = 2.
The existence of quasiperiodic oscillations in E(t) for q = 1,2
is independent of the values of K and of d � 2. It reflects the
regular nature of quantum dynamics.

Equation (6) also holds for the d = 1 standard rotor.
Upon substitution of f1(s) ≡ 1, it reproduces the well-known
results [2,15], i.e., E(t) ∼ t2 for q = 1 and E(t) ∼ δPt ,−1 for
q = 2, where Pt is the parity of the (discrete) time t : Pt = +1
(−1) for even (odd) t . (Recall the initial state |n ≡ 0〉.) The
former describes an unbounded quadratic energy growth which
is a characteristic of quantum resonance, while the latter
describes a bounded time-periodic oscillation of energy (with a
period of 2) which is a characteristic of quantum antiresonance.
Interestingly, although behaviors of standard and quasiperiodic
kicked rotors at q = 1,2 are fundamentally different, they are
“unified” by the simple analytic formula (6).

IV. METAL-SUPERMETAL TRANSITION AT q = 3,5,6, . . .

We now consider the value q = 3, which defines the
first configuration where integrability is lost. The resulting
phenomenology crucially depends on the effective dimension-
ality of the system, and we discuss various cases separately.
Numerically, we have found the system’s behavior at q =
5,6,7, . . . is the same as at q = 3.

A. QKR as a supermetal at d = 2,3

To realize a d-dimensional system, we modulate the pulse
amplitude with one frequency ω1 (d = 2) and simulate the
dynamics (4) with the parameters (ω1,φ1) given above. Results
for E(t) are shown in Fig. 3(a), where the ∼t2 asymptotic at
large times reflects supermetallic behavior. For large K (e.g.,
K = 64), the energy growth displays a clear metal-supermetal
crossover.

To better expose its origin, we simulate the two-dimensional
dynamics in terms of Û , given by Eq. (5), and compare the
expectation value E(t) = 〈n̂2(t)〉 to the momentum dispersion
in the virtual direction 〈n̂2

1(t)〉. The results shown in Fig. 3(b)
demonstrate localization in the virtual n1 direction and
delocalization in the real n direction. It is also evident that
the crossover to supermetallic growth and localization in the
virtual direction take place at the same time, tξ (K). The
inset of Fig. 3(b) explicitly shows the exponential decay of
a wave-function amplitude projected onto the n1 direction,
denoted as P (n1). These results indicate that the analytic
predictions obtained for large q in Refs. [8,17] remain valid
even for small q.

We next discuss the scaling behavior of tξ (K). To this end,
we extrapolate the short- and the long-time power laws pertain-
ing to the metallic (supermetallic) growth to larger (smaller)
times in E′(t). In a double-logarithmic representation, this
produces two straight lines with a crossing point whose time
coordinate we identify with tξ [cf. Fig. 3(a)]. The results
of this analysis are shown in Fig. 4(a), and a power-law fit
obtains tξ ∝ K1.95±0.05. This is in excellent agreement with
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FIG. 3. (Color online) (a) For d = 2,q = 3, the QKR exhibits
a supermetallic energy growth, 〈n̂2(t)〉 ∼ t2, at large times. From
bottom to top, the solid curves are for K = 4, 8, 64, and 512,
respectively. (b) The saturation of 〈n̂2

1(t)〉 and the supermetallic
growth of 〈n̂2(t)〉 simultaneously occur. K = 30. Inset: quasi-one-
dimensional Anderson localization in the n1 direction.

the analytic prediction [8,17] tξ ∝ D
q,K�1∼ K2, where D is

the classical diffusion coefficient. At small values of K , the
diffusion constant becomes subject to short-time correlation
corrections oscillatory in K , and this leads to the growth of
deviations off the K2 asymptotic.

The above results show that the behavior of E(t) at
q = 3 is explained by the same physical mechanisms as in
the analytically studied q � 1 case: for short times, t  tξ ,
the dynamics of wave packets in angular momentum space
is diffusive. At the corresponding frequency scales, ω ∼
t−1 � t−1

ξ ∼ �ξ , where �ξ is the spacing between adjacent
localized levels, the spectrum probed by the response function
effectively looks continuous, or metallic. In the long-time
regime, t � tξ , wave packets are localized, and the conjugate
frequencies ω  �ξ are small enough to probe individual
localized states. A straightforward analysis [8,17] shows that
this leads to a divergent optical conductivity or quadratic
scaling ∼t2 of the function E(t).

