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Odd-frequency pairing effect on the superfluid density and the Pauli spin susceptibility in spatially
nonuniform spin-singlet superconductors
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A theoretical study is presented on the odd-frequency spin-singlet pairing that arises in nonuniform even-
frequency superconductors as a consequence of broken translation symmetry. The effect of the odd-frequency
pairing on the superfluid density and the spin susceptibility is analyzed by using the quasiclassical theory of
superconductivity. It is shown that (1) the superfluid density is reduced by the formation of the odd-frequency
singlet pairs and (2) the odd-frequency pairing increases the spin susceptibility even though its spin symmetry
is singlet. The two unusual phenomena are related to each other through a generalized Yosida formula by taking
into account both the even- and odd-frequency pairing effects.
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I. INTRODUCTION

The concept of odd-frequency pairing offers interesting
symmetry aspects of nonuniform superconductivity and su-
perfluidity [1]. Although the odd-frequency pairing state was
originally proposed as a uniform superfluid state in bulk [2],
it may also emerge in, e.g., superconducting proximity
structures. Bergeret, Volkov, and Efetov pointed out, in their
theoretical work on a ferromagnet-superconductor proximity
structure, that triplet s-wave pairs are created in a ferromagnet
attached to a conventional singlet s-wave superconductor [3].
In the ferromagnet, spin-rotation symmetry is broken and the
resulting singlet-triplet spin mixing generates the triplet pairs
from the singlet pairs penetrating from the superconductor. The
Pauli principle requires that the triplet s-wave pair amplitude
be an odd function of the Matsubara frequency, and thus
this pairing state belongs to the odd-frequency symmetry
class. Similar odd-frequency pairing takes place even in a
normal metal when a superconductor is in contact with it
through a spin-active interface [4–6]. In proximity structures,
broken translation symmetry resulting from the presence of the
interface or surface provides another mechanism responsible
for the emergence of odd-frequency states. The symmetry
breaking in real space causes mixing of different orbital-parity
states, so that admixtures of even- and odd-frequency states
arise around the interface or surface [4,7–10]. This creation
mechanism works without any magnetism and suggests a ubiq-
uitous existence of odd-frequency pairing states in nonuniform
systems.

Recently, Yokoyama, Tanaka, and Nagaosa examined the
effect of odd-frequency pairing on the magnetic response of a
normal metal-superconductor junction with a spin-active inter-
face [11]. On the basis of Usadel’s dirty-limit theory [12,13], it
was shown that the proximity-induced odd-frequency pairing
state exhibits paramagnetic Meissner response and gives rise
to oscillation of the penetrating magnetic field. The origin of
this anomalous phenomenon can be found in the dirty-limit
formula for the superfluid fraction (the ratio of the superfluid
density ns to the total number density n) [12,13]:

ns

n
= 2τtr

�

π

β

∑
εn

{
−1

2
Tr[F (εn)F (εn)∗]

}
, (1)

where τtr is the transport mean free time, β = 1/kBT is
the inverse temperature, εn = (2n + 1)π/β is the Matsubara
frequency, and F (εn) is an s-wave pair amplitude defined as
a spin-space matrix. Conventional s-wave superconductivity
is described by Fsinglet(εn) = f (εn)iσ2 with f (εn) being an
even-frequency amplitude and σ2 being the second component
of the Pauli matrix σ = (σ1,σ2,σ3). The expression in curly
braces in Eq. (1) then gives the pair density |f (εn)|2. In
contrast, odd-frequency s-wave pairing is characterized by
Ftriplet(εn) = f (εn) · σ iσ2. We then obtain the negative pair
density − f (εn) · f (εn)∗ from the same expression as above.
This means that the odd-frequency pairs carry paramagnetic
Meissner current. The negative pair density causes not only
the paramagnetic Meissner effect but also an unusual behavior
of surface impedance [14,15].

An anomaly resulting from odd-frequency pairing also
manifests itself in Pauli spin susceptibility χ [16]. It was
predicted that odd-frequency (↑↓+↓↑)-triplet pairing in
nonuniform superfluid 3He increases the susceptibility χ ,
contrary to the conventional wisdom that antiparallel spin
pairing reduces χ in superfluids and superconductors. The
question then naturally arises and still remains whether the
odd-frequency singlet pairing also increases the susceptibility
χ . In bulk singlet s-wave superconductors, the susceptibility
χbulk can be represented in terms of the superfluid density nbulk

s

as

χbulk

χ0

= 1 − nbulk
s

n
. (2)

This so-called Yosida formula shows explicitly that the sus-
ceptibility decreases as the number of singlet pairs increases.

