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Angular dependence of superconductivity in superconductor/spin-valve heterostructures
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We report measurements of the superconducting transition temperature, Tc, in CoO/Co/Cu/Co/Nb multilayers
as a function of the angle α between the magnetic moments of the Co layers. Our measurements reveal that
Tc(α) is a nonmonotonic function, with a minimum near α = π/2. Numerical self-consistent solutions of the
Bogoliubov–de Gennes equations quantitatively and accurately describe the behavior of Tc as a function of α

and layer thicknesses in these superconductor/spin-valve heterostructures. We show that experimental data and
theoretical evidence agree in relating Tc(α) to enhanced penetration of the triplet component of the condensate
into the Co/Cu/Co spin valve in the maximally noncollinear magnetic configuration.
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I. INTRODUCTION

Competition between superconducting (S) and ferromag-
netic (F) ordering in S/F heterostructures can lead to unusual
types of superconductivity emerging from the proximity effect
at the S/F interfaces [1–9]. Penetration of spin-singlet Cooper
pairs from the S into the F material can result, when more
than one magnetic orientation is present, in mixing of the
spin-triplet and spin-singlet states by the exchange field and
generation of a spin-triplet component of the condensate
[4,6,10–15]. The amplitude of this proximity-induced triplet
state sensitively depends on the state of magnetization of the F
material. In particular, the triplet components with nonzero
projection of the spin angular momentum of the Cooper
pair (Sz = ±1) can only occur when there are magnetization
noncollinearities. These components of the condensate are
immune to pair breaking by the exchange field and, unlike the
singlet and the Sz = 0 triplet components, they can penetrate
deep into the F material [4,12,16]. This long-range triplet
condensate can be manipulated via changing the relative ori-
entation of the magnetizations, which creates opportunities for
the development of a new class of superconducting spintronic
devices. Recent progress in this direction is demonstration
of Josephson junctions with noncollinear magnetic barriers,
in which the supercurrent is carried by the long-range triplet
component of the condensate [17–19].

Thin-film multilayers of S and F materials are a con-
venient experimental platform for studies of the proximity-
induced triplet condensate [20–28]. The advantages of the
F/S multilayers include (i) well-established methods of the
multilayer deposition, (ii) easy and controllable manipulation
of the magnetic state of the F layers via application of
external magnetic field, and (iii) convenience of theoretical
description of the condensate owing to the translational
symmetry in the multilayer plane. Here we present studies
of the dependence of Tc in CoO/Co/Cu/Co/Nb multilayers on
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the in-plane angle α between the magnetic moments of the
Co layers. We compare our experimental results to numerical
solutions of the Bogoliubov–de Gennes equations and find
that excellent quantitative agreement with the experiment
can be achieved when scattering at the multilayer interfaces
is taken into account. This solution also reveals that Tc

suppression observed for the orthogonal state of the Co
magnetic moments originates from enhanced penetration of
the long-range triplet condensate into the Co/Cu/Co spin valve
in this maximally noncollinear magnetic state. Comparison
between the theoretical and experimental Tc(α) allows us to
quantify the induced triplet pair amplitude in the spin valve,
which reaches values greater than 1% of the singlet pair
amplitude in the Nb layer for the maximally noncollinear
(α = π/2) configuration of the spin valve.

II. SAMPLE PREPARATION AND CHARACTERIZATION

The CoO(2 nm)/ Co(dp)/ Cu(dn)/ Co(df )/ Nb(17 nm)/
(substrate) multilayers, schematically shown in Fig. 1(a),
were prepared by magnetron sputtering in a vacuum system
with a base pressure of 8.0 × 10−9 Torr. The deposition was
performed onto thermally oxidized Si substrates at room
temperature under an Ar pressure of 2 mTorr. The 2 nm thick
CoO layer was formed by oxidation of the top part of the
Co layer in air for at least 24 hours. The native CoO film is
antiferromagnetic at cryogenic temperatures and its purpose
is to pin the direction of the top Co layer via the exchange
bias phenomenon [29]. Three series of multilayers, each series
with varying thickness of one of the layers (pinned dp, free df ,
and nonmagnetic dn) were deposited in continuous runs with
minimal breaks between the samples within the series. This
ensured that samples within each of the series were prepared
in similar residual gas environments. The three multilayer
series reported in this work were designed to elucidate the
dependence of the triplet condensate pair amplitude on the spin
valve parameters. The description of the series geometries is
as follows:

Series 1: CoO(2 nm)/ Co(2.5 nm)/ Cu(6 nm)/ Co(df )/
Nb(17 nm) with df ranging from 0.5 nm to 1.0 nm.
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(a)

FIG. 1. (Color online) (a) Schematic of the CoO(2 nm)/ Co(dp)/
Cu(dn)/ Co(df )/ Nb(17 nm) multilayer, where α is the in-plane angle
between the magnetic moments of the Co layers. (b) Resistance
versus the in-plane magnetic field applied parallel to the pinned layer
magnetization at T = 4.2 K (above the superconducting transition
temperature).

