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The field distribution in the vortex lattice of a pure niobium single crystal with an external field applied along a
three-fold axis has been investigated by the transverse-field muon-spin-rotation (TF-μSR) technique over a wide
range of temperatures and fields. The experimental data have been analyzed with Delrieu’s solution for the form
factor supplemented by phenomenological formulas for the parameters. This has enabled us to experimentally
establish the temperatures and fields for Delrieu’s, Ginzburg and Landau’s, and Klein’s regions of the vortex
lattice. Using the numerical solution of the quasiclassical Eilenberger equation, the experimental results have
been reasonably understood. They should apply to all clean BCS superconductors. Delrieu’s analytical model
supplemented by phenomenological formulas for its parameters is found to be reliable for analyzing TF-μSR
experimental data for a substantial part of the mixed phase. Abrikosov’s limit is contained in it.
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I. INTRODUCTION

The physical properties of superconductors are usually
described by the phenomenological Ginzburg-Landau (GL)
theory [1,2]. For a type-II superconductor it predicts a mixed
phase with a periodic variation of the magnetic induction in the
form of a vortex lattice (VL), as first derived by Abrikosov [3].
For a simple superconductor the VL is characterized by three
fields: the minimum field, the field at the saddle point of the
field map, and the maximum field, which is found in the vortex
cores. The minimum field lies at the center of the equilateral
triangle formed by three nearest-neighbor vortex cores. This
simple picture is believed to be valid, although the GL theory is
theoretically justified only in the vicinity of Tc0 [4], the critical
temperature at low field. However, because of its simplicity, it
serves as a basis for data analysis of experiments performed in
the whole mixed phase [5,6].

Using an approximate solution of the microscopic BCS-
Gor’kov equation [4], Delrieu discovered the minimum field
in the vicinity of the upper critical field Bc2 at low temperature
to be at the midpoint between two vortex cores [7]. Later on,
solving numerically Eilenberger’s equation [8], an analytical
approximation to the BCS-Gor’kov’s equation involving an
integration over the magnitude of the electron wave vector,
Klein found two field minima in the VL unit cell at intermediate
temperature [9]. Consistent with Klein’s results, nuclear
magnetic resonance (NMR) experiments by Kung [10] on
vanadium have detected a linear temperature dependence of
the vortex-core field in a large temperature range towards zero
temperature.

Here we present an exhaustive study of the field distribution
in the VL of a pure niobium single crystal with the magnetic
field Bext applied along a crystallographic 〈111〉 direction.
The measurements have been done using the transverse-
field positive-muon-rotation (TF-μSR) technique [11,12]. We
have recently published a report which focuses on the Bc2

vicinity [13]. The present data have been analyzed with an
expression for the form factor derived analytically by Delrieu.
Notice that the form factor of Abrikosov is a limiting case of the
former expression. Combining experimental and theoretical
results, we have established the VL characteristics predicted
by Abrikosov, Delrieu, and Klein in the proper parameter
ranges. Our findings have been explained semiquantitatively
using results obtained by solving numerically Eilenberger’s
equation assuming a cylindrical Fermi surface.

The organization of this paper is as follows. Section II
introduces theoretical models for the VL field distribution. In
Sec. III the sample is described, as well as the experimental
conditions and the data analysis. Section IV displays typically
measured field distributions. Section V discusses the VL
characteristics derived from the present experimental and
theoretical studies. We summarize the results obtained in this
work in Sec. VI. Possible improvements of the data analysis
and experimental conditions are mentioned. Some conclusions
and perspectives are presented in Sec. VII.

The reader interested in only the characteristics of the VL
for niobium derived from our measurements and their analysis
should jump directly to Sec. V. We stress that they are expected
to be found for all clean BCS superconductors.

II. THEORETICAL BACKGROUND ON THE FIELD
DISTRIBUTION IN THE VL OF NIOBIUM

We shall first briefly describe the theories used to fit the
μSR asymmetry time spectra. Then we shall present some
computed field distributions.

We recall that a conventional triangular VL is observed
when Bext is applied along a three-fold axis as revealed by
small-angle neutron scattering (SANS) [14–17]. In contrast
to expectation, the VL field distribution is not described
by the GL theory for Bext in the Bc2 vicinity at low
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FIG. 1. (Color online) A triangular vortex lattice in the direct
space. The external field Bext is applied perpendicular to the vortex
plane. The bullets illustrate vortex-core coordinates, and the crosses
show two positions of particular interest in a unit cell, Ap and Bp.
In addition, we specify the position of one of the vortex-core centers
with V C nearby. The thin solid line represents the Wigner-Seitz cell.
The position coordinates are scaled by the VL parameter a.

temperature [13,18]. On the other hand, the approximate
Delrieu solution of the BCS-Gor’kov equation explains the
measured distribution, but only above 0.6 K [13]. This is a tem-
perature much lower than the zero-field critical temperature
Tc0 = 9.25 K.

A. Description of the available theories

We illustrate in Fig. 1 an equilateral triangular VL. Three
positions of special interest have been defined: the midpoint
between two consecutive vortex cores Ap and the center of an
equilateral triangle formed by three nearest-neighbor vortex
cores Bp. In addition, a vortex-core position is labeled V C.