This paper addresses how the odd-frequency singlet pairing
induced in nonuniform systems contributes to the superfluid
density and the spin susceptibility. To do that, we consider
the following model system that allows systematic analytical
calculation of the physical quantities of interest here. A singlet
s-wave pairing state occupies the semi-infinite space −L < z

with a specular surface at z = −L (Fig. 1) and is characterized
by the nonuniform gap function:

�(z) =
{
�1 (−L < z < 0)

�2 (0 < z)
, (3)
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FIG. 1. Model of nonuniform system. Upper panel: a spin-singlet
s-wave pairing state occupying the semi-infinite space −L < z with
a specular surface at z = −L. Lower panel: three particular cases.

with �1 and �2 being real constants. The system is assumed
to be clean (impurity free) because the odd-frequency singlet
pairs have odd-parity orbital symmetry and are consequently
fragile against impurity scattering. The gap �1 is treated as a
parameter taking values from −�2 to �2. The case of �1 = �2

[Fig. 1(a)] corresponds to a semi-infinite s-wave supercon-
ductor with a uniform gap. The s-wave state is, as is well
known, not affected by surface scattering, so odd-frequency
pairing does not occur in this case. When �1 = 0 [Fig. 1(b)],
the system is analogous to a normal metal-superconductor
(NS) proximity structure with a transparent interface. It is
known that odd-frequency pairing is induced in the N layer
owing to parity mixing at the interface of the NS structure [8].
When the sign of �1 is opposite to that of �2, the so-called
midgap Andreev bound states appear around z = 0 [17]. As
was shown in Ref. [10], the odd-frequency pair amplitude has a
midgap-state pole and there is a close relationship between the
midgap (zero-energy) density of states and the odd-frequency
pair amplitude (see also the Appendix). In the particular case
of �1 = −�2 and L → ∞ [Fig. 1(c)], the pair amplitude at
z = 0 is dominated by the odd-frequency pairs (see Sec. III).

Using the quasiclassical theory of superconductivity [18],
we can analyze the pair amplitude, the superfluid density,
and the spin susceptibility in the region z < 0 of the above
model system. It is shown that the induced odd-frequency
singlet pairing yields a negative pair density, as in the case
of the odd-frequency triplet s-wave pairing. To investigate
the odd-frequency pairing effect on the spin susceptibility,
we generalize the Yosida formula Eq. (2) to the nonuniform
singlet state. The resulting formula describes how the spin
susceptibility is related to the even- and odd-frequency
pair amplitudes. It is found from the generalized Yosida
formula that the odd-frequency singlet pairs increase the spin
susceptibility owing to the negative pair density.

Section II outlines the framework of the quasiclassical
theory. In Sec. III, the quasiclassical theory is applied to the
nonuniform system in Fig. 1 and explicit expressions for the

even- and odd-frequency pair amplitudes in z < 0 are derived.
The odd-frequency pairing effect on the superfluid density
is discussed in Sec. IV. The Meissner effect in NS proximity
structures is also discussed in this section, with a focus on why
the Meissner current is not induced in the proximity region of
a clean N layer with infinitely large layer width [19]. Finally,
the spin susceptibility is analyzed in Sec. V.

II. QUASICLASSICAL THEORY

The quasiclassical theory is formulated in terms of a 4 × 4
matrix Green’s function ĝ(p̂,ε,r) in the Nambu space, where
p̂ is the unit vector specifying the direction of the Fermi
momentum pF = �kF (and where a spherical Fermi surface
is assumed below), ε is a complex energy variable, and r is
the spatial coordinate. The quasiclassical Green’s function ĝ

obeys the Eilenberger equation:

i�vF p̂ · ∇ĝ + [ε̂(p̂,ε,r), ĝ] = 0, (4)

with the normalization condition ĝ2 = −1. In Eq. (4), vF is
the Fermi velocity and ε̂ is an energy matrix of the form

ε̂(p̂,ε,r) = ερ̂3 − v̂(p̂,r) + �̂(p̂,r), (5)

where ρ̂3 is the third Pauli matrix in particle-hole space, v̂ is
a perturbation including Fermi-liquid corrections, and �̂ is a
mean field (gap function) resulting from Cooper pairing. In
singlet pairing states, �̂ is expressed as

�̂(p̂,r) =
[

0 �(p̂,r)iσ2

�(p̂,r)∗iσ2 0

]
. (6)

In the present work, the Fermi-liquid corrections in v̂ are
neglected for simplicity. We can then determine the superfluid
density and the spin susceptibility by calculating the linear
response to the spatially uniform perturbation:

v̂(p̂) = vp̂ρ̂3 − hσ31̂, (7)

where vp̂ = pF p̂ · vs , with vs the superfluid velocity, h =
μ0H is the Zeeman coupling of the spin magnetic moment μ0

to the external field H , and 1̂ is the unit matrix in particle-hole
space.

In the absence of the perturbation, the 4 × 4 energy matrix
ε̂ for singlet states has the form

ε̂ =

⎡
⎢⎢⎢⎣

ε 0 0 �

0 ε −� 0

0 �∗ −ε 0

−�∗ 0 0 −ε

⎤
⎥⎥⎥⎦. (8)

The energy matrix ε̂ is separated into two 2 × 2 subspaces,
the outer subspace corresponding to spin-up particle and
spin-down hole degrees of freedom and the inner subspace to
spin-down particle and spin-up hole degrees of freedom. The
singlet states can therefore be described by the 2 × 2 matrix
Eilenberger equation:

i�vF p̂ · ∇ĝ2×2 + [ε̂2×2(p̂,ε,r), ĝ2×2] = 0, (9)

with

ε̂2×2(p̂,ε,r) =
[

ε �(p̂,r)

