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Understanding the μSR spectra of MnSi without magnetic polarons
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Transverse-field muon-spin rotation (μSR) experiments were performed on a single crystal sample of the
noncentrosymmetric system MnSi. The observed angular dependence of the muon precession frequencies matches
perfectly the one of the Mn-dipolar fields acting on the muons stopping at a 4a position of the crystallographic
structure. The data provide a precise determination of the magnetic dipolar tensor. In addition, we have calculated
the shape of the field distribution expected below the magnetic transition temperature TC at the 4a muon site
when no external magnetic field is applied. We show that this field distribution is consistent with the one reported
by zero-field μSR studies. Finally, we present ab initio calculations based on the density-functional theory which
confirm the position of the muon stopping site inferred from transverse field μSR. In view of the presented
evidence we conclude that the μSR response of MnSi can be perfectly and fully understood without invoking a
hypothetical magnetic polaron state.
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I. INTRODUCTION

In recent years a growing interest has been focused on
crystalline systems lacking inversion symmetry (see, for ex-
ample, Ref. [1]). A direct consequence of noncentrosymmetry
is the occurrence of a spin-orbit Dzyaloshinsky-Moriya (DM)
interaction [2,3]. The DM interaction is thought to play an
important role in multiferroic systems and may be at play in
the occurrence of nontrivial magnetic structures. On the other
hand, noncentrosymmetric systems presenting superconduc-
tivity have attracted special attention as the absence of parity
symmetry considerably restricts the possible superconducting
states (i.e., a pure triplet pairing is in principle not allowed
without inversion symmetry) [4].

MnSi is probably the noncentrosymmetric system which
concentrates most of the research focus. It was the first
material found to exhibit a homochiral spin spiral structure
below TC � 29.5 K [5–7]. This spin spiral adopts a very long
wavelength of about 18 nm. In addition to an external pressure
destroying the magnetic state (pc � 1.5 GPa [8]), a modest
magnetic field of 6 kG is found to overcome the DM interaction
leading to a spin-aligned state [9]. Moreover a skyrmion
phase was recently identified near TC in the magnetic phase
diagram [10]. Contrary to what was observed in a number
of strongly correlated electron systems (see, for example,
Ref. [11]), MnSi does not display superconductivity at pc.
It was invoked [12] that the absence of a superconducting state
for MnSi under pressure has to be traced back to the absence
of a parity operator for the wave functions.

In view of all these properties, MnSi has been investigated
several times by μSR in zero or externally applied pressures

*alex.amato@psi.ch

(see, for example, Refs. [13–17]). Two main controversies
occurred from these studies. The first one regards the behavior
of the magnetic state near the critical pressure pc. First
measurements performed by Uemura et al. [16] seemed to
show a phase separation between magnetic and paramag-
netic regions whereas measurements performed by Andreica
et al. [17], extending at lower temperatures, showed a complete
absence of phase separation. The second controversy regards
the muon stopping site(s) and the occurrence or not of magnetic
polaron. The large majority of the studies associates the two
spontaneous frequencies seen below TC to two magnetically
inequivalent sites. The same is deduced from transverse-field
(TF) measurements performed at low fields [18], even though
the conclusions obtained from this latter study are blurred
by the assumption of a vanishing dipolar tensor. On the
other side, Storchak et al. [19] relate the observation of
two frequencies in TF data to a coupled μ+e− system (i.e.,
Mu state). In this scenario, the spin of the Mu electron
does not exhibit rapid fluctuations through spin exchange
with the itinerant electrons, but is kept “fixed” by the local
ferromagnetic ordering mediated by itself (the electron and the
four Mn neighbors are thought to be coupled and to behave
as a single entity with large spin: i.e., a “spin polaron”). In
this scenario, the two frequencies correspond to two muon
spin-flip transitions between states with fixed electron spin
orientation. The picture of such a localized electron state
appears controversial given the metallic nature of MnSi.

The aim of the present paper is to lift the controversy
regarding the occurrence or not of magnetic polaron and
provide information on the muon stopping site. We retain this
point essential to solve, as this will show whether μSR can
be utilized to specifically extract quantitative information on
this heavily studied strongly correlated system. In this study,
we will show that the occurrence of different frequencies

1098-0121/2014/89(18)/184425(10) 184425-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.89.184425


A. AMATO et al. PHYSICAL REVIEW B 89, 184425 (2014)

FIG. 1. (Color online) Sample used for the TF-μSR measure-
ments. The sample was rotated along the cylinder axis.

in the TF-μSR spectra can be traced back to the different
responses of crystallographically equivalent muon-stopping
sites which become magnetically inequivalent in the presence
of an external magnetic field and that one does not need to
invoke a magnetic polaron to explain the TF-μSR data. We
will also show that the occurrence of two spontaneous muon
frequencies in the zero-field μSR data recorded below TC

can be explained within this frame. Finally, we also present
density-functional theory calculations which perfectly support
the experimental evidences.