Series 2: CoO(2 nm)/ Co(2.5 nm)/ Cu(dn)/ Co(0.6 nm)/
Nb(17 nm) with dn ranging from 4 nm to 6.8 nm.

Series 3: CoO(2 nm)/ Co(dp)/ Cu(6 nm)/ Co(0.6 nm)/
Nb(17 nm) with dp ranging from 1.5 nm to 5.5 nm.

The multilayers were patterned into 200 μm wide Hall
bars using photolithography and liftoff. Four-point resistance
measurements of the samples were performed in a continuous
flow 4He cryostat. The magnetization direction of the top Co
layer was pinned in the plane of the sample by a strong
(∼1 T) [29] exchange bias field from the antiferromagnetic
CoO layer. The exchange bias field direction was set by a
1500 Oe in-plane magnetic field applied to the sample during
cooling from the room temperature. As we demonstrate below,
the magnetization of the free Co layer can be easily rotated
in the plane of the sample by a relatively small (∼500 Oe)
magnetic field. The role of the nonmagnetic Cu spacer layer
is to decouple the magnetic moments of the Co layers, and
it is chosen to be thick enough (dn > 4 nm) so that both
the direct and the RKKY [30] exchange interactions between
the Co layer are negligibly small. In all magnetoresistance
measurements reported here, care is taken to align the applied
magnetic field with the plane of the sample so that vortex flow
resistance is negligible [31].

Figure 1(b) shows the resistance of a CoO(2 nm)/
Co(2.5 nm)/ Cu(6 nm)/ Co(0.9 nm)/ Nb(17 nm) sample as a
function of the magnetic field applied along the exchange bias
direction measured at T = 4.2 K (above the superconducting

transition temperature Tc). At T = 4.2 K, all samples
show the conventional giant magnetoresistance (GMR) effect
originating from the Co/Cu/Co spin valve. Given that there
is significant current shunting through the Nb layer, the
magnitude of the GMR (∼2%) is large, demonstrating good
quality of both Co/Cu interfaces [30]. The GMR curve also
demonstrates that external in-plane magnetic field of �500 Oe
fully saturates the free layer magnetization along the applied
field direction. The lack of an offset in the GMR hysteresis
loop from the origin demonstrates that the interlayer exchange
coupling between the Co layers is negligible.

III. ANGULAR DEPENDENCE OF Tc

We next make measurements of the multilayer supercon-
ducting transition temperature Tc as a function of the angle α

between magnetic moments of the pinned and free layers. We
define Tc as the temperature at which the sample resistance
becomes equal to half of its normal state value. For these
measurements, we use an 800 Oe in-plane magnetic field to set
the direction of magnetization of the free layer. As discussed
in the previous section, this field completely saturates the
magnetization of the free layer in the direction of the field.
Furthermore, this field is much smaller than the exchange
bias field acting on the pinned layer and thus we assume that
the pinned layer magnetization remains in the direction of
the cooling field for all our measurements. Figure 2 shows
resistance versus temperature measured in the parallel (P, α =
0), antiparallel (AP, α = π ), and perpendicular (90◦, α = π/2)
configurations of the two Co layers for the samples with 0.5 nm
and 1.0 nm thick Co free layers, and 2.5 nm thick Co pinned
layer. In this measurement, the angle between the magnetic
moments is pinned by the in-plane external field while the
temperature is swept across the superconducting transition. To
ensure that the sample remains in thermal equilibrium with
the bath, the temperature for each measurement is swept at a
sufficiently slow rate of 2 mK per minute. For both values
of the free layer thickness, we find that the perpendicular
configuration of the spin valve (α = π/2) gives the lowest
transition temperature Tc. We find this to be universally true
for all samples studied in this work: Tc(π/2) < Tc(0) and
Tc(π/2) < Tc(π ). In contrast, the relation between Tc in the
P and AP configurations depends on the thickness of the free
layer. Figure 2 shows that Tc(0) < Tc(π ) for df = 0.5 nm,
while Tc(π ) < Tc(0) for df = 1.0 nm. Similar trends in the
angular and thickness dependence of Tc were recently observed
in Pb/Fe/Cu/Fe/CoO multilayers [22].