−�(p̂,r)∗ −ε

]
. (10)
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The perturbation shifts the energy variable ε, and the quasi-
classical Green’s functions in the outer and inner subspaces
are given by

ĝouter = ĝ2×2(p̂,ε − vp̂ + h,r), (11)

ĝinner = ρ̂3ĝ2×2(p̂,ε − vp̂ − h,r)ρ̂3. (12)

The Green’s function ĝ2×2 has the matrix structure

ĝ2×2(p̂,ε,r) =
[

g(p̂,ε,r) f (p̂,ε,r)

−f̃ (p̂,ε,r) −g(p̂,ε,r)

]
, (13)

where

f̃ (p̂,ε,r) = f (−p̂,−ε∗,r)∗. (14)

The diagonal and off-diagonal elements have the symmetries

g(p̂,ε,r) = g(p̂,ε∗,r)∗, (15)

f (p̂,ε,r) = f (−p̂,−ε,r). (16)

The function g carries information on quasiparticle excita-
tion. The local density of states is calculated from g as

n(p̂,E,r) = Im[g(p̂,E + i0,r)]

= 1

2i
[g(p̂,E + i0,r) − g(p̂,E − i0,r)], (17)

where E is a real energy variable. By using g in the Matsubara
representation (ε = iεn), the supercurrent J(r) and the spin
magnetization M(r) are obtained from

J(r) = −2N (0)vF

π

β

∑
εn

〈p̂ g(p̂,iεn − vp̂,r)〉p̂, (18)

M(r)

χ0H
= 1 − 1

h

π

β

∑
εn

∑
σ=±

〈
σ

2
g(p̂,iεn + σh,r)

〉
p̂

, (19)

where N (0) is the density of states per spin at the Fermi level
in the normal state and χ0 = 2N (0)μ2

0 is the susceptibility in
the normal state.

The function f corresponds to the singlet pair amplitude
defined on the complex ε plane. Equation (16) represents a
general symmetry relation for f , showing that an even-parity
(odd-parity) singlet pair amplitude has even-frequency (odd-
frequency) symmetry.

A more explicit expression for ĝ2×2 can be obtained by
expressing it in the form

ĝ2×2 = 2i

〈r|r〉 |r〉〈r| − i, (20)

where |r〉 and 〈r| are the column and row vectors satisfying

i�vF p̂ · ∇|r〉 = −ε̂2×2(p̂,ε,r)|r〉, (21)

i�vF p̂ · ∇〈r| = 〈r|ε̂2×2(p̂,ε,r). (22)

Noting that 〈r|r〉 is independent of r , we can easily show that
ĝ2×2 of Eq. (20) satisfies the Eilenberger equation (9) with
the normalization condition ĝ2

2×2 = −1. The column and row
vectors can be parameterized as

|r〉 = a

[
1
F̃

]
, 〈r| = a′[1 F]. (23)

Substitution of Eq. (23) into Eq. (20) yields the following
parametrization for ĝ2×2:

ĝ2×2 + i = 2i

1 + FF̃

[
1
F̃

]
[1 F]. (24)

The functions F and F̃ satisfy the Riccati-type differential
equations

i�vF p̂ · ∇F = −2εF + �(p̂,r) + �(p̂,r)∗F2, (25)

i�vF p̂ · ∇F̃ = 2εF̃ + �(p̂,r)∗ + �(p̂,r)F̃2. (26)

In bulk systems with a constant gap function �(p̂), the Riccati
equations have solutions

Fbulk = �(p̂)

ε + i
√

|�(p̂)|2 − ε2
, (27)

F̃bulk = − �(p̂)∗

ε + i
√

|�(p̂)|2 − ε2
. (28)

Substituting Eqs. (27) and (28) into Eq. (24), we obtain the
well-known bulk solution of ĝ2×2, i.e.,

ĝbulk
2×2(p̂,ε) = 1√

|�(p̂)|2 − ε2

[
ε �(p̂)

−�(p̂)∗ −ε

]
. (29)

One can show from Eqs. (25)–(28) that F̃ is related to F by
the transformation

F̃(p̂,ε,r) = F(−p̂,−ε∗,r)∗. (30)

Moreover, F and F̃ are found to have the symmetries

F(p̂,ε,r) = 1/F(p̂,ε∗,r)∗, (31)

F̃(p̂,ε,r) = 1/F̃ (p̂,ε∗,r)∗. (32)

Equations (31) and (32) can be used to check the Green’s-
function symmetries of Eqs. (15) and (16).

III. PAIR AMPLITUDE

We now consider the model system in Fig. 1. The function
F obeys

i�vF p̂z∂zF = −2εF + �(z)(1 + F2), (33)

with the following boundary conditions: (i) F → Fbulk at
z → ∞, (ii) F is continuous at z = 0, and (iii) F satisfies
the specular-surface boundary condition F(p̂z) = F(−p̂z) at
z = −L.