The TF-μSR technique gives access to the component
field distribution along the Bext direction if Bext is sufficiently
large [12]. That is the case here. Labeling this direction as Z,
D̃c(BZ) is measured. It can be computed from the real-space
field map BZ(r) of the two-dimensional VL:

D̃c(BZ) =
∫

u.c.
δ[BZ(r) − BZ]d2r, (1)

where the integral extends over the VL unit cell. In terms of
its Fourier components BZ

Km,n
, we have for the field map

BZ(r) =
∑
Km,n

BZ
Km,n

exp(iKm,n · r), (2)

where the sum is over the reciprocal space of the VL.
We need an expression for BZ

Km,n
, which is usually called

the form factor in the SANS literature.
First of all, we note that our sample is in the clean limit [13].

So we do not need to consider the effect of impurities. We

shall use two theories for the computation of BZ
Km,n

that are
approximations to the BCS-Gor’kov theory. Two types of
approximations are to be considered: the common ones and
the ones particular to a theory. Common is the semiclassical
approximation. Here the hypothesis is made that the spacing
between the Landau levels is small in comparison to the
sum of their thermal and collision broadenings [19]. This
is expected to be valid for niobium down to ≈0.04 K [20].
To get quantitative predictions to compare with experimental
data, we need a simple, but still realistic, Fermi surface.
Delrieu’s solution of the BCS-Gor’kov equation assumes a
spherical Fermi surface. For an extensive numerical study of
Eilenberger’s equation such as presented here, a cylindrical
Fermi surface is a natural choice. This is partly because of
computational convenience and is believed to be enough for the
present purpose of constructing the phase diagram. Its essential
features and other properties in this paper do not change when
a three-dimensional Fermi surface model is used; only the κGL

value changes. We can translate and interpret the κGL values
between the two-dimensional and three-dimensional cases. As
for more realistic Fermi surface models, some of us have the
experience to use a realistic three-dimensional Fermi surface
model calculated by band theory for niobium [21]. In order
to evaluate the subtle vortex lattice orientational changes for
Bext ‖ 〈001〉 we definitely need to have a realistic Fermi surface
model. For the present purposes the cylindrical Fermi surface
model is believed to be enough.

Next, for completeness we summarize the work of Delrieu.
He neglected the spatial dependence of the order parameter
�(r). While this approximation is reasonable in the vicinity of
Bc2, it should break down when approaching the lower critical
field. He derived BZ

Km,n
= fm,h(ã,b̃,c̃). The function fm,h can

be found elsewhere [7,20]. Here ã has the dimension of a field:

ã = −μ0N0�
2
0

2BZ
c̃. (3)

In the region of validity of Delrieu’s approximation, BZ(r) ≡
BZ � Bext. The parameter ã does not influence the shape of
BZ

Km,n
and D̃c(BZ). It only gives its scale. It is proportional to

the density of state at the Fermi level in the normal metal N0

(per spin, volume, and energy) and the quantity �2
0 = |�(r)|2

[|�(r)|2 is the spatial average of |�(r)|2] and is inversely
proportional to the average field BZ . The dimensionless
parameters b̃ and c̃ determine the shape of D̃c(BZ) and
are expressed in terms of the ratios of three length scales:
b̃ = [�/(πξB)]2 and c̃ = �/ξT . Here, � = [�0/(2πBZ)]1/2

is a length parameter proportional to the intervortex distance.
The field- and temperature-dependent length scale ξB =
�vF/(π�0) diverges near Bc2, while ξT = �vF/(2πkBT ). We
have introduced the Fermi velocity vF. It is easily found that

b̃ = 1

π2

ξ 2
GL(T )

ξ 2
0 (T )

1 − b

b
, (4)

where b = Bext/Bc2(T ) is the reduced field, ξGL is the GL
coherence length, and ξ0 is the Pippard-BCS coherence
length [20]. To derive Eq. (4) two phenomenological formulas
expected to be valid for conventional superconductors have
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been used:

�0 = �0(0)
√

1 − b
√

1 − τ 2, (5)

Bc2(T ) = Bc2(0)(1 − τ 2), (6)

where τ = T/Tc0. Since ξ 2
GL(T )
ξ 2

0 (T )
= ξ 2

GL(0)
ξ 2

0 (0)
and

ξGL(0) � ξ0(0)/0.96 in the clean limit [1],

b̃ = 0.110
1 − b

b
. (7)

Hence, b̃ only depends on b. The parameter c̃ can be expressed
in terms of vF [20]:

c̃ =
√

�02πkBT√
BZ�vF

, (8)

where �0 is the magnetic flux quantum. Interestingly, N0�
2
0 in

Eq. (3) is the condensation energy Ec [13]. Hence, according
to Eq. (5),

Ec = Ec(0)(1 − b)(1 − τ 2). (9)

This means that BZ
Km,n

from Delrieu’s solution supplemented
by phenomenological formulas for the parameters depends on
two material parameters: vF and Ec(0), the second parameter
being involved in only the scaling of the field. Introducing the
unitless field,

bZ
N = BZ − Bsad

Bvc − Bsad
, (10)

where Bsad and Bvc are the saddle-point and vortex-core
fields discussed at length in Sec. II B. While Bvc is always
the field at a vortex-core center, the position of Bsad may
change as described in Sec. V B. The unitless component
field distribution Dc(bZ

N) only depends on vF. However, for the
computation of a measured TF-μSR asymmetry time spectrum
we need D̃c(BZ) rather than Dc(bZ

N). Since Dc(bZ
N)dbZ

N =
D̃c(BZ)dBZ ,

D̃c(BZ) = 1

Bvc − Bsad
Dc(bZ

N). (11)

Hence, as expected, D̃c(BZ) depends on two materials pa-
rameters, namely, vF and Ec(0), and Dc(bZ

N) depends only on
vF.

