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Role of thermal disorder for magnetism and the α-γ transition in cerium:
Results from density-functional theory
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The electronic structures of fcc Ce are calculated for large supercells with varying disorder by use of density-
functional theory. Thermal disorder induces fluctuations of the amplitude of the magnetic moments and an
increase in the average moments in the high-volume phase. The ferromagnetic solutions move towards a lower
volume than in calculations for the perfectly ordered lattice. Therefore, disorder contributes via entropy to the
stabilization of the γ phase at high T , and it is important for an understanding of the α-γ transition. Core level
spectroscopy would be a means to detect disorder through the spread of Madelung shifts and local exchange
splittings.
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I. INTRODUCTION

There has been renewed interest in the isostructural α-γ
transition in fcc Ce [1–8]. Ce undergoes a volume reduction
of up to 17% from the magnetically disordered γ phase to a
nonmagnetic (NM) low-volume α phase at low pressure P , at
a temperature T of about 300 K, even though a competing
double hcp (dhcp) phase β appears [9,10] at lower T for
zero P . The transition moves to higher T for higher P ; at
∼20 kbar it reaches almost 600 K with a vanishing volume
reduction. Several models have been proposed to drive the
transition, such as the Kondo volume-collapse model [11],
a Mott transition [12], correlation and entropy [4,5,13], or
via standard density-functional theory (DFT) bands with
entropies [14,15]. The T dependence is the unusual feature
of the transition. At T = 0 only the α phase is stable.
Nevertheless, a recent work proposed that the DF potential
should be replaced by a different hybrid exchange-correlation
potential, with enhanced correlation, since calculations at
T = 0 compare favorably with a measured extrapolation to
a negative transition pressure [3]. There are two groups
of models containing more or less correlation. Either they
conclude that Ce is a strongly correlated system, where DFT is
not sufficient, or otherwise they suggest that DFT is applicable,
but that the band structure information has to be complemented
by entropy [16,17]. In fact, DFT calculations based on the local
spin-density approximation (LSDA) [18] and the generalized
gradient approximation (GGA) [19] both give a qualitatively
correct account of the T dependence of the α-γ transition if
the entropies are included [14,15], but GGA is quantitatively
better [14]. None of these DFT potentials include a particular
on-site correlation beyond the normal correlation within the
electron gas.

Independently of this, it has been shown that effects from
thermal disorder and zero-point motion (ZPM) are important
for the band structure and properties in materials with sharp
density-of-states (DOS) variations near the Fermi energy (EF ).
In such cases it is necessary to include disorder into the
electronic structure calculations for a correct description of
the physical properties or spectroscopic responses [20–23].
Magnetic manifestations of coupling between lattice dis-
tortions and electronic structures show up as spin-phonon
coupling in cuprates [24] and spin-lattice interactions giving

invariant thermal expansion in Invar materials [25]. Ce is, a
priori, a system where disorder could be important, because
the DOS of the f band rises sharply at EF , and the lattice is
fairly soft, which already makes large distortion amplitudes of
atomic vibrations at low T. In the present paper we investigate
the importance of lattice disorder for the properties of Ce and
its transition between the magnetic and the nonmagnetic phase.

II. RESULTS AND DISCUSSION

A. Lattice disorder and magnetism

Self-consistent linear muffin-tin orbital (LMTO) band
calculations [26] have been made for 32-atom unit cells,
2 × 2 × 2 extensions of the cubic fcc 4-atom cell, of fcc Ce
for several lattice constants (a0) between 4.85 and 5.42 Å. The
GGA potential is used [19]. Calculations are also made for the
ordinary (ordered) fcc 1 atom/cell for a0 between 4.75 and
5.4 Å. The number of k points is 75 in half of the Brillouin
zone (BZ) for the large cell, and 505 in 1/48 BZ for the small
cell. The 6s, 5p, 5d, and 4f valence electrons are included in the
basis. Magnetic moments and DOS functions are very similar
in these two sets of calculations for the ordered structure.

Each atomic position in the 32 atom/cell is randomly
displaced in the calculations with thermal disorder so that
the averaged displacement amplitudes follow a Gaussian
distribution function with width σ [20]. This distribution
is valid at not too large T , when there are no correlated
movements of the neighboring atoms [27]. The average lattice
displacement u is related to T as

u2 = 3kBT /Mω2, (1)

where M is the atomic weight and ω an averaged phonon
frequency. ZPM remains at T well below the Debye temper-
ature �D and u2 is never smaller than 3�ω/Mω2 [27,28].
From the measured �D of about 115 K for γ -Ce and 160 K
for the high-P room temperature (RT) α phase [1] we can
estimate that σZPM = uZPM/a0 is of the order 0.01–0.013, and
that σT at RT is about 0.021–0.028 for γ and α, respectively.
The band calculations are made for several disordered 32-
cell configurations with σ from 0.021 up to 0.063, which
corresponds to a temperature range between approximately
200 and 800 K. For comparison we note that u would be about
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0.22 of the atomic sphere radius according to the Lindemann
criterion for the melting temperature Tm [27], i.e., σ would be
of the order 0.086. This fits with our T calibration of σ , since
Tm is near 1050 K for Ce [9].