To understand the angular dependence of Tc in greater
detail, we fix the temperature in the middle of the super-
conducting transition and measure the sample resistance R

as a function of in-plane angle α between the magnetic
moments of the pinned and free layers. This measurement
is made by applying an 800 Oe saturating magnetic field and
rotating it through 360◦ in the plane of the sample. Figure 3
shows R(α) measured at T = 2.92 K (the middle of the
superconducting transition) for a CoO(2 nm)/ Co(2.5 nm)/
Cu(6 nm)/ Co(0.6 nm)/ Nb(17 nm) sample. Because resistance
is a steep function of temperature in the middle of the
superconducting transition, we take great care to stabilize the
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FIG. 2. (Color online) Resistance versus temperature for parallel
(P, α = 0), antiparallel (AP, α = π ), and perpendicular (90◦, α = π

2 )
orientations of magnetic moments of the Co layers for multilayer
samples with (a) df = 0.5 nm and (b) df = 1.0 nm. The resistance is
divided by its normal state value measured at T = 4.2 K.

temperature to within ±0.1 mK during these measurements in
order to reduce the level of thermal noise in the R(α) data.

Measurements of R(α) are much faster than those of R(T )
because reliable R(T ) data require sweeping temperature at
slow rates. Thus we employ the R(α) data in order to evaluate
Tc(α) instead of direct measurements of Tc(α) at multiple
values of α, such as those shown in Fig. 2. We therefore need
a reliable method of extracting Tc(α) from the R(α) data.
The simplest method for such extraction is to use the slope
of the R(T ) curve at Tc for α = 0 and to calculate Tc(α) as
Tc(α) = Tc(0) − (dT /dR)[R(α) − R(0)], where R(α) is the
experimentally measured angular dependence of resistance at
T = Tc(0). This simple method assumes approximately linear
variation of resistance with temperature near Tc and already
gives qualitatively satisfactory results. However, the maximum
uncertainty in the resulting Tc(α) can be as large as 5 mK. The
purple dotted curve in Fig. 4 shows Tc(α) calculated by this
method for a CoO(2 nm)/ Co(2.5 nm)/ Cu(6 nm)/ Co(0.6 nm)/
Nb(17 nm) multilayer.

In order to take into account deviations of R(T ) from
a linear function and thereby improve the procedure for
extracting Tc(α) from the R(α) data, we calculate Tc(α) based

FIG. 3. (Color online) Resistance of a CoO(2 nm)/ Co(2.5 nm)/
Cu(6 nm)/ Co(0.6 nm)/ Nb(17 nm) structure versus magnetic
field angle, α, measured at T = 2.92 K in the middle of the
superconducting transition, at a field of 800 Oe.

on the experimentally measured R(T ,0) and R(T ∗,α) curves,
where T ∗ ≈ Tc(0) is the temperature at which the angular
dependence of resistance is measured. In this method, we
assume that the shape of the R(T ) curve is the same for all
values of α, and that the curves at different α can be obtained by
simply translating the experimentally measured R(T ,0) curve
along the temperature axis by �Tc(α) = Tc(α) − Tc(0). With
this assumption, Tc(α) = Tc(0) + �Tc(α) can be found by
numerically solving the implicit equation R(T ∗,α) = R(T ∗ −
�Tc(α),0) for �Tc(α). The blue squares in Fig. 4 show Tc(α)
evaluated by this method using the transition curve from the
P (α = 0) state. The red triangles and green dots represent the
same method used with the other two measured curves. We
find this method of evaluating Tc(α) to be quite reliable for our
samples with an estimated error of ∼1 mK.

An even more refined method of evaluating Tc(α) takes
into account that the shape of the R(T ) curve (not only
its position along the temperature axis) may depend on α.
Here we first calculate �Tc(α) based on the experimentally
measured R(T ,π/2) and R(T ,π ) curves using the method
described above: we calculate Tc(α) by numerically solving

FIG. 4. (Color online) Tc(α) for a CoO(2 nm)/ Co(1.5 nm)/
Cu(6 nm)/ Co(0.6 nm)/ Nb(17 nm) multilayer calculated from the
R(α) data by different methods described in the text.
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FIG. 5. (Color online) Tc(α) for representative samples from the three series of samples studied in this paper. (a) from the df series,
(b) from the dn series, (c) from the dp series.

the implicit equations R(T ∗,α) = R(T ∗ − �Tc(α),nπ/2) for
�Tc(α), where �Tc(α) = Tc(α) − Tc(nπ/2), n = 1,2. These
Tc(α) values calculated for n = 1,2 are shown in Fig. 4
as green circles and red triangles, respectively. Figure 4
clearly illustrates that all three functions Tc(α) calculated by
numerically solving the implicit equations written above for
n = 0,1,2 are very similar to each other. The average of these
three functions T n

c (α), which we now explicitly label by the
index n = 0,1,2, would give a reasonable result for Tc(α).
However, a better estimate is given by the following equation:

Tc(α) =
2∑

n=0

T n
c (α)wn(α) (1)

where wn(α) are extrapolation functions with maxima at
α = ±nπ/2. The extrapolation functions also satisfy the
normalization condition

∑2
n=0 wn(α) = 1 on the interval

of α from −π to π . We make the following choice of
the extrapolation functions: w0(α) = cos2(α)�(π/2 − |α|),
w1(α) = sin2(α), and w2(α) = cos2(α)�(|α| − π/2), where
�(x) is the Heaviside step function. The advantage of Eq. (1)
over the simple average is that at α = 0,π/2,π , the expression
for Tc(α) reduces to the exact value of Tc directly measured
at these angles in the R(T ) measurements. The black solid
line in Fig. 4 shows Tc(α) evaluated by this method. We use

this method for calculating Tc(α) from the experimental data
throughout the rest of the paper.

Figure 5 shows a representative angular variation of Tc,
�Tc(α) = Tc(α) − Tc(0), for the three series of samples
employed in our study. We find that for all samples employed
in our experiment, Tc(α) is a nonmonotonic function in the
interval of α from −π to π with a minimum near perpendicular
orientation of the free and pinned layers (α = π/2). As
we demonstrate in the analysis section of this paper, this
minimum in Tc arises from the enhanced long-range triplet
pair amplitude in the maximally noncollinear configuration of
the spin valve. We also note that our previous studies of the
angular dependence of Tc in NiFe/Nb/NiFe trilayers [32] found
monotonic dependence of Tc on α in the 0 to π range, which
serves as indication of a much weaker triplet pair amplitude
induced in the system with two ferromagnetic layer separated
by a superconductor.

Figure 6 summarizes the dependence of Tc(α) on the
thickness of the Co/Cu/Co spin valve layers. Figure 6(a) shows
the difference of Tc in the P and AP states as a function of the
free layer thickness df . The data demonstrate that Tc(π ) −
Tc(0) oscillates and changes sign as a function of df , which
is a consequence of interference of the pair wave function in
the free layer. Figures 6(b) and 6(c) show the dependence of
Tc(π ) − Tc(0) on the nonmagnetic spacer thickness dn and the
pinned layer thickness dp. This dependence is weak, which

FIG. 6. (Color online) Dependence of Tc(π ) − Tc(0) (red circles) and Tc( π

2 ) − Tc(0) (green squares) on the free Co layer thickness df (a),
nonmagnetic spacer thickness dn (b), and pinned layer thickness dp (c).
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implies that (i) the pair amplitude decays slowly in the Cu
spacer layer and (ii) the pair amplitude decays to nearly
zero over the pinned layer thickness greater than 1.5 nm (the
thinnest pinned layer employed in our studies). The behavior
of Tc will be discussed in general later in this work.

Figure 6 also illustrates the thickness dependence of Tc in
the maximally noncollinear geometry of α = π/2. The green
squares in Fig. 6 show the dependence of Tc(π/2) − Tc(0) on
the spin valve layer thicknesses. This figure clearly shows that
Tc(π/2) is always lower than Tc(0) and Tc(π ). Figure 6(c)
illustrates that Tc(π/2) shows variation with the pinned layer
thickness for dp as large as 3.5 nm. This serves as evidence of
the long-range (>3.5 nm) penetration of the triplet component
of the condensate into the pinned ferromagnetic layer.

IV. THEORETICAL METHODS

The theoretical method we adopted is thoroughly discussed
in Refs. [9,12,33]; therefore, we only present here the essential
parts that are necessary for our discussion. In particular,
the theoretical method we used to find Tc can be found in

Refs. [32,33]. We modeled the Nb/Co/Cu/Co heterostruc-
tures as S/Ff/N/Fp layered systems, where S represents the
superconducting layer, Ff and Fp are the inner (free) and
outer (pinned) magnets, and N denotes the normal metallic
intermediate layer. The layers are assumed to be infinite in the
x-z plane with a total thickness d in the y direction, which is
perpendicular to the interfaces between layers. In accordance
with the experiment, Fp has width dp, and fixed direction of
magnetization. The normal layer with width dn is sandwiched
between this pinned layer and a magnetic layer Ff of width df

with experimentally controlled magnetization direction. The
superconducting layer of thickness dS is in contact with the free
layer. The in-plane magnetizations in the F layers are modeled
by effective Stoner-type exchange fields h(y) which vanish
in the nonferromagnetic layers. To accurately describe the
physical properties of our systems with sizes in the nanometer
scale and moderate exchange fields, where semiclassical
approximations are inappropriate, we numerically solve the
microscopic Bogoliubov–de Gennes (BdG) equations in a fully
self-consistent manner. The geometry of our system allows one
to express the BdG equations in a quasi-one-dimensional form
(natural units � = kB = 1 are assumed),