Since the BZ
Km,n

analytical Delrieu’s solution derives from an
approximation to the BCS-Gor’kov theory supposed to be valid
only in the Bc2 vicinity, we need a method to compute BZ

Km,n

for the whole VL. In addition, if possible, it would be nice not
to rely on phenomenological formulas for the physical param-
eters. Eilenberger’s equation for the thermal Green’s function
fits our purpose. Eilenberger introduced Green’s functions that
result from Gor’kov’s functions integrated over the magnitude
of the electron wave vector [8]. These former functions follow
transport-like equations suitable for numerical calculations as
first shown by Klein [9]. Supplemented by the self-consistent
equations for the gap function and vector potential, here we
have directly computed BZ(r) normalized by Bc2(0), a quantity
directly observable.

The integration over the magnitude of the wave vector
introduces an approximation which is valid when kFξ0 	 1,

where kF is the Fermi wave vector. Since 1/kF is of the order
of the niobium lattice parameter and ξ0 � 27 nm [20], the
condition kFξ0 	 1 is clearly fulfilled. Following Brandt’s
method for solving the GL equations [22], Eilenberger’s
equation is currently solved by taking advantage of the
periodicity of the VL [23]. Nicely enough, BZ(r)/Bc2(0)
depends only on one single material parameter: the GL
parameter κGL = λ/ξGL, where λ is the London penetration
depth. This should be compared to BZ

Km,n
/ã from Delrieu,

which also depends on one single parameter, but vF rather
than κGL. These two parameters are related [9].

B. Characteristics of field distributions

We compare Dc(bZ
N) for some selected (T ,Bext) values

computed from the analytical Delrieu theory in Fig. 2. We
take the material parameter valid for our niobium sample [13]:
vF = 2.0 × 105 m/s. We recall that unitless Dc(bZ

N) only
depends on vF. We recall that Tc0 = 9.25 K and Bc2(0) =
0.43 T. As expected and clearly seen in Fig. 2, a distribution
is characterized by three fields: its minimum field Bmin, a
saddle-point field Bsad in the field map for which Dc(bZ

N)
displays a maximum, and Bvc, which is the field in the center of
a vortex core, i.e., the maximum field in Dc(bZ

N). Note that two
features of a distribution are strongly dependent on the (T ,Bext)
values: the shape of the high-field tail and the distance between
Bmin and Bsad. As shown previously [13], the observation of
a linear high-field tail for large Bext and low T , clearly seen
for the fourth distribution from the top, is a signature in those
experimental conditions of the pronounced conical shape of
the field variation around the vortex cores. This results from
the partial Cooper pair diffraction on the vortex cores. We find

0 0.5 1
0

2

4

6

8

10

12

0.1 K, 200 mT

0.1 K, 350 mT

1.0 K, 350 mT

5.5 K, 200 mT

8.5 K, 30 mT

bZ
N = [BZ −Bsad]/[Bvc −Bsad]

D
c
(b

Z N
)

(-
)

FIG. 2. (Color online) Component field distributions Dc(bZ
N)

computed with Delrieu’s model assuming vF = 2.0 × 105 m/s. Five
cases are considered: from top to bottom, in the Bc2(T ) vicinity at
four temperatures, i.e., T = 8.5, 5.5, 1.0, and 0.1 K, and at low
temperature and field but still in the mixed phase, i.e., T = 0.1 K
with Bext = 200 mT.
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it convenient to measure the distance between Bmin and Bsad

with the following unitless normalized ratio:

δBn
sad,min = −Bmin − Bsad

Bvc − Bsad
. (12)

The first three distributions from the top of Fig. 2 are for
Dc(bZ

N) with Bext in the Bc2(T ) vicinity. A δBn
sad,min minimum

is predicted around T = 5.5 K. This should easily be observed
experimentally. However, because of the Gaussian smearing
discussed in the next section, δBn

sad,min is not expected to be as
small as predicted. We postpone the discussion of its physical
meaning to Sec. V. A close look at the last two Dc(bZ

N) from
the top of Fig. 2 illustrates the effect of the field intensity
at low temperature. An exotic Dc(bZ

N) is only predicted for a
sufficiently large Bext.

III. EXPERIMENT

Here the sample is described, along with the experimental
conditions and the data analysis.

The TF-μSR measurements reported here have been per-
formed on the single crystal described in Ref. [13]. The small
Bc2 = 430 (2) mT testifies of its high quality and purity, as well
as the lack of difference between the distributions measured
with the zero-field-cooled and field-cooled procedures at 1.5 K
under Bext = 360 mT.

The new TF-μSR measurements described here have
again been performed at the Swiss Muon Source (SμS),
Paul Scherrer Institute (PSI), Switzerland, using the general
purpose spectrometer (GPS) and Dolly spectrometers for
T � 1.6 K. Measurements for T < 1.6 K have been conducted
on the low-temperature facility (LTF) spectrometer.
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FIG. 3. (Color online) Temperatures and fields at which mea-
surements have been performed on the niobium single crystal. The
geometry for a measurement is depicted by the pictogram: the
directions of Bext ‖ 〈111〉 and of the initial muon beam polarization
Sμ are given. The BVL,min(T ) and Bc2(T ) lines have been determined
as explained in the main text. The points at which the form factor
from Delrieu provides a proper description of the experimental μSR
data are encircled.
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FIG. 4. Some asymmetry time spectra for our niobium single
crystal with Bext ‖ 〈111〉 as a function of temperature at Bext = 50 mT.