II. EXPERIMENTAL DETAILS

We used the same MnSi sample as in the previous μSR
under pressure experiments [17]. It consists of a single crystal
with the form of a cylinder of approximately 7 mm diameter
and 19 mm length (see Fig. 1). The single crystal was grown by
the Czochralsky pulling technique from a stoichiometric melt
of high-purity elements (>99.995%) using radio-frequency
heating and a cold copper crucible. No deviation from the
known crystal structure [space group P 213, No. 198; Mn-
ion at the position (0.138,0.138,0.138), and Si-ion at the
position (0.845,0.845,0.845); lattice constant 4.558 Å] nor any
presence of foreign phase was detected by scanning electron
microscope microanalysis, backscattered electron imaging,
and the x-ray Debye Scherrer pattern.

The study of the angular dependence of the muon Knight
shift in MnSi was performed using the GPS instrument located
at the πM3 beamline of the HIPA Complex at the Paul Scherrer
Institut (PSI, Villigen, Switzerland). The measurements were
performed with the transverse-field geometry with a magnetic
field of 5200 G. The sample was rotated around the cylinder
axis and the external field Bext was applied perpendicular to
the cylinder. Note that the sample was not grown along a
specified crystallographic orientation, i.e., the cylinder axis
does not correspond to a principal axis. The measurements
presented here were performed using a dynamical He-flow
cryostat (i.e., sample in He-flow) at a temperature of 50 K.
The temperature stability of the sample was better than 0.1 K
for all the measurements.

III. RESULTS AND DISCUSSION

A. Transverse-field data and muon site determination

For all rotation angles φ′, the μSR signals are best modeled
by the presence of four frequencies with different angular
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FIG. 2. (Color online) Example of one μSR time spectrum plot-
ted in a rotating reference frame (RRF) with frequency 65 MHz. The
gray line represents the fit to the data (open points) using Eq. (1) and
the four individual signals are also displayed (color code is the same
as in Fig. 4). Note that the actual fits were performed without RRF
and without time binning (i.e., original bin of 0.9766 ns). Notice that
the four signals have very similar depolarization rates.

dependences. Fits with all parameters free point to similar
amplitudes for the four components. Hence, in a second series
of fits the amplitudes were forced to be the same. That is,

AtotG(t) =
4∑

i=1

A exp(−λit) cos(νi 2π t + ψ). (1)

The frequencies νi reflect the local magnetic field val-
ues sensed by the muon at the stopping site(s), i.e., νi =
γμ|Bloc,TF,i |/(2π ), where γμ is the gyromagnetic ratio of the
muon. The phase parameter ψ is common to all signals as it
is defined by the direction of the muon spin with respect to
the detector system at the muon implantation time. During the
fits, no restrictions were applied concerning the frequencies
and the results were directly obtained through the software
MUSRFIT [20]. Note that all the fits were performed in the time
space between 0 and 8 μs. As illustrations to the data, we
present in Fig. 2 a μSR time spectrum, plotted in a rotating
reference frame, and in Fig. 3 selected fast Fourier transform
(FFT) of spectra recorded at different angles. The full angular
dependence of the frequencies is shown in Fig. 4.

The occurrence of four frequencies in the μSR signal
clearly points to a muon site located at the 4a Wyckoff position
of the cubic structure. In this view, the main contribution
of the observed angular dependence arises from the dipolar
contribution. As shown in Table I, which provides information
on this type of site and the respective dipolar tensor forms,
taking into account the symmetry of the dipolar tensors, the
four crystallographically equivalent 4a sites in the unit cell are
either (i) magnetically equivalent when Bext is applied along a
principal direction; (ii) grouped in two pairs of magnetically
inequivalent sites for Bext applied in a principal plane;
(iii) usually all magnetically inequivalent for Bext applied along
an arbitrary direction.
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FIG. 3. (Color online) Fourier transform of TF spectra taken at
different orientations. The color code of the different signals is the
same as in Figs. 2 and 4.