⎛
⎜⎜⎜⎝
H0 − hz(y) −hx(y) 0 �(y)

−hx(y) H0 + hz(y) �(y) 0

0 �(y) −(H0 − hz(y)) −hx(y)

�(y) 0 −hx(y) −(H0 + hz(y))

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

un↑(y)

un↓(y)

vn↑(y)

vn↓(y)

⎞
⎟⎟⎟⎠ = εn

⎛
⎜⎜⎜⎝

un↑(y)

un↓(y)

vn↑(y)

vn↓(y)

⎞
⎟⎟⎟⎠, (2)

where hi(y) (i = x,z) are components of the exchange
fields h(y). In Eq. (2), the single-particle Hamiltonian H0 =
−1/(2m)d2/dy2 − EF + U (y) contains the Fermi energy,
EF , and an effective interfacial scattering potential described
by delta functions of strength Hj (j denotes the different
interfaces); namely,

U (y) = H1δ(y − dS) + H2δ(y − dS − df )

+H3δ(y − dS − df − dn), (3)

where Hj = kF HBj/m is written in terms of the dimensionless
scattering strength HBj . We assume hx(y) = h0 sin(−α/2) and
hz(y) = h0 cos(−α/2) in Ff, where h0 is the magnitude of
exchange field. In Fp, we have hx(y) = h0 sin(α/2) and [16]
hz(y) = h0 cos(α/2). The functions unσ and vnσ (σ =↑, ↓) in
Eq. (2) represent quasiparticle and quasihole wave functions.
By applying the generalized Bogoliubov transformations (see
Ref. [12]), the self-consistent singlet pair potential �(y) can
be expressed in terms of quasiparticle and quasihole wave
functions; that is,

�(y) = g(y)

2

∑
n

′
[un↑(y)vn↓(y) + un↓(y)vn↑(y)] tanh

(
εn

2T

)
,

(4)

where the primed sum means summing over all eigenstates
with energies εn that lie within a characteristic Debye energy
ωD , and g(y) is the superconducting coupling strength, taken
to be constant in the S region and zero elsewhere. We have
assumed that the quantization axis lies along the z direction,

but one can easily obtain the spin-dependent quasiparticle
amplitudes with respect to a different spin quantization axis
rotated by an angle θ in the x-z plane via the rotation
matrix [12]:

Û0(θ ) = cos(θ/2)Î ⊗ Î − i sin(θ/2)ρz ⊗ σz, (5)

where ρ and σ are vectors of Pauli matrices in particle-hole
and spin space, respectively.

In principle, one can obtain the superconducting transition
temperatures by computing the temperature dependence of
�(y) and identifying the critical temperature where �(y)
vanishes. However, the property that the pair potential is
vanishingly small near Tc permits one to linearize the self-
consistency condition, that is, to rewrite it near Tc in the form

�i =
∑

q

Jiq�q, (6)

where the �i are expansion coefficients in a given basis and
the Jiq are the appropriate matrix elements with respect to
the same basis. To determine Tc, one can simply compare the
largest eigenvalue, λ, of the matrix J with unity at a given
temperature. The system is in the superconducting state when
λ is greater than unity. More details of this efficient technique
are discussed in Refs. [32,33].

To analyze the correlation between the behavior of the
superconducting transition temperatures and the existence
of odd triplet superconducting correlations in our systems,
we compute the induced triplet pairing amplitudes which
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we denote as f0 (with m = 0 spin projection) and f1 with
(m = ±1) according to the equations [11,12]

f0(y,t) = 1

2

∑
n

[un↑(y)vn↓(y) − un↓(y)vn↑(y)]ζn(t), (7a)

f1(y,t) = 1

2

∑
n

[un↑(y)vn↑(y) + un↓(y)vn↓(y)]ζn(t), (7b)

where ζn(t) ≡ cos(εnt) − i sin(εnt) tanh[εn/(2T )]. These
triplet pair amplitudes are odd in time t and vanish at t = 0,
in accordance with the Pauli exclusion principle.