Our niobium sample is a single-crystal disk of 13 mm
diameter and 2 mm thickness with a three-fold axis oriented
normal to the disk. In Fig. 3 we specify the values of the
temperatures and fields for which measurements have been
done. Five temperature scans have been performed at Bext =
300, 200, and 150 mT, 0.75Bc2, and ∼0.9Bc2. In addition, we
report two field scans at 1.6 and 3.5 K. The Bc2(T ) line has been
determined previously [13]. In addition to the traditional VL
and Meissner phases, one needs to consider the intermediate
state [24]. The VL phase is characterized by a single damped
oscillation centered around zero as seen for T = 7.3 and 6.8 K
in Fig. 4. The amplitude of the oscillating signal at time t = 0
is proportional to the fraction of the niobium sample in the VL
state. When cooling down to 5.7 K, the oscillation is no longer
centered around zero, and its amplitude is reduced. The signals
below 5.7 K represent the sum of oscillating and Kubo-Toyabe-
type components. This indicates that the sample has left the
mixed phase and part of it is in a zero-field condition due to
Meissner screening. Performing a few series of measurements
as reported in Fig. 4, we have determined the BVL,min(T ) line
shown in Fig. 3. For Bext > BVL,min(T ) the sample is certainly
in the mixed phase. We shall use this conservative estimate.

The analysis of the asymmetry time spectra has been done
following the method explained in Ref. [13]. Here we would
like to stress three points. We do fit the time spectra and not
the component field distributions, which are only computed
for display purposes. Such a distribution is denoted D̃

exp
c (BZ).

The difference between D̃
exp
c (BZ) and D̃c(BZ) arises from

the contributions of the nuclear 93Nb magnetic moments
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and the VL disorder to the field distribution at the muon site.
These contributions are taken into account in the fits by a single
Gaussian function [25]. This leads to a Gaussian smearing of
D̃c(BZ). The influence of disorder is relatively modest in the
high-field part of a distribution [26]. Finally, it has been shown
previously that no effect of the muon diffusion on the measured
D̃

exp
c (BZ) is expected [13].
Data analysis with Delrieu’s model is exceedingly time con-

suming. The computation of D̃c(BZ) may take a few minutes.
Since a large number of iterations are needed for fitting a single
asymmetry spectrum, an analysis would take many hours.
In order to accelerate the analysis we have first computed
BZ

Km,h
(b̃i ,c̃j ) setting ã = 1 since it is only a multiplicative

factor. We have taken −30 � m � 30 and −30 � h � 30 and
a discrete set of b̃i and c̃j parameters, i.e., b̃i = 10ni and c̃j =
10nj , with nα = −3 + 0.05 × (α − 1) (α stands for i or j ).
The indices i = 1, 2, . . . ,81 and j = 1,2, . . . ,101 correspond
to 0.001 � b̃ � 10 and 0.001 � c̃ � 100. Because BZ

Km,h
is a

continuous function of its variables, in the fitting procedure the
actual values of BZ

Km,h
(ã,b̃,c̃) were evaluated by interpolation

from the precalculated values of ã × BZ
Km,h

(b̃i ,c̃j ) (four-
dimensional matrix). A quadratic interpolation has been used
to avoid zero second-order derivatives during the χ2 minimiza-
tion. With this method an evaluation of asymmetry time spec-
trum or D̃c(BZ) can be performed within a fraction of second.

IV. TYPICAL MEASURED FIELD DISTRIBUTIONS

In this section typical measured field distributions D
exp
c (bZ

N)
are displayed. The curves result from a combined fit of the
measured asymmetry time spectra to Delrieu’s theory with vF

as a global fitting parameter. The parameters extracted from it
are discussed in Sec. V.

We start by considering the 0.75Bc2(T ) temperature scan.
As seen from Fig. 3, it probes the VL from near Tc0 down to low
temperature, i.e., from 7.5 to 1.77 K. Figure 5 illustrates some
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FIG. 5. (Color online) Some D
exp
c (bZ

N) distributions as a function
of temperature for Bext = 0.75Bc2(T ). The data and curves have
been shifted vertically for better visualization. For each D

exp
c (bZ

N)
the weak intensity peak for bZ

N slightly larger than 0.2 arises from the
contribution of the background (sample holder and cryostat walls) to
the distribution. The right panel focuses on the low-field regime. The
solid lines result from fits to Delrieu’s theory as described in Sec. II.
The dashed line links the Bmin values.
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FIG. 6. (Color online) A selection of D
exp
c (bZ

N) distributions as
a function of the reduced field b = Bext/Bc2(1.6 K). The data and
curves have been shifted vertically for better visualization. For
each D

exp
c (bZ

N) the weak-intensity peak for bZ
N � 0.2 arises from the

contribution of the background (sample holder and cryostat walls) to
the distribution. The limited statistic for the b = 0.49 distribution
explains its rather noisy nature. The right panel focuses on the
low-field regime. The solid lines result from fits to Delrieu’s theory
as described in Sec. II. The dashed line links the Bmin values.