In the case of d = 3, simulations of the rotor driven by
two frequencies ω1,2 show that E′(t) crosses over from linear
to quadratic increase at time ∼tξ , as in d = 2. However, as
shown in Fig. 4(b), tξ now grows exponentially in K4 ∼
D2. Again we see that at small values of K , short-time
correlation corrections oscillatory in K lead to the growth

FIG. 4. (Color online) The scaling behavior of tξ for (a) d = 2
and (b) d = 3 at q = 3 in the system (4). The dashed lines are for the
best linear fitting results.

of deviations off the K4 asymptotic. This scaling reflects
the exponential dependence of the localization length on the
square of the diffusion coefficient characteristic for effectively
two-dimensional [localization is in the (d − 1)-dimensional
virtual space] disordered systems [8]. This is a manifestation
of unitary Anderson localization in the two-dimensional
virtual space, as expected by the field theoretic analysis
[7,8,17].

Indeed, the q periodicity in the n direction introduces
an Aharonov-Bohm flux φ, namely, the Bloch momentum
piercing the system (cf. Fig. 1), which effectively breaks
the time-reversal symmetry of quantum dynamics within a
unit cell. To confirm this symmetry, we further perform a
study of spectrum statistics. To this end, we approximate
ω1,2/(2π ) by rational number and compactify the unit cell
in the n1,2 direction. For the ensuing torus, we perform
numerical diagonalization and find the quasienergy spectrum
for fixed Bloch momentum φ. Then, by scanning φ, we
obtain a large ensemble. This allows us to compute the
level spacing distribution, denoted as P (s). As exemplified
in Fig. 5(a), the results are in excellent agreement with the
Wigner surmise for the circular unitary ensemble (CUE). (We
recall for the standard one-dimensional QKR, it has been
analytically shown that the unitary symmetry leads to a simple,
universal linear to quadratic crossover in the rotor’s energy
growth [7]).
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FIG. 5. (Color online) The level spacing distribution (histogram)
for (a) q = 3 and (b) q = 4 in the three-dimensional system (5) with
K = 80. The red dotted lines in both panels represent the Wigner
surmise for CUE. Note that in (b), P (s) is symmetric with respect
to s = 1. The parameters ω1,2/(2π ) are approximated by 13/21 and
23/17, respectively.

B. Metal-supermetal transition at d = 4

Moving up in dimensionality, we introduce a third
frequency/phase pair (ω3,φ3) = 2π [(

√
7 + 1)/2,

√
17 − 4] to

simulate the system at d = 4. Figure 6 shows results of

FIG. 6. (Color online) For d = 4 and q = 3, the QKR displays a
metal-supermetal transition as K decreases. From bottom to top, at the
left side, the solid curves are for K = 4,8,20,30, and 80, respectively.
Inset: The crossover time tξ exhibits criticality.

E(t) for different values of K . Our simulations indicate
that at Kc = 11.8 ± 0.1, the long-time behavior undergoes a
transition from quadratic to linear large-time asymptotics. This
is the Anderson transition separating an Anderson localized
from a metallic phase in three-dimensional virtual space. We
have found that the localization time for small deviations of K

off the critical values scales as tξ ∼ (Kc − K)−α (Fig. 6 inset)
with a critical exponent α = 4.5 ± 0.3. These observations are
again in agreement with the large-q results obtained in Ref. [8].

Unlike in d = 2,3, simulations of the four-dimensional
operator (5), i.e., of the function E(t), are difficult. However,
the observed value of Kc and the value of the critical exponent
α can both be understood from scaling arguments: Anderson
localization in virtual space leads to a frequency-dependent
renormalization of the diffusion coefficient, D → D(ω),
where ω is Fourier conjugate to the observation time. Similar
to discussions in Sec. IV A, the periodicity in the n direction
renders Anderson transition in the (d − 1)-dimensional virtual
space of a unitary type. Correspondingly, by using the stan-
dard renormalization-group analysis, the leading (localization)
correction is given by D(ω) ≈ D[1 − 1

2πq2D

∫
dd−1φ

(2π)d−1 (−iω +
Dφ2)−1]. For d � 3, the integral suffers ultraviolet divergence
and requires a short-distance cutoff ∼O(K/h̃). Then, a rough
estimate for the onset of strong localization follows from the
equality of the constant classical contribution to the quantum
correction, i.e., from the condition D(ω = 0) ≈ 0. Doing the
integral, we obtain the equivalent condition (for d = 4)

(4q2π3)1/5 Kc

8h̃
= O(1), (7)

which is well satisfied by the observed value Kc ≈ 11.8 [at
which the left-hand side of Eq. (7) equals 1.4].