V. ANALYSIS

In this subsection, we present our theoretical analysis and
compare the theoretical results with the experimental data. To
find the theoretical Tc, we adopted the linearization method
as discussed in Sec. IV. The fitting process is rather time-
consuming since for every parameter set, one must evaluate Tc

numerically as a function of the misalignment angle α, making
a least-squares fit unfeasible. The same situation occurs in
Refs. [32,35]. As in those works, we search within plausible
regions of parameter space, and display here results of the
best fit that we have found, which is not necessarily the
best possible fit. There are a number of parameters at one’s
disposal and, when computing the theoretical values of Tc, we
first have to keep the number of fitting parameters as small
as possible. All of the relevant physical parameters that are
related to the properties of the materials involved, such as the
exchange field, and the effective superconducting coherence
length, are required to be the same for all of the different
samples when performing the fitting. However, for parameters
that are affected by the fabrication processes such as the
interfacial barrier strength, one can reasonably assume, as we
do, that their values are somewhat different from sample to
sample. We do find that the variation is small between different
samples in each series. For the material parameters we have
found that the best value of the effective Fermi wave vector
is kF = 1 Å

−1
and the effective superconducting coherence

length ξ0 = 11.5 nm. For the dimensionless exchange field
I ≡ h0/EF (normalized to Fermi energy), we have used,
for Co, I = 0.145, which is consistent with previous work
[12] (I = 1 corresponds to the half-metallic limit). For the

superconducting transition temperature for a putative pure
superconducting sample of the same quality as the material
in the layers, we have used T 0

c = 4.5 K. This is the same
value previously found [32]. It is of course lower than the true
bulk transition temperature of Nb but even for pure thin films a
decrease in Tc is to be expected [34]. All of these parameters are
kept invariant across all of the different samples, as mentioned
earlier. Only the three interfacial barrier strengths are treated
as adjustable from sample to sample during the fitting process.
We assume, however, that the barrier strength is the same on
both sides of the normal metal layer while that between the
free ferromagnetic layer and the superconductor are weaker.
For each series, the barrier varies somewhat from batch to
batch. They are found to be as follows: HB1 = 0.2, and both
HB2 and HB3 vary from 0.64 to 0.7 for different batches in the
df series. For the dp series, we have HB1 = 0.15, 0.53 < HB2,
and HB3 < 0.58. The dn series have HB1 ranges from 0.3 to
0.45 and HB1 = HB2 = 0.62. The thicknesses of the different
layers are taken of course from their experimental values. As
in Ref. [35] we find a thin magnetic “dead layer” between
the normal metal and the free ferromagnetic layer of a small
thickness in the range 0.27 nm ∼ 0.35 nm.

We now compare the experimental and theoretical values
of Tc as a function of layer thicknesses and angle α for three
different batches of samples: in one we vary df , in the second,
dn, and in the last, dp. First, in Fig. 7, we present comparisons
between experiment and theory, for the Tc results in the parallel
state (α = 0) as a function of thickness for the three different
series mentioned above. In all three series, the experimental
and theoretical Tc are in very good agreement with each other.
For the df series, one should notice that both experimental
and theoretical Tc are very sensitive to the thicknesses of the
free layers. When the thickness of the free ferromagnetic layer
is increased, Tc decreases nonmonotonically by almost 50%.
However, the dn and dp series do not show the same sensitivity,
even though the ranges of thicknesses for these two series are
much larger compared to that of the df series. This lower
sensitivity is physically reasonable for the following reason:
because of the presence of ferromagnets, we find that the
magnitude of the singlet pairing amplitude decreases very fast
beyond the boundary, in non-S regions away from the F/S
interface. The exchange field reduces the proximity effect.
Therefore, the size effects from the thicknesses of normal

FIG. 7. (Color online) Experimental data and theoretical fitting of Tc in the P state as a function of (a) the Co free layer thickness df (with
dn = 6 nm and dp = 2.5 nm), (b) the Cu normal metal layer thickness dn (with dp = 2.5 nm and df = 0.6 nm), and (c) the Co pinned layer
thickness dp (with dn = 6 nm and df = 0.6 nm).
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metal layers and pinned ferromagnetic layers are less. We also
observe the trend that both theoretical and experimental Tc are
often found to be a nonmonotonic function of the thicknesses
of the F layers. In fact, except for the experimental Tc for df se-
ries, which does not show a clear oscillatory behavior, all other
series clearly exhibit the nonmonotonicity of Tc. Oscillatory
behavior of transition temperatures as one varies the thickness
is standard in hybrid S/F heterostructures due to the oscillatory
character of the pair amplitude [36] itself. The reason for the
exception found might be that the data points are too widely
spaced. This nonmonotonic behavior has been noted in past
works [37,38] and is often found [16] in FFS trilayers.