Generally, the local field at the muon site can be written as
usual as (see, for example, Refs. [21,22])

Bloc,TF(φ′) = Bext + Bcont + Bdip(φ′) + BLor + Bdem(φ′),

(2)
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FIG. 4. (Color online) Angular dependence of the fitted μSR
frequencies. The lines are guides to the eye. The green dashed line
represents the average frequency ν̄(φ′) (see text).

where the values of Bext, of the contact term Bcont, and of the
Lorentz field BLor are independent of the rotation angle φ′
(bear in mind that for a cubic system, the representation of the
magnetic susceptibility tensor in the crystal reference frame
is given by χ = χ E, where E = [Eij ] = [δij ]). We mention
at this point that, as said, we expect that the essential part of
the observed angular dependence should arise from the dipolar
contribution. Nevertheless, we cannot exclude a small angular
dependence of the demagnetization field, as the sample had not
a perfect cylindrical shape (see Fig. 1). A way out is to observe
that (i) for a given field direction the demagnetization field is
identical for all signals; (ii) due to the symmetry of the dipolar
tensors for the 4a sites, the sum of the dipolar contribution of
the four signals should always cancel (see Table I). Hence the
true angular dependence of the measured dipolar contribution
for each signal can be obtained by

Bdip,i(φ
′) = (νi(φ′) − ν̄(φ′)) 2π

γμ

, (3)

where ν̄(φ′) is the average frequency at each angle. We observe
that the amplitude of the angular dependence of ν̄(φ′) is very
small, i.e., it represents a field ν̄(φ′)2π/γμ of the order of
1.8 G, which would correspond to a variation of less than 3%
of the demagnetization factor during the rotation (see Fig. 4).
The average frequency ν̄(φ′) can be interpreted as the sum of
all other contributions, that is,

ν̄(φ′) = γμ

2π
|Bext + Bcont + BLor + Bdem(φ′)|. (4)

For the four signals, the dipolar contributions obtained with
the slight correction described in Eq. (3) are shown on Fig. 5.

In the following, we will carefully analyze the angular
dependence of these dipolar contributions to determine the
muon-stopping site. The dipolar field contribution to the value
of the local field sensed by the muon can be written as

Bdip = Adip χ Bext, (5)
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TABLE I. Coordinates and form of the representation of the dipolar tensor Adip in the crystal reference frame for the crystallographic
Wyckoff position 4a (four crystallographically equivalent sites designed here by I to IV ). We shall call [Ac

ij ] this representation. Note that the
value |adip| is the same for all the tensors. Bear also in mind that the structure can also accommodate Wyckoff positions of type 12b (all other
sites not equivalent to a 4a position) but in this case one would expect to observe 12 frequencies in the μSR signal for an arbitrary direction of
the applied magnetic field.

Site 4a-I Site 4a-II Site 4a-III Site 4a-IV

Coordinates (x,x,x) ( 1
2 − x,x̄, 1

2 + x) ( 1
2 + x, 1

2 − x,x̄) (x̄, 1
2 + x, 1

2 − x)

[Ac
ij ]

⎛
⎜⎝

0 adip adip

adip 0 adip

adip adip 0

⎞
⎟⎠

⎛
⎜⎝

0 adip −adip

adip 0 −adip

−adip −adip 0

⎞
⎟⎠

⎛
⎜⎝

0 −adip −adip

−adip 0 adip

−adip adip 0

⎞
⎟⎠

⎛
⎜⎝

0 −adip adip

−adip 0 −adip

adip −adip 0

⎞
⎟⎠

where Adip is the dipolar tensor and χ Bext represents the local
Mn moment induced by the external field. As in the present
experiment the field was not rotated in a principal crystallo-
graphic plan, we will define [Al

i ′j ′ ] as the representation of
the dipolar tensor in the reference frame given by the rotation
axis and rotation plane of the applied field (i.e., the laboratory
frame; see Fig. 6). Expressing the rotation axis with the Euler
angles θ and φ, we have the relation,

[
Al

i ′j ′
] = R[010],θ R[001],φ

[
Ac

ij

]
R[001],−φ R[010],−θ , (6)

where the rotation matrices Rα,β represent a rotation of
angle β around the direction α and [Ac

ij ] is the represen-
tation of the dipolar tensor in the crystal reference frame
(see Table I). In the reference frame of the rotation axis
and plane, we can express the external field as Bext =
Bext(sin θ ′ cos φ′, sin θ ′ sin φ′, cos θ ′), where θ ′ and φ′ are now
the polar and azimuth angles of the field in the new reference
frame (see Fig. 6). Generally, the angular dependence of the
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FIG. 5. (Color online) Angular dependence of the dipolar con-
tributions of the four frequencies reported on Fig. 4. The symbols
are obtained after the subtraction described in Eq. (3). The lines
correspond to the theoretical calculations positioning the muon at the
site (0.532,0.532,0.532) and taking into account the rotation axis (see
text).