Beyond perturbation theory [8,19], the diffusion coefficient
D(ω) scales as D(ω) = ω

1
3 f [(K − Kc)ω− 1

3ν ], where f (x) is
some scaling function, and ν > 0 is the localization length
critical exponent, i.e., ξ ∼ (Kc − K)−ν . Noting that ω ∼ t−1,
we conclude that in the virtual space, the wave-packet ex-
pansion saturates at large times when (Kc − K)t

1
3ν � 1. This

implies that in the supermetallic phase, the metal-supermetal
crossover occurs at tξ ∼ (Kc − K)−3ν , i.e., we have arrived
at the identification α = 3ν. Our simulations predict that
1.4 � ν � 1.6, which is consistent with general results for the
three-dimensional Anderson transition of the unitary type [20].

The above results for Kc and α corroborate the view that
the phase transition observed at q = 3 is in the universality
class of the Anderson metal-insulator transition. Below the
critical value K = Kc, the system effectively behaves as a
finite system of extension qξ 3 and finite-size quantization of
energy levels then is responsible for the supermetallic scaling
of response coefficients.

V. ANOMALOUS SUPERMETALLIC BEHAVIOR AT q = 4

Numerical experiments further show that for larger values
of q (= 5,6,7, . . . ), the QKR behaves in the same way
as the q = 3 case. This suggests that the unconventional
quantum criticality occurs for generic q. This notwithstanding,
anomalous behavior is observed for q = 4: Regardless of the
dimension d, the energy growth exhibits a linear-quadratic
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FIG. 7. (Color online) The anomalous energy growth for q = 4
with d = 3. In the main panel, the solid curves (from bottom to top)
are for K = 25,50,100,200, and 400, respectively. The inset shows
tξ as a function of K .

crossover with the crossover time tξ ∼ K . (See Fig. 7 as
exemplified by the case of d = 3).

To understand why unusual things happen at this q value,
notice that in the QKR context, the kinetic-energy operator
exp(−ih̃ n̂2

2 ) plays the role of a stochastic scattering operator,
much like a random real-space potential in conventional
Anderson localization. Our analysis thus far presumes that this
operator does not exhibit any regular structure throughout the
unit cell, n = 0, . . . ,q − 1. However, for q = 4, this operator
is translationally invariant in 2 and the unit cell, {0,1,2,3},
splits into two replicated subcells, {0,1} and {2,3}. Most
interestingly, this reduction renders the rotor similar to its
genuine two-periodic sibling: the only difference is that in the
former (latter), the factor exp(−ih̃ n2

2 ) takes the value of −i

(−1) for odd n. On general grounds, we expect the dynamics
to be (partially) regular. Indeed, we find that the level spacing
distribution is dramatically different from the q = 3 case:
strikingly, it is symmetric with respect to s = 1 and, only for
small s, it follows the Wigner surmise of the CUE type [see
Fig. 5(b)].

Moreover, our numerical analysis for q = 4 shows that an
initial regime of diffusion—a manifestation of stochasticity—
is followed by a strong tendency to localize in the auxiliary di-
mensions already at times t > K parametrically shorter than in
the generic case (cf. Fig. 7). While we do not fully understand
the origin of this behavior, it appears to be outside the standard
Anderson universality class. In addition, it is interesting to
notice that at q = 4, no localization-delocalization transition
is observed. We believe that this is a manifestation of a partial
restoration of regular dynamics. Further research is required
to understand these phenomena and to explore whether or not
there exist any other anomalous q values.

VI. DISCUSSION

In this paper, we have numerically explored the QKR driven
by d − 1 incommensurate frequencies and at resonant values
of Planck’s constant h̃ = 4π/q. Compared to the standard
rotor, the presence of additional driving frequencies and the
fine tuning of Planck’s constant provide the option to realize

qualitatively different types of quantum criticality. We have
seen that depending on the value of q, the system may be
exactly solvable (reflecting the regular nature of quantum
dynamics) at q = 1,2, may be in the Anderson universality
class on a circumference q cylinder of dimensionality d