Since �(z) is a real function, F has the symmetry

F(p̂,ε,z) = −F(p̂,−ε∗,z)∗. (34)

The corresponding symmetry for the pair amplitude is

f (p̂,ε,z) = f (p̂,−ε∗,z)∗. (35)

This shows that f for ε = iεn is a real quantity.
In general, the pair amplitude has even-frequency (EF) and

odd-frequency (OF) components:

f (p̂,ε,z) = f EF(p̂,ε,z) + f OF(p̂,ε,z). (36)

Combining the symmetries Eqs. (35) and (16), we find that f̃

can be decomposed as

f̃ (p̂,ε,z) = f EF(p̂,ε,z) − f OF(p̂,ε,z). (37)
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In the model system, we can solve analytically the Riccati
equation (33). The general solution can be written in the form

F(z < 0) = F1 + C1e
−spκ1z

1 + F1C1e
−spκ1z

, (38)

F(z > 0) = F2 + C2e
−spκ2z

1 + F2C2e
−spκ2z

, (39)

where

Fi = �i

ε + i

√
�2

i − ε2
(i = 1,2), (40)

κi =
2
√

�2
i − ε2

�vF |p̂z| , (41)

sp = sgn(p̂z), (42)

and Cis are constants to be determined from the boundary
conditions. Imposing the boundary conditions, we obtain

F(z < 0) = 1 + sp

2

F1 + Ce−κ1(z+2L)

1 + F1Ce−κ1(z+2L)

+ 1 − sp

2

F1 + Ceκ1z

1 + F1Ceκ1z
, (43)

F(z > 0) = 1 + sp

2

F2 − C ′e−κ2z

1 − F2C ′e−κ2z
+ 1 − sp

2
F2, (44)

where

C = F2 − F1

1 − F1F2
, C ′ = C(1 − e−2κ1L)

1 − C2e−2κ1L
. (45)

The factors (1 + sp)/2 and (1 − sp)/2 in Eqs. (43) and (44)
select F with p̂z > 0 and with p̂z < 0, respectively.

In what follows, we shall focus on the region z < 0. Using
Eq. (43), we find that the quasiclassical Green’s function ĝ2×2

in z < 0 is given as

ĝ2×2(z < 0) + i

= (1 + sp)i

D

([
1

−F1

]
+ Ceκ1z

[F1

−1

])

× ([1 F1] + Ce−κ1(z+2L)[F1 1])

+ (1 − sp)i

D

([
1

−F1

]
+ Ce−κ1(z+2L)

[F1

−1

])
× ([1 F1] + Ceκ1z[F1 1]), (46)

with D = (1 − F2
1 )(1 − C2e−2κ1L).

Equation (46) depends on �2 via the constant C. When
�1 = �2 (the uniform limit), C vanishes and then Eq. (46)
is reduced to the bulk solution, as expected from the fact that
the s-wave pairing state is not affected by surface scattering.

However, the spatial inhomogeneity arising from �1 �= �2

makes C finite. For example, in the NS structure, we have
F1 = 0 for ε = E + i0 and then C = F2. Note that, in this
case, Eq. (46) for p̂z > 0 and L → ∞ can be expressed in the
form

ĝ2×2(z < 0) + i

= 2iρ̂3

([
1

0

]
eiqz + F2

[
0

1

]
e−iqz

)
[1 0]e−iqz, (47)

where q = E/�vF |p̂z|. The two column vectors on the right-
hand side of Eq. (47) represent the Andreev scattering process
in N of the NS structure. This shows that F2 for real energies
gives the Andreev reflection amplitude.

The upper-right matrix element of Eq. (46) gives the pair
amplitude f in z < 0. In the expression for f , the terms
∝ sp are odd-parity pair amplitudes and therefore have OF
symmetry. We can check the frequency symmetry using the
relation Fi(−ε) = −F−1

i (ε) (i = 1,2). We thus find that in the
region z < 0 there coexist EF and OF pairs with amplitudes

f EF(p̂,ε,z < 0)

= i
2F1(1 + C2e−2κ1L) + (

1 + F2
1

)
C(eκ1z + e−κ1(z+2L))(

1 − F2
1

)
(1 − C2e−2κ1L)

,

(48)

f OF(p̂,ε,z < 0) = −spi
C(eκ1z − e−κ1(z+2L))

1 − C2e−2κ1L
, (49)

respectively. The OF pair amplitude is proportional to C. This
means that it vanishes in the uniform limit and then the EF
pair amplitude takes the bulk form f bulk = �1/

√
�2

1 − ε2 .
When �1 = 0 (NS structure), the EF and OF pairs for ε =

E + i0 have amplitudes

f EF(p̂,ε,z < 0) = i
F2(eκ1z + e−κ1(z+2L))

1 − F2
2 e−2κ1L

, (50)

f OF(p̂,ε,z < 0) = −spi
F2(eκ1z − e−κ1(z+2L))

1 − F2
2 e−2κ1L

, (51)

respectively. The pair amplitudes are proportional to the
Andreev reflection amplitude F2. The denominator with F2

describes the multiple Andreev scattering effect in an N layer
of finite width L. Equations (50) and (51) can also be applied to
the case of ε = iεn with εn > 0. Then, the spatial dependence
of the pair amplitudes is characterized by