The band structure is sensitive to disorder (and ZPM)
because of the fluctuations of the potential in a vibrating
disordered lattice. The Coulomb potential vi(r) at a point r

within a site i is

vi(r) = −
∑

j

Zj/|r − Rj | +
∫ ∞

0
ρ(r ′)/|r − r ′|d3r ′, (2)

where Zj are the nuclear charges on sites j , ρ(r) is the electron
charge density, and the sum and integral cover all space. The
contribution to vi(r) from its own site (with radius Si > r ′)
can be separated from the contribution from the surrounding
lattice through the technique of Ewald lattice summation [28]:

vi(r) ≈ −Zi/r +
∫ Si

0
ρ(r ′)/|r − r ′|d3r ′ + Mi. (3)

Thus, the Coulomb interaction with the outside lattice is
condensed into a Madelung shift Mi . This shift is identical
for all sites if the lattice is perfectly ordered. But different sites
have different Mi in a disordered lattice, partly because of the
local differences in atomic positions and partly because of the
charge transfers induced by the disorder. Thus, the potentials
at different sites are slightly different and they vary in time.
Phonons are very slow compared to the electronic time scale
and the electronic structure can relax adiabatically. The band
results for two different configurations with almost the same
σ are comparable, which indicates that the 32-atom cells are
large enough for a simulation of disorder. Other details of the
calculational method can be found in Refs. [14,26].

Calculations for the ordered cell, and for the 1-atom fcc
cell, show that a ferromagnetic (FM) ground state develops
when the lattice constant a0 exceeds about 5.2 Å [14]. The
ground state solutions shift easily between a low-magnetic
(m ≈ 0) and a high-magnetic state (m � 0.4μB/atom) when
a0 ∼ 5.3 Å. The state at the absolute minimum of the total
energy E0 is nonmagnetic (NM), near a0 = 4.79Å, compared
to 4.62 Å when using LSDA [14]. The experimental values
at RT are near 4.85 and 5.16 Å for the α and γ phase,
respectively [9]. From the Stoner model it is expected that
FM develops at a large volume, when the band narrowing
makes N (EF ) larger. The gain in exchange energy overcomes
the loss of kinetic energy at the FM transition [29], but the
Coulomb interaction can make small corrections to this energy
balance [30]. These effects are included in the self-consistent,
spin-polarized calculations. Structural disorder introduces
local volume fluctuations, and the degree of localization of
the f electrons depends directly on the surroundings. In Fig. 1
we show an example of the correlation between local volume
variations (〈dnn〉, which is defined as the average of the 12
nearest-neighbor distances around each of the 32 sites), and the
site decomposed N (EF ) values, as well as the local moments,
for a case with σ = 0.04a0, a0 = 5.29 Å. As seen, when 〈dnn〉
is considerably larger (>0.72) than the value for the ordered
lattice (0.7071), N (EF ) and m are highest. The valence charge
per Ce varies quite linearly from 10.4 electron/Ce for the sites
with the lowest moment to about 9.7 electron/Ce when the
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FIG. 1. (Color online) Correlation between the averaged nearest-
neighbor distances 〈dnn〉 (in units of the lattice constant), the DOS at
EF (red open circles, in states per eV Ce/50), and local magnetic
moments (blue points, in μB/Ce), calculated for a 32-site cell
with a disorder of σ = 0.04 at the lattice constant a0 = 5.29 Å.
“Compressed” sites with small 〈dnn〉 have small N (EF ) and m.
Oppositely, for “isolated” sites with large 〈dnn〉, the N (EF ) and m

are the highest.