component of Bdip along the direction of the external field can
be expressed as [23]

Bdip,|| = 1
3

(
Al

x ′x ′χ
l
x ′ +Al

y ′y ′χ
l
y ′ +Al

z′z′χ
l
z′
)
Bext

+ 2
3

[
Al

z′z′χ
l
z′ − 1

2

(
Al

x ′x ′χ
l
x ′ +Al

y ′y ′χ
l
y ′
)]

P 0
2 (cos θ ′)Bext

− 1
3Al

x ′z′
(
χl

x ′ +χl
z′
)
P 1

2 (cos θ ′) cos φ′Bext

− 1
3Al

y ′z′
(
χl

y ′ +χl
z′
)
P 1

2 (cos θ ′) sin φ′Bext

+ 1
6

(
Al

x ′x ′χ
l
x ′ −Al

y ′y ′χ
l
y ′
)
P 2

2 (cos θ ′) cos 2φ′Bext

+ 1
6Al

x ′y ′
(
χl

x ′ +χl
y ′
)
P 2

2 (cos θ ′) sin 2φ′Bext, (7)

where the terms P m
l represent the usual associated Legendre

polynomials [24].
Equation (7) can be simplified by noting that for a cubic

system the magnetic susceptibility is isotropic and here defined
as χ . We also have θ ′ = 90◦, as of course our field is per
definition perpendicular to the rotation axis and φ′ represents

x

φφx

y

z = z1

x1

y1 = y

z

Bext

φ

θ

φ

θ

θ

FIG. 6. (Color online) Definition of the Euler angles defining the
rotation axis and of the polar and azimuth angles defining the direction
of the external field. The reference frame (x,y,z) is the reference
frame of the crystal and (x ′,y ′,z′) is the one defined by the rotating
plane and rotation axis.
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TABLE II. Fit results obtained adjusting Eq. (8) on the angular
dependence of the dipolar contribution for each signal.

Al
x′x′ Al

y′y′ Al
x′y′

(mol/emu) (mol/emu) (mol/emu)

Signal I −0.0128(38) −0.1713(11) −0.2925(31)
Signal II 0.0235(30) −0.1662(32) 0.2617(26)
Signal III −0.0640(38) 0.1747(35) 0.0945(27)
Signal IV 0.0538(48) 0.1627(51) −0.0637(41)

our rotation angle. We therefore have

Bdip,|| = 1
2 χ

(
Al

x ′x ′ + Al
y ′y ′

)
Bext

+ 1
2 χ

(
Al

x ′x ′ − Al
y ′y ′

)
cos 2φ′ Bext

+χ Al
x ′y ′ sin 2φ′ Bext. (8)

Note that the local field at the muon site Bloc,TF is not
exactly parallel to Bext as in general the dipolar tensor is not
diagonal. However, as |Bext + Bcont + BLor + Bdem| � |Bdip|,
it is enough to consider solely the component of Bdip along the
direction of the external field [the differences are here of the
order of 0.1% on the values of Bdip obtained by Eq. (3)].

As Bext (5200 G) and χ (0.030 emu/mol [25–27]) are
known, the task is now to obtain the elements Al

x ′x ′ , Al
y ′y ′ ,

and Al
x ′y ′ by fitting the angular dependence of each muon

frequency [28]. The results of the fits obtained by adjusting
Eq. (8) on the angular dependence of each signal are shown in
Table II.

At this point, these results can be used to solve Eq. (6) for
each signal (site) and obtain the Euler angles θ and φ of the
rotation axis, as well as the parameter adip characterizing the
representation of the dipolar tensors Adip in the reference frame
of the crystal (see Table I). As each signal should provide us
with the same parameters, we have a rather precise determina-
tion of these parameters, i.e., adip = −0.2044(40) mol/emu,
θ = 83(1)◦, and φ = 242(1)◦. We note that the values of θ