κ1 = 2|εn|
�vF |p̂z| = |2n + 1|

ξN (T )|p̂z| , (52)

with ξN (T ) = �vF /2πkBT being the coherence length in the
N layer. The Matsubara pair amplitudes in the N layer decay
exponentially from z = 0 and penetrate to a distance ∼ξN (T ).
The EF and OF pair amplitudes have the same magnitude in
the limit L/ξN (T ) � 1. This is because in that limit the total
propagator f with p̂z > 0 does not carry information on the
proximity effect, i.e., f (p̂,ε,z < 0) = 0 for p̂z > 0.
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Let us consider infinite systems with �1 �= 0. Taking the
limit L → ∞ in Eqs. (48) and (49), we obtain

f EF(p̂,ε,z < 0) = i
2F1 + (

1 + F2
1

)
Ceκ1z

1 − F2
1

, (53)

f OF(p̂,ε,z < 0) = −spi Ceκ1z. (54)

It should be noted here that C diverges at ε = 0 when
sgn(�1�2) < 0. This corresponds to the pole of the midgap
Andreev bound states localized around z = 0. The OF pair
amplitude has the midgap-state pole, whereas the EF pair
amplitude does not, because 1 + F2

1 ∝ ε in the low-energy
limit. As shall be shown in the Appendix, the midgap (zero-
energy) density of states can be written in terms of the OF pair
amplitude.

In the particular case of L → ∞ and �1 = −�2 (antisym-
metric structure), we get from Eqs. (53) and (54) the following
explicit expressions for the EF and OF pair amplitudes:

f EF(p̂,ε,z < 0) = �1√
�2

1 − ε2
(1 − eκ1z), (55)

f OF(p̂,ε,z < 0) = sp

i�1

ε
eκ1z. (56)

In this case, the total pair amplitude at z = 0 is dominated by
the OF pairs.

IV. SUPERFLUID DENSITY

In the system considered above, supercurrent can flow along
the surface (perpendicular to the z axis). The corresponding
superfluid density can be obtained by calculating the linear
response of g to vp̂ = pF p̂xvs . The linear deviation δg of the
Matsubara g function is given as

δg(p̂,iεn − vp̂,z) = −vp̂ g′(p̂,iεn,z), (57)

with

g′(p̂,iεn,z) = (−i)
∂

∂εn

g(p̂,iεn,z). (58)

Equation (58) relates explicitly the response function g′ to
the unperturbed Green’s function g. Such a definition of g′
is, however, not so convenient for the analysis of the Cooper
pairing effect on the superfluid density. A more useful formula
can be obtained by starting with Eq. (24), giving the expression

g + i = 2i

1 + FF̃
. (59)

Let δF be the linear deviation of F . Replacing F in Eq. (59)
by F + δF , we obtain

δg = −vp̂ g′ = − 2i

(1 + FF̃)2
(δFF̃ + FδF̃). (60)

Moreover, using the expression

f = 2iF
1 + FF̃

(61)

for the pair amplitude, we get the following formula for the
response function:

g′(p̂,iεn,z) = �(p̂,iεn,z)f (p̂,iεn,z)f̃ (p̂,iεn,z), (62)

with

�(p̂,iεn,z) = − 1

2ivp̂

{
δF
F + δF̃

F̃

}
(p̂,iεn,z). (63)

In Eq. (63), the notation {· · · }(p̂,iεn,z) denotes that all the
functions in the curly braces have the same argument (p̂,iεn,z).

From Eqs. (62), (57), and (18), we find that the superfluid
fraction is given by

ns(z)

n
= π

β

∑
εn

〈
3p̂2

x{�P }(p̂,iεn,z)
〉
p̂
, (64)

with

P = f f̃ = (f EF)2 − (f OF)2. (65)

Since f with ε = iεn is a real function, P (p̂,iεn,z) is a
real quantity. The function �(p̂,iεn,z) is also a real quantity
because F and δF in the Matsubara representation are purely
imaginary and real, respectively. Moreover, one can show that
� has the symmetry

�(p̂,iεn,z) = �(−p̂,iεn,z) = �(p̂,−iεn,z). (66)

Namely, � is even in p̂ and in εn.
It is instructive to compare Eq. (64) with the corresponding

formula for a dirty singlet superconductor, i.e., Eq. (1). The
superfluid fraction in the dirty system is obtained by the
replacement

� → 2τtr/�, P → (
f EF

SW

)2
, (67)

where f EF
SW denotes the even-frequency s-wave pair amplitude.

Note that �vF �/2 coincides with the mean free path vF τtr.
This implies that the quantity �vF �/2 corresponds to the
range of the linear-response kernel; in other words, ns(z)
is determined depending only on vs in the region of width
∼�vF �/2 around position z. The pair density P in the dirty
singlet superconductor does not contain the OF pair amplitude.
This is because impurity scattering destroys non-s-wave pairs
and singlet s-wave pairing has even-frequency symmetry.

However, in the clean systems under consideration, the OF
pairs exist except at the uniform limit. Equation (65) shows
that the OF pairing yields a negative pair density.

The rest of this section is devoted to a discussion of the
superfluid density in the three particular clean system cases:
the uniform limit [Fig. 1(a)], the NS structure [Fig. 1(b)], and
the antisymmetric structure [Fig. 1(c)].