D
exp
c (bZ

N). Delrieu’s theory provides a good description. This
is indicated in Fig. 3 by encircling the symbols which specify
the temperatures and fields of the scan. The determination of
Bmin at high temperature is not very precise due to Gaussian
smearing. However, from Fig. 5 it is quite clear that δBn

sad,min
is minimum around 5.0–5.5 K.

Some D
exp
c (bZ

N) from the field scan at 1.6 K are shown in
Fig. 6. Here a smooth δBn

sad,min increase is observed as Bc2 is
approached. Again, Delrieu provides a good description.

Two D
exp
c (bZ

N) are displayed in Fig. 7 for T � 6.5 K. The
remarkable feature here is that δBn

sad,min is about the same
for the two distributions, although the reduced field b is
clearly different. This is in contrast to the two previous sets of

0 0.5 1
0

1

2

3

4

5

6

bZ
N = [BZ − Bsad]/[Bvc − Bsad]

D
e
x
p

c
(b

Z N
)

(-
)

T = 6.49 K, b = 0.746
T = 6.57 K, b = 0.573

−0.1 −0.05 0 0.05 0.1
0

1

2

3

4

5

6

7

bZ
N = [BZ − Bsad]/[Bvc − Bsad]

D
e
x
p

c
(b

Z N
)

(-
)

T = 6.49 K, b = 0.746
T = 6.57 K, b = 0.573
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N � 0.3 arise from the
contributions of the background (sample holder and cryostat walls) to
the distributions. The right panel focuses on the low-field regime. The
value of the reduced field b = Bext/Bc2(1.6 K) is indicated for each
D

exp
c (bZ

N). A larger contribution of the VL disorder to the higher-field
distribution is seen by the reduction of the probability at Bsad. The
solid lines result from fits to Delrieu’s theory as described in Sec. II
for T = 6.49 K and b = 0.746. That theory does not fit the data for
T = 6.57 K and b = 0.573.
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distributions for which δBn
sad,min changes as a function of field

or temperature. Delrieu’s model is unable to account for the
data at the lowest Bext value.

V. CHARACTERISTICS OF THE MIXED PHASE
OF NIOBIUM

Here the physical properties of niobium and its VL deduced
from our measured μSR data are discussed. We shall first
consider the parameters extracted from the global fit of the
asymmetry time spectra with Delrieu’s approximation for the
form factor. The validity regime of the approximation will
be determined. Then the properties of the three characteristic
fields of the VL will be analyzed with the numerical solution
of Eilenberger’s theory. Finally, combining our experimental
results and Eilenberger’s theory, the field map of the VL will
be established.

A. VL parameters and region of validity
of Delrieu’s approximation

We have recorded TF-μSR asymmetry time spectra for the
VL of niobium for a large range of (T ,Bext) values. From a
global fit of the spectra with Delrieu’s approximation for the
form factor we deduce vF = 2.0 (2) × 105 m/s, in agreement
with our previous estimate [13]. From the measured ã and c̃

parameters and Eq. (3) the condensation energy Ec = N0�
2
0

is determined. As an example, in Fig. 8 we show the field
dependence of Ec = −2BZã/μ0c̃ at T = 1.6 K. The linear
field dependence of �2

0 given by Eq. (5) is found to be a
reasonable approximation. This is again consistent with the
results of our analysis of spectra previously taken in the vicinity
of Bc2(T ).

From the analysis of an asymmetry time spectrum recorded
near Tc0 with the GL theory we recall that κGL = 0.89 (1) [20].
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FIG. 8. (Color online) Condensation energy Ec = N0�
2
0 and

μ0N0�
2
0/2 as a function of Bext. The values extracted from the field

scan at 1.6 K are represented as circles, while diamonds correspond
to the two temperature scans at 200 and 300 mT. The solid line is a
guide to the eye.

From a close look at Fig. 3 we infer that Delrieu’s solution
for the form factor has a relatively large validity range for
niobium; that is, it is valid not only in the immediate vicinity of
Bc2(T ) but also for 0.6 � T � 2.5 K with 0.2 T � Bext < Bc2.
The lower temperature bound was previously given [13].
Since this solution also includes Abrikosov’s result and it is
numerically feasible to use it in a fit procedure, it should
be seriously considered for the analysis of TF-μSR data
as a reliable alternative to a pure GL fit for clean s-wave
superconductors [22,27].

B. VL characteristic fields, field distributions,
and physical origins

Having finished the analysis of the experimental data for
various fields and temperatures with Delrieu’s theory, we now
consider those from the viewpoint of Eilenberger’s theory.
Hence, we can discuss the whole mixed phase, not only
the vicinity of Bc2(T ). As already mentioned, Klein first
calculated the detailed field profiles in the mixed state of
niobium by solving Eilenberger’s equation [9]. Here, based
on a numerical algorithm explained in Refs. [23,28–31], we
have calculated BZ(r) within a VL unit cell under periodic
boundary conditions for various Bext and T appropriate for
the present experimental situations. It will turn out later that
κGL=1.8 best describes the experimental data; thus all the
following computations have been performed using this value.
From this information a variety of physical quantities directly
related to the present experiments can be deduced, that is, the
field distribution D̃c(BZ) and therefore the three characteristic
field values Bmin, Bsad, and Bvc and their locations within a
unit cell.