and φ could be confirmed a posteriori by performing x-ray
Laue measurements of the crystal. But we stress that the
values of θ and φ extracted by μSR must be considered
as more precise as, for example, they take into account any
possible misalignment of the sample mounting compared to
the direction of the external magnetic field. The experimentally
determined value of adip can be directly compared with dipolar
sum calculations. Figure 7, which exhibits the theoretical value
of adip calculated for different sites 4a, indicates that this
experimental value is compatible with muons sitting either
at the site (0.532,0.532,0.532) or (0.721,0.721,0.721). We
stress that a small uncertainty on the magnetic susceptibility
(and therefore finally on the obtained value of adip) will
only weakly affect the determination of the muon site (for
example, an uncertainty as high as ±10% on χ leads to a
shift of �x = ±0.005 on the muon-site coordinates). The
obtained sites correspond to almost symmetrical positions
along the crystal diagonal on each side of the plane formed
by three adjacent Mn ions (see Fig. 8). However, the site
(0.721,0.721,0.721) appears not probable as located rather
close to the Si ion on the crystal diagonal (rμ−Si � 1.0 Å). Note
that such a short μ-ion distance can sometimes be observed
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FIG. 7. (Color online) Dipolar sum calculation of the parameter
adip characterizing the representation [Ac

ij ] of the dipolar tensors in
the crystal reference frame for the 4a sites. The divergence occurs at
the 4a position of the Mn ion. The red dotted line corresponds to the
results of the fits as explained in the text.

when a bounding between the muon and a negative ion occurs,
as in the high-Tc cuprates.

To demonstrate the perfect agreement between theoretical
calculations and experiment, the lines in Fig. 5 represent the
dipolar calculations for the site (0.532,0.532,0.532) with the
Euler angles θ = 83◦ and φ = 242◦. Note that as the four
sites are crystallographically equivalent, one expects similar
amplitudes of the four signals, as experimentally observed.
We note also that our measurements performed with angles
of φ′ = 86◦ and −4◦ correspond, respectively, to an external
field applied almost into a principal plane [i.e., (110)] and
almost along the principal axis [001̄] (as the Euler angle for

FIG. 8. (Color online) Sketch of the crystallographic structure of
MnSi (Mn ions are drawn in purple, Si ions in blue). The muon
position (0.532,0.532,0.532) is also indicated (red) as well as the
other three equivalent sites. Note that six Mn ions, which do not
belong to the primary unit cell, are also displayed.
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the rotation axis is θ = 83◦). Figure 3 shows that the signals
tend to collapse into two pairs in the first case and all together
(and with a dipolar contribution tending to zero) in the second
case, as expected. For completeness, we would also like to
mention the possibility of a small lattice dilation around the
muon. We notice first that such effects are usually extremely
small in metals (of the order of the percent, if detectable at all;
see, for example, Ref. [29]). A hypothetical weak dilation of
the lattice would decrease the calculated absolute values of the
adip parameter, which would push slightly the muon position
in the direction of the plane formed by the three adjacent Mn
ions (see Fig. 8). However, the main conclusion that the muon
is stopped at a 4a position would not be affected.

Finally, we note that a byproduct of our analysis is the
determination of the contact field Bcont. Basically two interac-
tions contribute to the contact field. The first one is a result
of the Pauli paramagnetism of the conduction electrons and
their Fermi contact interaction with the muon [21]. In systems
with localized moments, as MnSi, an additional contribution
arises as the spin polarization of the conduction electrons at
the muon site will be increased through the Ruderman-Kittel-
Kasuya-Yosida interaction due to the local magnetic moments.
As the Pauli susceptibility of the conduction electrons is much
smaller than the magnetic susceptibility from the local 3d

moments (i.e., χ � χ3d � χPauli), the Fermi interaction can
be safely neglected in the contact field, which therefore can be
written as

Bcont = Acont,TF χ Bext, (9)

where Acont is the hyperfine contact coupling tensor. By
writing Eq. (2), we note that we implicitly assumed that
the contact field is independent of the direction of Bext (i.e.,
Acont,TF = Acont,TFE) as observed in a number of compounds
with local moments (see, for example, Ref. [31] and references
therein). In any case, even if one assumes that the weak angular
dependence of ν̄ is solely arising from a hypothetical angular
dependence of Acont, this would correspond to a variation of
less than 4% of the hyperfine contact coupling tensor during
the rotation. As we know that some angular dependence has to
arise from the demagnetization factor (see Fig. 1), this number
has to be considered as an upper limit. By assuming that the
hyperfine contact coupling tensor is isotropic, and taking into
account that for our sample geometry the average value of
the demagnetization factor is N̄ = 0.47 × (4π ) one obtains
a value of Acont,TF = −0.9276(20) mol/emu, which can now
be included in the computation of the expected values of the
spontaneous fields occurring at the muon sites below TC as
described in the next section.

B. Zero-field data discussion

At this point, having a solid knowledge of the muon
stopping site, it appears legitimate to thoroughly discuss
the number and values of the spontaneous μ frequencies
observed below TC [14,16,17] in zero-applied field (ZF) μSR
experiments. All the μSR studies reported to date reveal the
occurrence of two spontaneous μ frequencies with values
νZF,1 � 12.3 MHz and νZF,2 � 28.0 MHz for T → 0 K. Our
first task here will be to discuss why solely two frequencies
are observed.