In Fig. 8, we present a detailed comparison of theoretical
and experimental results for �Tc as a function of angle α

between the magnetizations in the free and pinned layers
for the df , dn, and dp series. Each panel in the first row in
Fig. 8 represents different samples for df series. Results for
the dn and dp series are plotted in the second and third row,
respectively. One can clearly see that the behavior of the highly
nonmonotonic angular dependencies of the theoretical results
presented here describe very well the experimental results, not
only qualitatively but also quantitatively: the magnitudes of the
experimental and theoretical results for �Tc are comparable;
both experimental and theoretical results indicate the switching
effects are in about the 25 mK range. It is well worth recalling
than in another recent work [32] results for the magnitude of

this quantity differed by more than one order of magnitude. In
contrast, here, taking into account the existence of numerical
and experimental uncertainties (the former we estimate at
∼1.5 mK), we find theory and experiment in very good
agreement. This great improvement over Ref. [32] follows
from the more careful treatment of the interface barriers
from sample to sample and a much more extensive search in
parameter space. For the df series, we see that the switching
range for both experimental and theoretical Tc(α) varies
nonmonotonically when df is increased. This occurs for the
same reason already mentioned in the discussion of Fig. 7: the
behavior of Tc(α) is very sensitive to the inner ferromagnetic
layer thicknesses due to the proximity effect. Similarly, we
observe that the switching ranges are less sensitive to the
thickness of the outer ferromagnetic layer (see in the dp series)
and also to the normal metal layer thickness in the dn series.

We now turn to the role that induced triplet correlations
in the nonmonotonic behavior of Tc(α). This has been the
subject of recent theoretical interest [16,39,40] but little
has been done on quantitatively comparing theory and
experiment. To examine this question in a quantitative way,
we have computed the induced odd triplet pairing correlations.
These correlations (as well of course as the ordinary singlet
correlations) can be self-consistently calculated using the
methods previously described. As noted in Sec. IV, with the
presence of nonhomogeneous magnetization the triplet pair

FIG. 8. (Color online) Experiment and theory comparisons of �Tc [defined as �Tc(α) ≡ Tc(α) − Tc(0)] as a function of relative
magnetization angle are shown for the three batches of samples. Top row: Three different free layer thicknesses, df = 0.6 nm, 0.8 nm,
0.9 nm, and with dp = 2.5 nm, dn = 6 nm. Middle row: Three different nonmagnetic layer thicknesses: dn = 4 nm, 5 nm, 6.8 nm, and with df =
0.6 nm, dp = 2.5 nm. Bottom row: Three different pinned layer thicknesses: dp = 1.5 nm, 3.5 nm, 5.5 nm, and with df = 0.6 nm, dn = 6 nm.
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FIG. 9. (Color online) Average triplet amplitudes in the pinned ferromagnet layer as a function of relative magnetization angle. The quantity
plotted is the average of Ft (y,t) [Eq. (8)] in this region, at ωDt = 4. The quantity �Tc is also shown (right scale). Red squares are the theoretical
triplet amplitudes (left scale) and the blue circles are the experimental �Tc (right inverted scale) as a function of angle. The �Tc data correspond
to one set chosen from each batch of samples in Fig. 8. (a) From the df series, (b) from the dn series, (c) from the dp series.

amplitudes in general can be induced when t �= 0. We present
our study in terms of the quantity

Ft (y,t) ≡
√

|f0(y,t)|2 + |f1(y,t)|2, (8)

where the quantities involved are defined in Eq. (7). This
quantity accounts for both triplet components, the equal spin
and opposite spin triplet correlations. The reason to use this
quantity is that via Eq. (5), one can easily show that, when
the spin quantization axis is rotated by an angle θ , the rotated
triplet pair amplitudes f̃0 and f̃1 after the transformation are
related from the original f0 and f1 by

f̃0(y,t) = cos(θ )f0(y,t) − sin(θ )f1(y,t), (9a)

f̃1(y,t) = sin(θ )f0(y,t) + cos(θ )f1(y,t). (9b)

Therefore the quantity Ft (y,t) that we focus on obviates
any ambiguity issues related to the existence of generally
noncollinear “natural” axes of quantization in the system.