In order to understand the three possible field patterns,
namely, those predicted by Ginzburg and Landau, Klein (KL),
and Delrieu (DL), which we will identify through the analysis,

ApBp

1.0

0

VC

Ap
Bp

VC

[B
Z -

B
sa

d]
/[B

vc
-B

sa
d]

T/Tc0=0.4

Bext/Bc2(0)=0.18
Bext/Bc2(0)=0.44
Bext/Bc2(0)=0.70

0.02

-0.06
ApBp

FIG. 9. (Color online) Results from Eilenberger’s theory for
three field profiles along the vortex-core-Ap path, i.e., along V C − Ap

via Bp in the direct space. The ratio value Bext/Bc2(0) = 0.18
corresponds to GL, Bext/Bc2(0) = 0.44 to KL, and Bext/Bc2(0) =
0.70 to DL. We have chosen T/Tc0 = 0.4. One of the insets recalls
the definition of positions of interest in the unit cell, and the other
inset magnifies the field profiles between Bp and Ap.
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T/Tc0=0.4

Bext/Bc2(0)=0.18
Bext/Bc2(0)=0.44
Bext/Bc2(0)=0.70

1.0

0
ApVC

ApVC

j /
j m

ax

FIG. 10. (Color online) Three current profiles along the V C −
Ap path in the direct space. The parameters are the same as in Fig. 9.
The currents are normalized to their maximum values. Note the
changes in the slope at Ap and in the maximum positions for the
three profiles.

we first show related field profiles for the three cases in Fig. 9.
We find the following.

(1) The GL field profile for Bext/Bc2(0) = 0.18: Bmin is
located at point Bp and Bsad at Ap in the unit cell. The lowest
edge of D̃c(BZ) occurs at Bp.

(2) The DL field profile for Bext/Bc2(0) = 0.70: Bmin is
located at point Ap, while Bsad is located at point Bp in the unit
cell. The lowest edge of D̃c(BZ) occurs at Ap.

(3) The KL field profile for Bext/Bc2(0) = 0.44: Ap is no
longer the saddle, but a local minimum. Bp is at the absolute
minimum where the lowest edge of D̃c(BZ) occurs. The saddle
points are located in between Ap and Bp. Those features are
also seen from Fig. 17 in Ref. [9], where the contour plots for
the three types of distributions are displayed.

Let us now discuss the physical origins of those three kinds
of field profiles. In Fig. 10 we show the current profiles around
the vortex core along the path from V C − Ap where each
curve corresponds to that in Fig. 9. In GL [Bext/Bc2(0) =
0.18] the current maximum appears relatively near V C, and
its amplitude quickly decays towards Ap. Thus the current
curve approaches Ap from above its tangential slope there,
implying that the neighboring vortex cores are far apart and
the vortex cores are not overlapped. This means that the farthest
Bp point from the neighboring vortex cores in a unit cell is a
Bmin location. In contrast, the DL case shows that the current
maximum moves towards Ap, with the tangent of the current
amplitude being largest among the three profiles. This means
that the neighboring vortex cores are densely packed with the
vortex cores overlapped, causing Bp not to be the minimum
field location in a unit cell. The field profile is quite different
from that in GL, making Ap the minimum field location. In the
KL limit those features are in between the GL and DL cases.

Figure 11 shows the comparison between the theoretical
calculations and the experimental data of the T dependence
of Bmin, Bsad, and Bvc at two Bext values. The theoretical
calculation has been done by varying the κGL value to best
fit those three values near T/Tc(Bext) = 1. It turns out that the

sad
vc
min

200 mT

0 1.0
T/Tc(Bext)

-0.04

0.12

0

0.08

0.04

0.2

0.1

0

-0.1

sad
vc
min

0.61Bc2(0)

sad
vc
min

300 mT
sad
vc
min

0.79Bc2(0)

FIG. 11. (Color online) The three characteristic fields Bα (α =
minimum, saddle, and vortex core) vs the normalized temperature
T/Tc(Bext) for two values of Bext. The computed values are shown by
solid symbols linked by line segments. We have measured Tc(Bext) =
5.6 K and Tc(Bext) = 3.95 K for Bext = 200 and 300 mT, respectively.

best fitting is achieved for κGL=1.8. This value is two times
larger than the nominal value κGL = 0.89 (1) of the present
sample mentioned before. We notice that the three types of
field distributions, namely, the GL, KL and DL cases, are
always present irrespective of the choice of κGL. Figure 11
shows the following.

(1) The initial slopes of the three characteristic fields near
T/Tc(Bext) = 1 are nicely reproduced for the two Bext values.

(2) Those nice fittings continue to lower temperatures for
Bmin and Bsad.

(3) In contrast, Bvc starts to deviate towards lower
temperatures. While the theoretical curves keep increasing
linearly with large slopes, the temperature dependence of the
experimental data is much weaker.

According to a previous calculation, Bvc is expected to keep
increasing towards zero temperature in the clean limit [23]
because of the so-called Kramer-Pesch effect [32]. As already
noticed, a previous NMR experiment by Kung [10] on
vanadium shows the expected linear temperature dependence
of Bvc in a large temperature range towards zero temperature.
Clearly, it would be of much interest to perform TF-μSR
measurements on a very clean vanadium sample to confirm
Kung’s result and to extend it to very low temperature.