moment is just above 1μB/Ce. Disorder has a supplementary
effect on the average moment if the lattice constant is below
the critical value for a high moment: Since the local volume
and the moments are increased on many of the sites with
large 〈dnn〉, it leads to an increase of the total FM moment
of the cell. That some of the sites are “compressed” (small
〈dnn〉) does not reduce the total moment, because their local
moments are already small in the ordered lattice. Oppositely,
at large a0, when the moment for the ordered structure is close
to its maximum, about 1.1μB/atom, there is no (or very little)
effect on the total moment from disorder. The saturation of the
total spin moment near 1μB/atom for one occupied f electron
can be understood from Hund’s first rule. Thus, disorder
fluctuations cannot make the local moment much higher even
if the local volume is increased, but local compressions could
rather decrease the moment. This explains the saturation of
the highest local moments seen in Fig. 1 for the sites with the
highest 〈dnn〉 and N (EF ). Figure 2 displays the averaged m(a0)
for different distortion amplitudes. As seen, near the transition
region there are large effects on magnetism because of lattice
disorder. Magnetism appears suddenly at a0 � 5.3 Å for the
ordered structure, but it is much more gradual and starts at a
lower volume when the disorder is large. Therefore, vibrational
disorder is crucial for a good understanding of the properties
of Ce.

All self-consistent calculations start from the potential for
the ordered structure. The final FM configurations converge
gradually during the iterations. In a few cases, usually when
the magnetic moments are small, it is possible to find sites
where the spin orientation is opposite to the majority moments,
as if antiferromagnetism (AFM) was installed locally. These
solutions develop very slowly, but they do not seem to be
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FIG. 2. (Color online) The average magnetic moment as a func-
tion of lattice constant a0 for different levels of disorder (σ = u/a0)
between 0 (“ordered structure”) and 0.063.

concerned with large-moment cases at large volumes and large
temperatures. Therefore, such solutions are not important for
the free-energy arguments in the next section. The tendencies
for local AFM is to diminish when the electronic temperature
is raised. Thus, smearing due to the Fermi-Dirac distribution
is not favorable to spin flips, while details in the local
environment caused by lattice disorder can be so.

B. Free energies

Three sources of entropy were included in the GGA
calculations for ordered fcc Ce [14]: vibrational, electronic,
and magnetic. The difference in vibrational free energy at two
volumes Vi is

	Fvib(V ) = 3kBT ln

(
�γ

�α

)
, (4)

where the Debye temperatures �i are closely related to√
(V 1/3

i Bi), where Bi are the bulk moduli of the two phases.
The latter are calculated to be in the range 15–20 GPa
for FM Ce and 20–30 GPa for NM Ce. This agrees with
experiment [1], but it is difficult to determine the full T ,P

dependence from ab initio calculations because of the sharp
drop of Bi at the transition. Here we choose to fit �D to
the experimental results in Ref. [1]. This gives �D ≈ 160 −
22{1 + sgn(m − 1

2 ) sin[π (m − 1
2 )]

1
4 } + 15(3.54 − a0) (in K).

The last term makes the continuous decrease of �D from about
160 K at small volumes to about 140 K at large volumes.
This is the typical behavior in almost all materials, since B

normally decreases with increasing volume. The second term
is introduced in order to include a sharp discontinuity (∼30 K)
in �D at the transition when m is close to 0.5μB/atom. Thus,
vibrations favor the γ phase because of its softer lattice.

The electronic entropy is calculated as

Sel = −
∫

N (E)[f ln f + (1 − f ) ln(1 − f )]dE, (5)
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FIG. 3. (Color online) The DOS near EF in the ordered and
disordered 32 cells at the lattice constant a0 = 5.29 Å. The disordered
case has σ = 0.04.

where N (E) is the electronic density of states and f is the
Fermi-Dirac distribution. This quantity is almost proportional
to N (EF ) [Sel ≈ 2π2

3 k2
BT N (EF )], and as shown in Fig. 3,

disorder makes N (EF ) larger. The calculated Fel = Etot −
T Sel favors the γ phase even more than what was found in
Ref. [14], because of disorder.

A large entropy comes from fluctuations of magnetic
moments,

Sm = kB ln[2(L − m/2) + 1], (6)

which includes an orbital moment L, and a spin part being
half of the magnetic moment m/2. A full moment of a single
f electron gives L = 3, according to Hund’s first rule. Here
we apply atomiclike Paschen-Back calculations, which for
the spin-orbit coupling in Ce f give L ≈ 2.5m for m � 1 [14].
The moments L and m make a substantial entropy contribution
at large T , which stabilizes the γ phase depending on the
evolution of m(T ,V ). Without considering disorder, m(T ,V )
follows the thin solid line in Fig. 2, which is the basis for
the result in Ref. [14]. As seen in Fig. 2, disorder moves
the magnetic transition towards a lower volume. This fact
makes the magnetic entropy contribution larger, and disorder
is therefore important for the α-γ transition. Entropy from
phase mixing [31] is not accounted for in the present work.