The magnetic structure of MnSi is characterized by spins
forming a left-handed incommensurate helix with a propaga-
tion vector k � 0.036 Å−1 in the [111] direction [5–7]. The
static Mn moments (∼0.4μB for T → 0 K) point in a plane
perpendicular to the propagation vector. The period, which
is incommensurate to the lattice constant, is about 18 nm.
Due to the incommensurability of the magnetic structure, one
expects a continuous set of local fields at our 4a sites, and
therefore the field distribution Di(Bloc,ZF) at each site must be
considered (here the index i distinguishes the four subsites
4a). It was shown that such a magnetic structure leads to a
field distribution given by [21,32,33]

Di(Bloc,ZF) = 2

π

Bloc,ZF√
B2

loc,ZF − B2
min,i

√
B2

max,i − B2
loc,ZF

, (10)

and is characterized by two peaks due to the minimum and
maximum cutoff field values. Hence, at first glance, one would
expect to observe up to eight peaks in the Fourier spectra of
the ZF-μSR data. However, as the sites II , III , and IV

are located symmetrically around the direction [111] of the
propagation vector (which represents for them a threefold
symmetry axis), it can be shown that muons stopping at these
sites will sense identical field distributions, given by Eq. (10),
i.e., DII(Bloc,ZF) = DIII(Bloc,ZF) = DIV(Bloc,ZF). On the other
hand, muons stopping at the site I will all sense a unique field
value irrespective of the phase of the helix at the muon stopping
site. Hence, purely geometrical considerations already reduce
the maximum number of peaks in the Fourier spectra of the
ZF-μSR data down to three. Note that this conclusion is not
affected if the sample is not monodomain. Hence for the other
possible magnetic domains (which, by taking into account the
helicity, are characterized by propagation vectors along [1̄1̄1],
[1̄11̄], and [11̄1̄]) one obtains the same field distributions as
for the original domain; albeit the symmetry of the sites with
respect to the magnetic structure will be accordingly permuted.

To gain more insight, we have computed the expected
theoretical cutoff field values of the field distributions. For
a given type of muon site, the spontaneous local field in the
incommensurate magnetic phase is given by [30]

Bloc,ZF(r′
i) = Bdip,ZF(r′

i) + Bcont,ZF(r′
i). (11)

As before, the index i distinguishes the four subsites 4a and
runs from I to IV . Since the magnetic structure of MnSi
is incommensurate, the spontaneous field differs from one
particular site of type i to another site of the same type. In
Eq. (11) r′

i represents the set of vectors defining the positions
of the sites of type i with r′

i = ri + R, where ri defines the
position of the site of type i in the primitive cell and R is a
vector belonging to the direct crystal lattice. The calculation
of the dipolar contribution on the right-hand side of Eq. (11) is
straightforward and will fully be determined by the knowledge
of the muon stopping site and the details of the magnetic
structure, such as propagation vector, value, and direction of
the magnetic moments, as well as helicity of the helix. On the
other hand, the contact contribution can be written as

Bcont,ZF(r′
i) = VmolAcont,ZF M(r′

i), (12)

where Vmol is the volume of one mol of Mn-ions. In writing
Eq. (12), we have assumed that the contact coupling is isotropic
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as suggested from our TF data. M(r′
i) is the local magnetization

at the muon site r′
i . To compute Bcont,ZF, the first natural choice

is to set Acont,ZF equal to Acont,TF determined above. This is
reasonable assuming that no massive changes occur on the
Fermi surface when crossing TC and considering that due to
the long wavelength, the close Mn neighbors around the muon,
which are determining the strength of the RKKY interaction,
are essentially ferromagnetically aligned in the magnetic
phase. This is the only choice made for the calculation, as
the local magnetization M(r′

i) is also fully determined by the
details of the magnetic structure and is given by

M(r′
i) = 1

Vnn

N∑
j=1

mj = 4

NVcell

N∑
j=1

mj , (13)

where the volume Vnn = (NVcell)/4 is the volume occupied
by the N Mn ions involved in the sum. The direction of the
Mn moments mj is determined by the details of the magnetic
structure. For our calculations, as the RKKY interaction is
local, we have restricted the sum to a sphere having a radius
of one lattice constant around the muon site.

