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We calculate the effects of the spin-lattice coupling on the magnon spectrum of thin ferromagnetic films
consisting of the magnetic insulator yttrium iron garnet. The magnon-phonon hybridization generates a
characteristic minimum in the spin dynamic structure factor which quantitatively agrees with recent Brillouin
light scattering experiments. We also show that at room temperature the phonon contribution to the magnon
damping exhibits a rather complicated momentum dependence: In the exchange regime the magnon damping is
dominated by Cherenkov type scattering processes, while in the long-wavelength dipolar regime these processes
are subdominant and the magnon damping is two orders of magnitude smaller. We supplement our calculations
by actual measurements of the magnon relaxation in the dipolar regime. Our theory provides a simple explanation
of a recent experiment probing the different temperatures of the magnon and phonon gases in yttrium iron garnet.
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I. INTRODUCTION

Although the spin-lattice interactions in magnetic insulators
can often be ignored, in some cases the coupling between the
spin degrees of freedom and the lattice vibrations (phonons)
plays a crucial role. For example, in ultrasound experiments
one uses the spin-lattice coupling to study the properties of
the spin degrees of freedom from the measurement of the
propagation and the attenuation of sound waves [1]. The
theory of magnetoelastic effects in magnetic insulators has
been developed more than half a century ago by Abrahams and
Kittel [2,3], and by Kaganov and Tsukernik [4]. While in the
past decades a few theoretical studies of magnetoelastic effects
have appeared [5–10], recent experimental progress in the
field of spintronics has revived the interest in the interactions
between spin and lattice degrees of freedom [11].

The present work is motivated by an experiment [12]
where the coupling between magnons and phonons in the
magnetic insulator yttrium iron garnet (YIG) was probed via a
spatially resolved measurement of the magnon temperature Tm

in the presence of a thermal gradient. In the short wavelength
exchange part of the magnon spectrum Tm was found to
agree almost perfectly with the temperature Tp of the phonon
bath. In order to reconcile this finding with earlier studies of
the spin Seebeck effect [13] (which relies on the difference
between Tm and Tp), the authors of Ref. [12] speculated
that in the long-wavelength dipolar part of the spectrum the
magnon temperature significantly differs from Tp, suggesting
a rather weak coupling between magnons and phonons in this
regime. In this work we offer a microscopic explanation for
such a momentum dependence of the magnon temperature:
We show that the lifetime τ (k) of magnons due to coupling
to the phonons in YIG is strongly momentum dependent;
in particular τ (k) exhibits a pronounced minimum in the
exchange regime and is two orders of magnitude larger in
the dipolar regime. Since in the dipolar part of the spectrum
the magnons have a longer lifetime, in this regime phonons are
less effective to thermalize the magnons and the differences
between Tm and Tp can persist for longer times.

We also present experimental results for the magnon damp-
ing in the dipolar regime, which have been obtained by means
of time- and wave-vector-resolved Brillouin light scattering
(BLS) spectroscopy [14]. The experimentally determined
damping rate is three orders of magnitude larger than our
theoretical prediction, although the qualitative behavior as a
function of in-plane momentum is similar. One should keep in
mind, however, that in our calculations only the relaxation
due to magnon-phonon interactions has been taken into
account. Apparently, in the long-wavelength dipolar regime
other scattering channels leading to momentum relaxation are
dominant, such as elastic magnon-impurity scattering.

The rest of this work is organized as follows: In Sec. II we
briefly review the calculation of the spin wave spectrum of a
thin YIG stripe and fix the experimentally relevant parameters.
In Sec. III we carefully derive the magnon-phonon interaction
by quantizing the phenomenological classical magnetoelastic
energy. The calculation of the magnetoelastic modes due to the
magnon-phonon hybridization is presented in Sec. IV. We also
calculate the resulting spectral function of the magnons and
the transverse dynamic structure factor which is proportional
to the BLS cross section. Since we are interested in the magnon
dynamics, we derive the effective action of the magnons by
integrating over the phonon degrees of freedom. Using this
effective action, we proceed in Sec. V to calculate the damping
of the magnons due to the coupling to the phonons. We also
present new experimental results for the magnon damping in
the long-wavelength dipolar regime, and compare them to our
calculations. Finally, in Sec. VI we present our conclusions.
To make contact with previous work [9] on magnon-phonon
interactions in YIG, we present in the Appendix an alternative
derivation of the dispersion of the magnetoelastic modes using
the equations of motion.