The electronic (Fel) free energy is calculated from the
1 atom/cell results with T dependences entering through the
Fermi-Dirac distribution and a DOS broadening. The two
phases do not coexist at equal volumes. The minimum of Etot

at 4.79 Å is for NM α-Ce. FM grows gradually as a0 � 5.2 Å,
but there is no second local minimum of Etot even if there is
some lowering of Etot beyond 5.3 Å (see Fig. 4). The signature
of FM, seen in the electronic free energy curve, moves to a
lower volume because of higher moments when T increases.
Disorder at T ∼ 400 K makes moments appear already below
a0 = 5 Å.

The next step is to add the vibrational entropy and magnetic
entropies from the disordered large cell calculations (scaled
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FIG. 4. (Color online) Total relative free energies (Ftot in
eV/atom) as functions of the lattice constant a0. The (blue) thin
solid line shows the total free energy at low T , when the disorder is
dominated by ZPM. The subsequent lines show the results at 400,
600, and 800 K, respectively. The small vertical arrows indicate the
volumes where the average magnetic moment exceeds 0.5μB per
atom.

by 1/32) to the electronic free energies from the 1 atom/cell
results. The results for T between 200 and 800 K are shown
in Fig. 4. The crossover from the NM low-volume phase to
the FM fluctuating phase at large volumes (a0 in the range
5.1–5.15 Å) occurs just below 600 K. These results are
closer in agreement with experiment than in the calculations
without considering disorder [14]. The electronic total energy
decreases with increasing moment, and the onset of magnetism
(indicated by the arrows in Fig. 4) is seen to coincide with a
small discontinuity in the Ftot curves, which moves towards a
lower volume as T increases. Since the average moments in
the disordered (supercell) results are higher than the moments
in ordered Ce, it can be expected that the γ phase will be
stabilized further.

As noted earlier, the equilibrium volume for the NM ground
state is better from GGA than from LSDA. Since the crossover
to the high-volume FM state occurs at a reasonable T, when
using free energies from GGA, this gives us confidence that
GGA is reliable also in the FM regime. Results using GGA + U
(and LSDA + U) have total energies that are lower for the
FM state than for the NM state already at T = 0 when U is
large, which is incorrect [6]. Other properties such as moments
and DOS at EF seem to depend less on the exact choice of
U [6], so the free-energy contribution at large T should be
comparable to the present results. Thus, considering disorder
and entropies in addition to GGA + U could easily destroy
the good T dependence if correlation is imposed by having U
larger than ∼1 eV.

C. Core levels

Core level energies are probes of potential shifts and can be
used to measure the effects of disorder and magnetic fluctua-
tions. The local variations of exchange splitting (proportional
to the local magnetic moments) and Madelung shifts caused
by disorder show up as a broadening of the spectroscopic
ensembles of the core levels. This opens a possibility for
core level spectroscopy to identify the effects of disorder. For
instance, in the NM high pressure α phase at RT, disorder
is calculated to make a broadening of the 4s level of about
0.16 eV. By removing the pressure (but keeping T constant) to
get the magnetic γ phase, these levels broaden to about 0.42 eV
because of the variations of the local moments (the averaged
moment is 0.36μB/atom). Without disorder there would be
no variations of the Madelung shifts, and identical exchange
splittings on all sites should produce two sharp lines separated
by 0.16 eV for a moment of 0.36μB/atom. The broadening
from disorder is too large for a clear identification of the
separated spin up and down peaks. These broadenings do not
include other smearing mechanisms due to the experimental
method or other types of lattice imperfections. The Madelung
shifts and exchange splitting of the 4p and 4d levels are
comparable, with spin-orbit splittings of 18.9 and 3.3 eV,
respectively.

III. CONCLUSION

All entropies contribute to a crossover from the α to the γ

phase at about 800 K when using GGA without effects from
disorder [14]. Here, with disorder, the transition is calculated
to occur below 600 K, at a volume in better agreement
with experiment. Entropies and the effects of disorder exist
always, and they should be considered even in calculations
based on strong correlation. The behavior at T = 0 is not
certain, especially because of the dhcp β phase that replaces
the γ phase at low T on the P = 0 line [9]. Nevertheless,
ignoring this and doing an extrapolation towards low T on the
α-γ separation line of the phase diagram suggests a negative
transition pressure at T = 0. This can be taken as a support
for potentials with large correlation [3,5,6], but it is not clear
how such results will behave at high T . Most observations
of the α-γ transition are made in the range 150–450 K,
and it is important to test the theoretical results in a similar
temperature range. The fact that the transition can be described
quite accurately by temperature dependent DFT calculations
with thermal disorder and entropies is a strong support for
standard DFT. Note that DFT has been applied successfully to a
vast number of metallic systems without relying on adjustable
parameters for correlation. Finally, Ce can be added to the list
of materials where thermal disorder is seen to be important for
the physical properties.
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