The values of Bloc,ZF(r′
i) are located on the path of an

ellipse for which the semimajor and semiminor axis values
are Bmax and Bmin. Starting from a known magnetic structure,
the details for a precise computation of these values is
thoroughly explained in Ref. [21]. The present calculations
were performed on a sphere containing more than 5 × 105 unit
cells. By setting Acont,ZF = Acont,TF, we stress again that
our calculation does not contain any free parameters as the
magnetic structure is taken from the literature, the muon
site is determined by our TF data and the contact coupling
constant is taken as is from the TF data. From this calculation,
one obtains Bmax,II,III,IV = 2065 G (corresponding to a muon
frequency of 28.0 MHz), Bmin,II,III,IV = 900 G (12.2 MHz), and
BI = 880 G (11.9 MHz). The lower panel of Fig. 11 shows the
obtained field distributions which have been convoluted for
better visibility (see caption). The red contribution represents
the sum of the field distributions for the II , III , and IV

sites whereas the blue contribution shows the field distribution
expected at the I site.

This calculation can now be directly compared to the analy-
sis of a high-statistics ZF-μSR measurement performed at 5 K
on a single crystal obtained according to the same procedure as
the one used for the TF-μSR measurements. We note first that
the oscillatory part of the muon polarization function associ-
ated with the field distribution given by Eq. (10), and given by

Posc,i(t) =
∫ Bmax,i

Bmin,i

Di(Bloc,ZF) cos(γμBloc,ZF t), (14)

cannot be obtained analytically. We therefore approximate
Di(Bloc,ZF) with a shifted Overhauser distribution,

Di(Bloc,ZF) � 1

π

1√
�B2

i − (Bloc,ZF − Bav,i)2
, (15)

where �Bi = (Bmax,i − Bmin,i)/2 and Bav,i = (Bmax,i +
Bmin,i)/2. The upper panel of Fig. 9 shows the difference
between the exact and approximated field distribution, which
is symmetrical with respect to the singularities, i.e., some
weight is transferred from the upper cutoff to the lower cutoff
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FIG. 9. (Color online) (Upper panel) Exact [blue line and sym-
bols; see Eq. (10)] and approximated [red line; see Eq. (15)] field
distributions expected at sites II , III , and IV . (Lower panel) Muon
polarization function deduced from the field distributions shown on
the upper panel (see also text).

field. The lower panel of Fig. 9 shows the oscillatory part
of the muon polarization function obtained for both field
distributions. For the exact field distribution a numerical
calculation was performed using Eq. (14), whereas for the
approximated field distribution the muon polarization function
can be obtained analytically and is given by

Posc Overh,i (t) = J0(γμ�Bi t) cos(γμBav,i t), (16)

where J0 is a Bessel function of the first kind. We see that
the function Posc Overh,i (t) catches the essential features of
Posc,i(t) and constitutes a good approximation. Having this in
mind, we can now write a function which will be fitted to the
ZF experimental data, i.e.,

APosc ZF(t) = A1 cos(γμB1 t + ψ1) exp(−λ1t)

+A2J0(γμ�B2 t) cos(γμBav,2 t + ψ2)

× exp(−λ2t), (17)

where the first component is associated with site I and the
second with sites II , III , and IV . The depolarization rates
reflect as usual any static or dynamical effects, the discussion of
which goes beyond the scope of this study. Figure 10 shows the
ZF-μSR spectra with the fitted polarization function. From the
fitted parameters one obtains B

exp
I = 911(2) G (12.34 MHz),

B
exp
min,II,III,IV = 959(3) G (12.99 MHz), and B

exp
max,II,III,IV =

2071(3) G (28.06 MHz). These values agree very well with our
calculations performed without free parameters. In addition,
both phase parameters ψ1 and ψ2 were found to be compatible
with zero, as expected. The depolarization rates are found to
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FIG. 10. (Color online) ZF-μSR data taken at 5 K (initial muon
polarization parallel to the [111] direction). The line represents a fit of
Eq. (17) to the data using the parameters given in the text (for better
visibility a time binning corresponding to 5 ns was chosen, whereas
the fits were performed with a time binning of 1.25 ns).

have the values λ1 = 0.70(03) μs−1 and λ2 = 1.78(16) μs−1.
We note that the small difference between the values of B

exp
I

and B
exp
min,II,III,IV (which is also reflected in our calculations)

perfectly explains that solely two peaks were invoked in
former μSR data realized with much less statistics. Finally
an interesting point is the fact that BI < Bmin,II,III,IV in both the
calculations and the experimental data. This is remarkable as
the position of Bmin,II,III,IV, with respect to BI, depends on the
helicity of the incommensurate helix and is located above BI

only for left-handed helicity. It is therefore tempting to take
the ZF-μSR data as a late confirmation of the helix helicity.
We note also that a close look at the fast Fourier transform
reveals as expected a very slight divergence near the cutoff
fields between the data and the shifted Overhauser distribution
(see the upper panel of Fig. 11 and compare the data points to
the red distribution). We therefore conclude here that from the
knowledge of the muon site determined by our TF data, one
can utterly explain the characteristics of the ZF-μSR data.