A. Uniform limit

In the case of �1 = �2 ≡ �, we have

F = Fbulk, f EF = f bulk, f OF = 0. (68)

Using

∂Fbulk

∂εn

= ∂

∂εn

−i�

εn + √
�2 + ε2

n

= − Fbulk√
�2 + ε2

n

, (69)

we can obtain

� = 1√
�2 + ε2

n

. (70)
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Note that �vF �/2 coincides with the εn-dependent coherence
length ξ (εn,�) = �vF /2

√
�2 + ε2

n, which determines the
range of the linear-response kernel in the clean superconductor
with gap �. The pair density in the uniform superconductor is

P = (f bulk)2 = �2

�2 + ε2
n

. (71)

Substitution of Eqs. (70) and (71) into Eq. (64) leads to

ns

n
= π

β

∑
εn

�2(
�2 + ε2

n

)3/2 , (72)

which is the well-known result for the superfluid fraction in
clean bulk s-wave superconductors.

B. NS structure

This subsection focuses on the N layer of the NS structure.
In the clean N layer, the superfluid density is known to take

a spatially constant value despite the existence of the spatially
varying pair amplitude. This property can be readily shown
from the Eilenberger equation in the normal state:

i�vF p̂z∂zĝ
N
2×2 + [

(iεn − vp̂)ρ̂3, ĝN
2×2

] = 0. (73)

The spatial dependence of ĝN
2×2(z) is described by

ĝN
2×2(z) = e−κN (z−z′)ρ̂3 ĝN

2×2(z′)eκN (z−z′)ρ̂3 , (74)

with κN = (εn + ivp̂)/�vF p̂z. It follows that the diagonal
element gN (z) of ĝN

2×2(z) is independent of z. This also means
that the Meissner response of the clean N layer is completely
nonlocal [19]

From the ns formula Eq. (64), the superfluid density in the
N layer is obtained as follows. The function � is determined
from Eq. (43) with F1 = 0 and κ1 = 2|εn|/�vF |p̂z|. The result
is

� = 2L

�vF |p̂z| + 1√
�2

2 + ε2
n

. (75)

The first term is proportional to L because of the nonlocal
response of the clean N layer. The second term implies that
the N-side superfluid density includes information on vs in the
region of 0 < z � ξ (εn,�2) on the S side. The pair density P

in the N layer is obtained from Eqs. (50) and (51) as

P = (f EF)2 − (f OF)2 =
∣∣∣∣ 2F2

1 − F2
2 e−2κ1L

∣∣∣∣2

e−2κ1L. (76)

The spatially dependent terms in (f EF)2 and (f OF)2 cancel out
in P .

In Fig. 2, the superfluid fraction ns/n in the N layer is
plotted as a function of L scaled by ξN (T ) at given reduced
temperatures T/Tc = 0.1 and 0.5. In the limit L → 0, the

0
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1

0 1 2 3 4

n
s
/n

,
χ
/χ

0

L/ξN(T )

ns/n

χ/χ0

FIG. 2. (Color online) ns/n and χ/χ0 in the clean N layer of the
NS structure as a function of L/ξN (T ). The solid lines are the results
for T/Tc = 0.1 and the dashed lines are for T/Tc = 0.5 (where Tc is
the transition temperature of the superconductor).

superfluid fraction coincides with that in the uniform state
with gap �2. As L increases, ns/n decreases and becomes
exponentially small for L � ξN (T ). In the limit L/ξN (T ) →
∞, the superfluid density vanishes because |f OF| is then equal
to |f EF| and consequently P = 0.

The vanishing superfluid density in the clean N layer for
L/ξN (T ) � 1 has been noted in a study of the Meissner effect
in NS structures [19]. Mathematically, this is a consequence
of gN (z) being constant and therefore being equal to the
normal-state value everywhere in an N layer of infinitely
large layer width. The question, however, remains as to why
supercurrent does not flow even in the proximity region with a
finite pair amplitude. The present theory provides the following
answer: because the pair density associated with OF pairing
is negative, the supercurrent carried by OF pairs flows in the
opposite direction to vs and compensates for the conventional
supercurrent carried by EF pairs.

In dirty systems, in contrast, the OF singlet pairs are
destroyed by impurity scattering. As a result, the dirty N
layer exhibits a (diamagnetic) Meissner effect similar to that
in conventional superconductors. The diamagnetic Meissner
current also flows in the clean N layer when L/ξN (T ) � 1. In
this case, imbalance between |f EF| and |f OF| (|f EF| > |f OF|)
is caused by surface scattering.

C. Antisymmetric structure

We now turn to the antisymmetric structure. Plotted in
the upper part of Fig. 3 is ns(z < 0)/n in the antisymmetric
structure as a function of z/ξ0, where ξ0 = �vF /2πkBTc. The
superfluid density ns(z) depends strongly on position z, unlike
that in the N layer of the NS system. In the antisymmetric
structure, ns(z) has the bulk value in the region z � −ξ0 but
takes a negative value around z = 0. The magnitude of the
negative superfluid density at z = 0 increases with decreasing
temperature T .
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FIG. 3. (Color online) Spatial dependence of ns(z < 0)/n and χ (z < 0)/χ0 in the antisymmetric structure at T/Tc = 0.2, 0.4, 0.6, and 0.8.