We have computed this quantity as a function of position
and α. It turns out to be particularly useful to focus on
the average value of Ft (y,t) in the pinned layer Fp. We
normalize this averaged quantity, computed in the low-T limit,
to the value of the singlet pair amplitude in the bulk S. This
normalized averaged quantity is plotted as a function of α in
Fig. 9 (left vertical scale) at a dimensionless characteristic
time ωDt = 4.0. This time value is unimportant, provided
it be nonzero, of course. In the three panels, an example
taken from each of the series is displayed, as explained
in the caption. One can observe that the maxima of this
average Ft occur when α = π/2 and its minima are at either
α = 0 or α = π . In the same figure (right vertical scale) the
experimental values of �Tc(α), for the same cases, which
have minima near π/2, are plotted in an inverted scale.
The agreement is truly striking. The anticorrelation can be
easily understood: the magnitude of the low-T singlet pair

amplitudes is of course positively correlated to Tc. Here
the fact that triplet pair amplitudes are anticorrelated to
Tc (or to the singlet amplitudes) indicates a singlet-triplet
conversion process: when more singlet superconductivity
leaks into the ferromagnet side, Tc is suppressed and triplet
superconductivity is enhanced. The average magnitude of the
triplet pair amplitudes in the free and normal layer regions is
only weakly dependent on α: Of importance is the propagation
of triplet pairs throughout the entire system, generated by the
symmetry-breaking interfaces and magnetic inhomogeneity
created from the two misaligned ferromagnets. This clearly
demonstrates a singlet to triplet process which is related to the
nonmonotonicity of the transition temperature.

VI. CONCLUSION

In conclusion, we made measurements of the super-
conducting transition temperature Tc in CoO/Co/Cu/Co/Nb
multilayers in a spin valve structure. Tc was measured both
as a function of the in-plane angle between the Co magnetic
moments and of the thicknesses of the Co/Cu/Co spin valve
layers. We found that Tc is a nonmonotonic function of the
angle, with a minimum near orthogonal orientations of the
magnetic moments of the two Co layers. The behavior of Tc as
a function of these variables was quantitatively described by an
efficient microscopic method that is based on a linearization of
the self-consistent Bogoliubov–de Gennes equations. We have
shown that the nonmonotonic behavior of Tc(α) is correlated
with the formation of long-range triplet pairs.
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B. Büchner, Phys. Rev. Lett. 109, 057005 (2012).

[23] V. I. Zdravkov, J. Kehrle, G. Obermeier, D. Lenk, H.-A. Krug
von Nidda, C. Müller, M. Yu. Kupriyanov, A. S. Sidorenko,

S. Horn, R. Tidecks, and L. R. Tagirov, Phys. Rev. B 87, 144507
(2013).

[24] B. Li, N. Roschewsky, B. A. Assaf, M. Eich, M. Epstein-Martin,
D. Heiman, M. Münzenberg, and J. S. Moodera, Phys. Rev. Lett.
110, 097001 (2013).

[25] Y. Liu, C. Visani, N. M. Nemes, M. R. Fitzsimmons, L. Y. Zhu,
J. Tornos, M. Garcia-Hernandez, M. Zhernenkov, A. Hoffmann,
C. Leon, J. Santamaria, and S. G. E. te Velthuis, Phys. Rev. Lett.
108, 207205 (2012).

[26] G. Nowak, K. Westerholt, and H. Zabel, Supercond. Sci.
Technol. 26, 025004 (2013).

[27] I. C. Moraru, W. P. Pratt, Jr., and N. O. Birge, Phys. Rev. B 74,
220507(R) (2006).

[28] J. Y. Gu, C. Y. You, J. S. Jiang, J. Pearson, Ya. B. Bazaliy, and
S. D. Bader, Phys. Rev. Lett. 89, 267001 (2002).

[29] T. Gredig, I. N. Krivorotov, C. Merton, A. M. Goldman, and
E. D. Dahlberg, J. Appl. Phys. 87, 6418 (2000).

[30] S. S. P. Parkin, R. Bhadra, and K. P. Roche, Phys. Rev. Lett. 66,
2152 (1991).

[31] J. Zhu, X. Cheng, C. Boone, and I. N. Krivorotov, Phys. Rev.
Lett. 103, 027004 (2009).

[32] J. Zhu, I. N. Krivorotov, K. Halterman, and O. T. Valls, Phys.
Rev. Lett. 105, 207002 (2010).

[33] P. H. Barsic, O. T. Valls, and K. Halterman, Phys. Rev. B 75,
104502 (2007).

[34] S. A. Wolf, J. J. Kennedy, and M. Nisenoff, J. Vac. Sci. Technol.
13, 145 (1976).

[35] F. Chiodi, J. D. S. Witt, R. G. J. Smits, L. Qu, Gabor
B. Halasz, C.-T. Wu, O. T. Valls, K. Halterman, J. W. A.
Robinson, and M. G. Blamire, Europhys. Lett. 101, 37002
(2013).

[36] E. A. Demler, G. B. Arnold, and M. R. Beasley, Phys. Rev. B
55, 15174 (1997).
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