C. Muon site: comparing experimental determination
and ab initio calculations

For completeness, we compare now our precise ex-
perimental determination of the muon site with ab initio
calculations based on the density-functional theory (DFT).
Such calculations have recently been shown to accurately
reproduce the muon sites observed in different materials as
wide-gap semiconductors, insulating systems or cuprates and
iron-based high-Tc superconductors [34–37]. The calculations
were performed at the University of Parma and we like to
stress that they have been performed in a blind modus, i.e.,
without any prior knowledge of the muon site deduced from
the TF-μSR data.

To analyze the electronic structure of MnSi we use the
FP-LAPW approach as implemented in the ELK code [38].
The generalized gradient approximation (GGA) as formulated
by Perdew, Burke, and Ernzerhof is used to approximate
the exchange and correlation potential [39]. The cutoff for
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FIG. 11. (Color online) (Upper panel) Fast Fourier transform of
the ZF-μSR data obtained at 5 K and shown on Fig. 10. The blue
and red components represent, respectively, the first and second
component of the right-hand side of Eq. (17). (Lower panel)
Computed field distributions for the I site (blue) and for the II ,
III and IV sites (red). For better visibility, these field distributions
have been slightly folded by Lorentzian distributions with widths (full
width at half maximum) of 5 and 20 G, respectively.

the plane wave expansion in the interstitial region is set
to |G + k|max · Rmt = 9 (Rmt being the smallest muffin-tin
radius). The reciprocal space is sampled on a 16 × 16 × 16
Monkhorst-Pack [40] grid. The experimental atomic positions
and lattice constant are used. A ferromagnetic ground state
is considered and the resulting magnetic moment on the Mn
atoms is approximately 1 μB . Indeed MnSi in a well-known
case in which the mean-field approximation leads to an
overestimation of the magnetic moments [41,42].

The muon site is identified from the minima of the
electrostatic potential obtained from the ground-state elec-
tronic density of the unperturbed material. There are four
equivalent minima in the unit cell, as shown in Fig. 12,
which correspond to the 4a Wyckoff position with fractional
coordinates (0.523,0.523,0.523). This coarse estimation nicely
agrees with the experimentally evaluated site.

The standard procedure [34,36] for the DFT site assignment
further requires the analysis of the perturbation introduced by
the muon in the vicinity of its embedding site. This is done by
analyzing the electronic and crystallographic modifications in-
troduced by the charged impurity. The muon site is eventually
validated by considering the spread of its wave function. These
steps are computationally demanding and outside the scope of
the present work. However preliminary indications suggest
that the inclusion of the muon in a supercell produces an even
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FIG. 12. (Color online) Sketch of the crystallographic structure
of MnSi with minima regions of the electrostatic potential (yellow).
The rest of the color scheme is the same as in Fig. 8. The yellow
regions define isosurfaces with an energy set to V = E0/2 with
E0 being the ground-state energy obtained from the solution of
the Schrödinger equation for the muon in the electrostatic potential.
The equivalent muon stopping sites determined by TF-μSR are also
indicated and are enclosed in the minima regions. Note that compared
to Fig. 8, we also report the muon sites located just outside of the
primary unit cell, which are enclosed in minima regions extending
into the primary unit cell.

closer agreement with the experimental value, providing a 4a

muon stopping site at the coordinates (0.538,0.538,0.538).

IV. CONCLUSIONS

We conclude that the observed angular dependence of the
TF-μSR signals (except for a very slight dependence due to
the demagnetization factor) can be beyond any doubt ascribed
by a muon sitting at a 4a Wyckoff position and detecting the
dipolar field produced by the Mn moments. Consequently the
μSR response of paramagnetic MnSi under the application
of a magnetic field can be fully understood without invoking
a hypothetical magnetic polaron state. In addition we have
shown that the knowledge of the muon stopping site provides a
clear understanding of the ZF-μSR data and that the computed
field distribution perfectly agrees with the measured one.
Moreover, blind modus ab initio DFT calculations provide
a 4a muon stopping which is in very close agreement with the
site determined by the experimental μSR data.
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