Let us discuss ns(z = 0). The function � at z = 0 has the
form

�(z = 0) = 1

2

∑
i=1,2

1√
�2

i + ε2
n

= 1√
�2

1 + ε2
n

. (77)

The pair density at z = 0 is dominated by the OF pairs and
takes the negative value:

P (z = 0) = −�2
1

ε2
n

. (78)

The resulting superfluid density at z = 0 is

ns(0)

n
= −π

β

∑
εn

�2
1

ε2
n

√
�2

1 + ε2
n

< 0. (79)

Equation (79) predicts the temperature dependence of
ns(0)/n as shown in the upper-left panel of Fig. 4. The
superfluid fraction has a large negative value at low temper-
atures and diverges in the T → 0 limit. It is obvious that the
low-temperature divergence is due to the midgap-state pole of
the OF pair amplitude f OF. Strictly, however, ns(0)/n does
not diverge. The divergence is due to the breakdown of linear-
response theory at low temperatures. To demonstrate this, the
low-temperature behavior of J (z = 0)/nvs calculated from
the general current formula Eq. (18) with pF vs/kBTc = 0.05
is plotted with a dotted line in the upper-right panel of Fig. 4.
The dotted line deviates from the linear-response result (solid
line) below T/Tc ∼ pF vs/kBTc.

The origin of the deviation can be understood by expressing
Eq. (18) in terms of the local density of states, n(p̂,E,z),

J (z) = 2N (0)vF

∫ ∞

−∞
dE nF (E)〈p̂x n(p̂,Ep̂,z)〉p̂. (80)

Here, Ep̂ = E − vp̂ and nF (E) = 1/(eβE + 1) is the Fermi
function. The midgap-state pole of f OF yields the zero-
energy peak in the local density of states at z = 0 (see the
Appendix):

nmidgap(p̂,E,0) = π |�1|δ(E). (81)
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FIG. 4. (Color online) Temperature dependence of ns(z)/n and
χ (z)/χ0 at z = 0 in the antisymmetric structure. In the calculations,
�1 is assumed to have the same temperature dependence as that of the
bulk s-wave gap. The solid lines are the results from linear-response
theory. The dotted lines are the full numerical results obtained
from the current formula Eq. (18) with pF vs/kBTc = 0.05 and the
magnetization formula Eq. (19) with μ0H/kBTc = 0.05. The right
panels demonstrate the breakdown of linear-response theory at low
temperatures below ∼pF vs/kB or ∼μ0H/kB .

184505-7



S. HIGASHITANI PHYSICAL REVIEW B 89, 184505 (2014)

The contribution from the midgap states to J (0) is evaluated
to be

Jmidgap(0) = 2N (0)vF π |�1|〈p̂xnF (vp̂)〉p̂. (82)

Taking the T → 0 limit, we obtain

Jmidgap(0)
T →0−−→ −1

2
N (0)vF π |�1| = −n

3π |�1|
4pF

. (83)

This result is independent of vs and suggests the breakdown
of linear-response theory. Since nF (vp̂) in Eq. (82) cannot be
expanded in powers of vp̂ at low temperatures kBT � pF vs ,
linear-response theory does not give the correct value of the
midgap-state current at T = 0. Linear-response theory can still
be used to evaluate the contribution from continuum states.
At T = 0, the continuum states carry the supercurrent nvs .
Adding the two contributions, we find that

J (0)
T →0−−→ n

(
vs − 3π |�1|

4pF

)
. (84)

We see that the superfluid fraction defined as J (0)/nvs takes
the zero-temperature value:

1 − 3π |�1|
4pF vs

� −3π |�1|
4pF vs

,

which is finite, though it has a large negative value for small
vs , as suggested by linear-response theory.

Equation (83) shows that the magnitude of Jmidgap is as
large as the critical current density ∼n|�1|/pF , as was noted
in Ref. [20]. The fact that the midgap states carry such a large
current can be understood as follows. Since the antisymmetric
structure has one midgap state for each parallel momentum
p‖ = (px,py), the magnitude of the total midgap-state current∫
dz Jmidgap(z) is of the order of k2

F vF . The midgap states
are localized in the region |z| ∼ �vF /|�1|. Hence, Jmidgap ∼
k2
F vF /(�vF /|�1|) ∼ n|�1|/pF .

V. SPIN SUSCEPTIBILITY

The spin susceptibility can be calculated from

δg(p̂,iεn + σh,z) = σh g′(p̂,iεn,z). (85)

From Eqs. (85), (62), and (19), we obtain the following formula
for the local susceptibility χ (z) = M(z)/H :

χ (z)

χ0

= 1 − π

β

∑
εn

〈{�P }(p̂,iεn,z)〉p̂. (86)

Equation (86) provides a natural generalization of the Yosida
formula Eq. (2) to the nonuniform s-wave state. It is found from
the generalized Yosida formula that the OF pairing gives an
anomalous contribution to the susceptibility: since OF pairing
yields a negative pair density, it enhances the susceptibility
even though its spin symmetry is singlet.