We show the field dependences of the three characteristic
fields in Fig. 12. It is seen that the theoretical predictions
for Bmin and Bsad nicely follow the experimental results,
and the qualitative field dependence of Bvc is explained but
quantitatively deviates because in those low temperatures the
Kramer-Pesch effect is partially suppressed, as mentioned
above. Since Bvc reflects the spatial structure around a vortex
core, the partially suppressed Kramer-Pesch effect implies that
the conical shape structure of BZ(r) at the vortex-core position
is rounded relative to theoretical expectation. However, the
linear field tail of the distribution at high field, a signature of
the conical feature, is nicely observed at low temperature [13].
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FIG. 12. (Color online) The three characteristic fields Bα (α =
minimum, saddle, and vortex core) vs the normalized field
Bext/Bc2(T ) at two temperatures. The computed values are shown by
the solid symbols linked by line segments. Experimentally, Bc2 = 405
and 321 mT for T = 1.6 and 3.5 K, respectively.

C. VL field map and contour plot

We have previously established that Delrieu’s approx-
imation is reliable for a large part of the mixed phase.
The computed δBn

sad,min map displayed in Fig. 13 visualizes
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B
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/
B
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(0
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FIG. 13. (Color online) Contour map of δBn
sad,min for niobium

with Bext ‖ 〈111〉 computed with Delrieu’s solution for the form
factor. We have restricted the map to the temperature and field regimes
properly described by that solution. We specify the regimes consistent
with Delrieu, Klein, and Ginzburg and Landau. The dash-dotted line
displays BVL,min(T ).

the region of the mixed phase where the approximation is
reliable for the analysis of our niobium data. Remarkably, the
(T ,Bext) points close to Bc2 at which δBn

sad,min = 0 effectively
correspond in Fig. 5 to the temperature where the measured
δBn

sad,min is minimum. This occurs around 5.5 K. It is because
of the Gaussian smearing that δBn

sad,min does not vanish
experimentally.

From Delrieu, δBn
sad,min = 0 at the border between the DL

and GL VL region. This border belongs to Klein’s regime,
which we will discuss now.

In order to examine the diagram obtained experimentally
in Fig. 13, we have performed extensive computations to con-
struct the corresponding diagram whose results are displayed
in Fig. 14. The overall features in Figs. 13 and 14 coincide,
namely, DL occupies the higher-field region while GL is
located at lower field. The KL region is in the middle. However,
the KL regime is no longer limited to the border between the
DL and GL regions: it has an appreciable extension. This is
a key result obtained from Eilenberger’s solution. Delrieu’s
approximation is too rough to capture the subtleties in BZ(r)
in the KL regime (see Fig. 9). In addition, while in the vicinity
of Bc2(T ) the values of δBn

sad,min in Figs. 13 and 14 strikingly
correspond for a given field and temperature, outside that
regime deviations between the results in the two figures are
clearly found: a given δBn

sad,min value in the DL region is only
weakly temperature dependent in Fig. 14, in contrast to the
results presented in Fig. 13. Before going further in comparing
the experimentally deduced and the theoretical diagrams, some
comments are in order.

Figure 13 considers BZ rather than Bext because it is this
parameter which enters into Delrieu’s theory. However, in
practice BZ � Bext. Because the lower-field border of the
measured phase is dependent on the experimental conditions,
for the sake of completeness, we have extended the theoretical
diagram in Fig. 14 to lower fields and temperatures than
in Fig. 13. We stress that while Delrieu’s formula does not
describe the low-temperature region of the mixed phase as seen

Bc2(T)
Delrieu
Klein
GL

0

1.0

B
ex

t/B
c2

(0
)

0 1.0T/Tc0

0.02

0.04

0.06

0.02

0.04
0.06
0.08
0.10

0.24

0.14
0.18

FIG. 14. (Color online) Contour map of δBn
sad,min for niobium

with Bext ‖ 〈111〉 computed with Eilenberger’s equation. In Klein’s
region two minimal field positions exist; see the inset on the right in
Fig. 9. The data in Fig. 6 (Fig. 7) correspond to scanning vertically
at low (high) temperature. For the data in Fig. 5 scanning is done
parallel to the Bc2(T ) line.
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FIG. 15. (Color online) The normalized field distributions
Dc(bZ

N)/Dc(0) for three field values at T/Tc0 = 0.2 corresponding
to the data in the right panel of Fig. 6. Those theoretical results are
traversing the map in Fig. 14 vertically.

in Fig. 13, the numerical solution of Eilenberger’s equation is
expected to provide a proper description.

The data set shown in Fig. 6 corresponds to scanning
the field at a fixed low temperature in Fig. 14. As this
map implies, δBn

sad,min increases as Bext increases. In fact, as
seen from Fig. 15, where we show the computed normalized
field distributions Dc(bZ

N)/Dc(0) under a fixed temperature
(T/Tc0 = 0.2) for three field values, as Bext increases, Bmin

moves to the lower-field side, i.e., to the left of the field scale.
This explains the fact that in Fig. 6 Bmin increases in absolute
value as Bext increases.

As for Fig. 5, where the scanning path is taken parallel to
the Bc2(T ) line, it is seen from Fig. 14 that δBn

sad,min decreases
first and then increases towards lower temperatures, coinciding
with the data in Fig. 5.

Finally, as for GL, Fig. 7 shows that the two distributions are
hardly distinguishable because the two distributions are both
inside the GL region in Fig. 14, where the GL distribution is
universal and scaled.

Those various scanning data throughout the Bext-T plane
demonstrate precise correspondence between Eilenberger’s
theory and experiment, supporting the existence of the three
distinct characteristic field distributions, i.e., the GL, KL, and
DL distributions.