(q = 3,5,6, . . . ), or may be in an anomalously localized
regime (q = 4). The option to change the universality class
of the system by a well-defined change of a single control
parameter provides us with a high-quality test bed of our
understanding of Anderson-type quantum criticality. It stands
to reason that the configurations explored in this paper, d =
2,3,4 and q = 1,2,3,4, are within the reach of state-of-the-art
atom-optics setups [10–12,19,21–24]. In current experiments,
the expansion of atomic clouds can be observed over several
hundred kicks [10–12,19] and a quantitative comparison to our
results should be possible.
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APPENDIX: EXACT SOLUTION AT q = 1,2

For q = 1,2, the quantum dynamics (3) is exactly solvable.
Staying in the ungauged one-dimensional representation of
the system, we find that in the angular momentum (n)
representation, the matrix element of Û ′(s) reads

〈n|Û ′(s)|n′〉 =
{

Jn−n′
[

K

h̃
fd (s)

]
, q = 1

(−)nJn−n′
[

K

h̃
fd (s)

]
, q = 2,

(A1)

where Jn(x) is the Bessel function. With the help of the identity

∞∑
k=−∞

Jn∓k(x)Jk(x ′) = Jn(x ± x ′),

FIG. 8. (Color online) For d = 2, the analytic result (A4) shows
that 〈n̂2(t)〉 [in units of 1

2 (K/h̃)2] exhibits quasiperiodic oscillations
at both q = 1 (red solid lines) and q = 2 (blue dashed lines). The
parameters (ω1,φ1) = 2π [(

√
5 − 1)/2,

√
3 − 1].
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it is straightforward to derive

〈n|
t∏

s=1

Û ′(s)|m〉 =
⎧⎨
⎩

Jn−m

[
K

h̃

∑t
s=1 fd (s)

]
, q = 1

(−)n−mδ1,Pt Jn−m

[
KPt

h̃

∑t
s=1(−)sfd (s)

]
, q = 2,

(A2)

from (A1). Using these matrix elements and the identity
∞∑

k=−∞
k2J 2

k (x) = x2

2
,

we obtain Eq. (6).
Next, we apply the above general analysis to the simplest case of d = 2, with f2(t) = cos(ω1t + φ1). It is straightforward to

verify that

t∑
s=1

f2(s) =
{ cos(ω1+φ1)−cos φ1−cos[ω1(t+1)+φ1]+cos(ω1t+φ1)

2(1−cos ω1) , q = 1
− cos(ω1+φ1)−cos φ1+(−)t {cos[ω1(t+1)+φ1]+cos(ω1t+φ1)}

2(1+cos ω1) , q = 2.
(A3)

Substituting it into Eq. (6) gives

〈n̂2(t)〉
1
2 (K/h̃)2

=
{ {cos(ω1+φ1)−cos φ1−cos[ω1(t+1)+φ1]+cos(ω1t+φ1)}2

4(1−cos ω1)2 , q = 1
[cos(ω1+φ1)+cos φ1−(−)t {cos[ω1(t+1)+φ1]+cos(ω1t+φ1)}]2

4(1+cos ω1)2 , q = 2.
(A4)

As shown in Fig. 8, the energy exhibits quasiperiodic oscillations at d = 2, similar to the d = 3 case discussed in Sec. III.
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[10] J. Chabé, G. Lemarié, B. Grémaud, D. Delande, P. Szriftgiser,

and J. C. Garreau, Phys. Rev. Lett. 101, 255702 (2008).
[11] G. Lemarié, H. Lignier, D. Delande, P. Szriftgiser, and J. C.

Garreau, Phys. Rev. Lett. 105, 090601 (2010).
[12] M. Lopez, J. F. Clément, P. Szriftgiser, J. C. Garreau, and

D. Delande, Phys. Rev. Lett. 108, 095701 (2012).

[13] S. Wimberger, I. Guarneri, and S. Fishman, Nonlinearity 16,
1381 (2003).

[14] M. Sadgrove and S. Wimberger, Adv. At. Mol. Opt. Phys. 60,
315 (2011).

[15] F. M. Izrailev and D. L. Shepelyansky, Teor. Mat. Fiz. 43, 417
(1980) ,[Theor. Math. Phys. 43, 553 (1980)].

[16] I. Dana, E. Eisenberg, and N. Shnerb, Phys. Rev. E 54, 5948
(1996).

[17] C. Tian and A. Altland (unpublished).
[18] G. Casati, I. Guarneri, and D. L. Shepelyansky, Phys. Rev. Lett.

62, 345 (1989).
[19] G. Lemarié, J. Chabé, P. Szriftgiser, J. C. Garreau, B. Grémaud,
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