As with the superfluid density, the susceptibility in the N
layer of the NS structure is independent of z, and its value
strongly depends on the layer width L (Fig. 2). With increasing
L from zero to ∞, the susceptibility in the N layer changes
from the bulk s-wave-state value χbulk to the normal-state value
χ0. The saturation to χ0 in the L → ∞ limit reflects the fact
that |f EF| and |f OF| become equal to each other in that limit.

In the antisymmetric structure, the OF pairing causes
substantial susceptibility enhancement at z = 0 (Fig. 3).
Linear-response theory in this case gives

χ (0)

χ0

= 1 + π

β

∑
εn

�2
1

ε2
n

√
�2

1 + ε2
n

> 1. (87)

With decreasing T from Tc, the normalized susceptibility
χ (0)/χ0 increases from unity and diverges in the zero-
temperature limit (Fig. 4).

As in the case of the superfluid density, the susceptibility
divergence results from the failure of linear-response theory
to evaluate correctly the contribution from the midgap states
at low temperatures. In the temperature dependence of the
susceptibility, the deviation from the full theory occurs below
T � μ0H/kB , as demonstrated for μ0H/kBTc = 0.05 in the
lower-right panel of Fig. 4. The correct low-temperature
behavior can be obtained from Eq. (19) or, equivalently, from

M(z)

χ0H
= 1 + 1

h

∫ ∞

−∞
dE nF (E)

∑
σ=±

σ

2
〈n(p̂,Eσ ,z)〉p̂, (88)

with Eσ = E + σh. The contribution from the midgap states
to M(0)/χ0H is

Mmidgap(0)

χ0H
= π |�1|

2h
tanh

βh

2
. (89)

This result implies the breakdown of linear-response theory at
low temperatures with βh = μ0H/kBT � 1. Equation (89)
also implies that the magnitude of the total midgap-state
magnetization ∼Mmidgap(0) × �vF /|�1| at low temperature is
of the order of k2

F μ0, in which the factor k2
F originates from

the number of midgap states.
At T = 0, the continuum states give the contribution −1,

which cancels out the first term in Eq. (88). It follows that

M(0)

χ0H
= χ (0)

χ0

T →0−−→ π |�1|
2h

. (90)

The zero-temperature susceptibility is inversely proportional
to H and takes a large positive value for small H .
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APPENDIX: ODD-FREQUENCY PAIRING AND THE
ZERO-ENERGY DENSITY OF STATES

The purpose of this Appendix is to show that the zero-
energy density of states can be obtained from the odd-
frequency pair amplitude. The system considered here is
similar to that in the upper panel in Fig. 1, but here we do
not assume a specific profile of �(z) except that �(z) takes an
asymptotic constant value �2 at z → ∞.
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We start with the following relation obtained readily from
Eq. (24):

(ĝ2×2 + i)

[−F
1

]
= [−F̃ 1](ĝ2×2 + i) = 0. (A1)

This equation connects the diagonal element (g) and the off-
diagonal elements (f , f̃ ) as

g + i = F−1f = −F̃−1f̃ , (A2)

g − i = F f̃ = −F̃f. (A3)

Adding Eqs. (A2) and (A3), we get

g = 1
2 (F−1f + F f̃ ) (A4)

= − 1
2 (F̃f + F̃−1f̃ ). (A5)

It is worth noting that |F |2 for ε = E satisfies

i�vF p̂z∂z|F |2 = �(z)(F∗ − F)(1 − |F |2). (A6)

Since F(z → +∞) = F2 for p̂z < 0 and |F2|2 = 1 for |E| <

|�2|, it follows from Eq. (A6) that

|F(p̂,E,z)|2 = 1 (p̂z < 0, |E| < |�2|). (A7)

In a similar way, we can show that F̃ has the property

|F̃(p̂,E,z)|2 = 1 (p̂z > 0, |E| < |�2|). (A8)

For the retarded Green’s function g(p̂,E + i0,z) at the low
energies |E| < |�2|, we obtain from Eqs. (A7) and (A4)

Im[g] = Im[F∗D] (p̂z < 0, |E| < |�2|) (A9)

and from Eqs. (A8) and (A5)

Im[g] = −Im[F̃D] (p̂z > 0, |E| < |�2|), (A10)

where

D = 1
2 [f (p̂,E + i0,z) − f̃ (p̂,E + i0,z)∗]. (A11)

Since

f̃ (p̂,E + i0,z)∗ = f (−p̂,−E + i0,z) = f (p̂,E − i0,z),

(A12)

we can write D in the form

D = 1
2 [f (p̂,E + i0,z) − f (p̂,E − i0,z)]. (A13)

Equations (A9), (A10), and (A13) give the local density of
states, n(p̂,E,z) = Im[g], at |E| < |�2|.

In the zero-energy limit, we have

lim
E→0

D = f OF(p̂,ε → +i0,z), (A14)

lim
E→0

F = −i sgn(�2) (p̂z < 0), (A15)

lim
E→0

F̃ = i sgn(�2) (p̂z > 0). (A16)

Substituting these expressions into Eqs. (A9) and (A10) and
considering that the density of states is positive definite, we
arrive at

n(p̂,E → 0,z) = |Re[f OF(p̂,ε → +i0,z)]|. (A17)

This shows that the zero-energy density of states can be
interpreted as a manifestation of odd-frequency pairing.
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