VI. SUMMARY OF THE RESULTS OBTAINED IN THIS
STUDY AND POSSIBLE IMPROVEMENTS OF THE

ANALYSIS AND DATA RECORDING

In summary, combining TF-μSR measurements analyzed
with Delrieu’s analytical solution for the form factor, sup-
plemented with conventional phenomenological formulas for
the physical parameters, and the numerical solutions of the
quasiclassical Eilenberger equation to get BZ(r), we have
established that the VL of niobium with Bext applied along a
three-fold axis is characterized by three successive regions as

the sample is cooled down from Tc0. Hence, our work supports
the predictions of Abrikosov, Klein, and Delrieu, respectively.

The experimental data exhibit three regions in the mixed
phase which are explained by Eilenberger’s theory with
cylindrical Fermi surface. However, quantitative deviations in
the field and temperatures dependence of Bvc from theory are
evident. Surprisingly, a κGL parameter twice as large as the
measured value has to be assumed. We know of two sources
for possible explanations of the discrepancies.

(1) Our numerical solution of Eilenberger’s equation
does not take into account the Fermi velocity anisotropy
and gap anisotropy known to exist, as seen in the Bc2

anisotropy [33,34]. In particular the Fermi velocity anisotropy
generally increases the Bc2 value, thus causing the estimate of
κGL to change.

(2) We regard κGL as an effective parameter because
the theory assumes the clean limit. Although our sample is
extremely clean [13], it is known that defects and impurities
act to increase κGL from the nominal value.

We have to deal with three sources of field distributions
at the muon site: the nuclear 93Nb magnetic moments, the
VL itself, and the effect of the VL disorder. To a good
approximation, the component field distribution from the
nuclear moments in a TF-μSR experiment is Gaussian [12].
We have just discussed how the description of the distribution
from the VL itself can be improved. It is known that modeling
the effect of the VL disorder with a Gaussian field function
as done in this paper is a rough approximation. A close look
at Fig. 2 of Ref. [13] shows it definitively, particularly in
the vicinity of the low-field tail. In fact, the translational
correlations of the vortex cores are neglected in the Gaussian
approximation [35]. To progress we need to recognize that the
VL is not a two-dimensional lattice but a three-dimensional
lattice; that is, we are dealing with the flux-line lattice (FLL).
As for any lattice, disorder has to be considered. In the
FLL case we need to remember that the collective behavior
matters [36]. In the absence of dislocations, if disorder is
not too strong the FLL is periodic, as clearly demonstrated
by SANS measurements, but the FLL translational order
decays only algebraically rather than exponentially [37,38],
as expected theoretically [39]. In fact, a so-called Bragg glass
state is expected [40] and observed [37,38]. However, we
stress that it was found for samples with appreciable disorder.
It is still a challenge to observe it for a clean sample such as
ours. A numerical method to account for the Bragg glass state
has been devised for the analysis of SANS measurements [38].
This has yet to be done for the μSR counterpart.

Neither Delrieu’s analytical solution nor the numerical
solution of Eilenberger’s equation describes the measured
distributions below 0.6 K [13]. A proper account of the
vortex-lattice residual disorder may round up the predicted
sharp conical field shape at the VL vortex cores and explain
the measurements below 0.6 K.

Up to now we have discussed possible improvements of
the data analysis. But the experimental conditions themselves
could also be optimized. All the TF-μSR asymmetry time
spectra have been recorded on a single crystal disk with Bext

parallel to the disk axis; see the pictogram in Fig. 3. In this
geometry inhomogeneities due to the demagnetization field
near the sample boundaries may have to be considered. An
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improved experimental setup would require us to apply Bext

perpendicular to the disk axis. However, for the necessary
high Bext values this is not possible since the positive muon
is a charge particle and as such would be deflected from its
trajectory according to the Lorentz force. Hence, Bext should be
kept in the direction we have chosen. Therefore, to improve on
the experimental conditions, an elliptical single sample would
have to be used.

The form factors of a vortex lattice can be studied with
the SANS technique. It is well known that the exact solution
of GL theory gives some Km,n form factors of opposite sign
relative to those predicted by analytical approximations of GL
theory or the London model; see Ref. [22] for a discussion.
Regarding Delrieu’s solution, the signs of the form factors are
the same as is in Abrikosov’s solution and are given by the
factor (−1)mh [20]. Only the magnitude of the form factors
varies with the values of parameters b̃ and c̃. The signs of the
form factors at high order from the Eilenberger solution still
have to be evaluated. This requires getting the solution accurate
enough to extract those higher-order harmonics because they
become extremely small numbers.

VII. CONCLUSIONS AND PERSPECTIVES

In conclusion, combining the TF-μSR experimental tech-
nique with Delrieu’s analytical solution and numerical

solutions of the quasiclassical Eilenberger equation, we have
observed the three theoretically expected regions in the mixed
phase of niobium with Bext applied along a three-fold axis. We
do not know of any previous experimental observation of the
three regions. Our results should apply to any clean s-wave
superconductor with a triangular vortex lattice.

The experimental data have been recorded at high statistics,
and the analysis has been done with advanced methods.
Possible improvements of the data analysis and experimental
conditions have been pointed out. We hope that our work
will motivate people to analyze TF-μSR asymmetry time
spectra for other s-wave superconductors with the framework
presented here. An obvious candidate is vanadium, for which
the sample should be in the extremely clean limit.
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