II. MAGNONS IN YIG

It is generally established that the magnetic properties of
YIG at room temperature can be obtained from the following
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effective quantum spin Hamiltonian [15–17]:

H = −1

2

∑
ij

∑
αβ

(
Jij δαβ + D

αβ

ij

)
Sα

i S
β

j − h
∑

i

Sz
i , (2.1)

where the spin operators Si = S(Ri) are localized at the sites
Ri of a cubic lattice with lattice spacing a ≈ 12.376 Å, the
exchange couplings Jij = J (Ri − Rj ) connect the spins at
nearest neighbor sites Ri and Rj , and h = μH is the Zeeman
energy due to an external magnetic field H along the z axis
(where μ = 2μB , and μB is the Bohr magneton). The dipole-
dipole interaction is

D
αβ

ij = (1 − δij )
μ2

|Rij |3
[
3R̂α

ij R̂
β

ij − δαβ

]
, (2.2)

where Rij = Ri − Rj and R̂ij = Rij /|Rij |. Within the frame-
work of the usual expansion in inverse powers of the spin S

the low-energy magnon spectrum of YIG can be quantitatively
described if one chooses J ≈ 3.19 K and S = Msa

3/μ ≈
14.2, where the saturation magnetization of YIG is given
by 4πMs = 1750 G. Due to the large value of the effective
spin S we may use the Holstein-Primakoff transformation
[18] to express the spin operators in terms of canonical boson
operators bi and b

†
i and expand the square roots,

S+
i =

√
2S

√
1 − b

†
i bi

2S
bi ≈

√
2S

[
bi − b

†
i bibi

4S

]
, (2.3a)

S−
i =

√
2Sb

†
i

√
1 − b

†
i bi

2S
≈

√
2S

[
b
†
i − b

†
i b

†
i bi

4S

]
, (2.3b)

Sz
i = S − b

†
i bi, (2.3c)

where S+
i = Sx

i + iS
y

i and S−
i = Sx

i − iS
y

i , and we have
assumed that the magnetization of the system is uniform and
points along the z axis. To describe a thin stripe we can
work with an effective two-dimensional model, as explained
in Ref. [17]. In the geometry shown in Fig. 1 the in-plane
magnon wave vectors are then of the form k = kyey + kzez =
|k| cos θkez + |k| sin θkey . Defining

bk = 1√
N

∑
i

e−ik·Ri bi , (2.4)

where N denotes the number of lattice sites in the yz plane,
and retaining only quadratic terms in the bosons, we obtain

H
d

k
θk

x

y
z

FIG. 1. Thin YIG stripe of thickness d in a magnetic field H =
H ez along the direction ez of the long axis. We consider magnons
with wave vector k = |k| cos θkez + |k| sin θkey in the stripe plane.

the bosonized Hamiltonian for YIG,

H(2)
m =

∑
k

[
Akb

†
kbk + Bk

2
(b†kb

†
−k + b−kbk)

]
. (2.5)

Here the energies Ak and Bk can be expressed in terms of the
Fourier transforms Jk and D

αβ

k of the exchange couplings and
the dipole-dipole interaction as [17]

Ak = h + S(J0 − Jk) + S

(
Dzz

0 − Dxx
k + D

yy

k

2

)
, (2.6a)

Bk = −S
Dxx

k − D
yy

k

2
. (2.6b)

The Hamiltonian (2.5) is easily diagonalized by means of a
Bogoliubov transformation,(

bk

b
†
−k

)
=

(
uk −vk

−v∗
k uk

) (
βk

β
†
−k

)
, (2.7)

with

uk =
√

Ak + Ek

2Ek
, vk = Bk

|Bk|

√
Ak − Ek

2Ek
, (2.8)

and

Ek =
√

A2
k − B2

k . (2.9)

In terms of the magnon quasiparticle operators βk the Hamil-
tonian is diagonal,

H(2)
m =

∑
k

[
Ekβ

†
kβk + Ak − Ek

2Ek

]
. (2.10)

For a thin stripe with thickness d the magnon dispersion can
be approximated for small wave vectors by [17,19]

Ek = [h + ρs k2 + 	(1 − fk) sin2 θk]1/2

× [h + ρs k2 + 	fk]1/2, (2.11)

where θk is the angle between the magnetic field and the wave
vector k and the form factor can be approximated by

fk ≈ 1 − e−|k|d

|k|d . (2.12)

For a thin YIG stripe the exchange spin stiffness ρs and the
dipolar energy scale 	 have the values [9,20]

ρs = 2μB × 5.17 × 10−9 Oe cm2

≈ 945 GHz × a2 × 2π�, (2.13)

	 = 3SDzz
0 = 2μB × 4πMs = 2μB × 1750 G

≈ 0.235 K × kB = 4.89 GHz × 2π�. (2.14)

Note that in units where kB = 1 and h = 2π� = 1 we have
1 K ≈ 20.8 GHz.

III. MAGNON-PHONON HAMILTONIAN
OF THIN YIG FILMS

One source of the spin-phonon coupling is the dependence
of the true positions r i = Ri + X i of the spins on the
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phonon displacements X i = X(Ri) at the lattice sites Ri .
The resulting magnon phonon interaction can be derived from
the effective spin-model (2.1) by expanding the exchange
couplings Jij = J (Ri − Ri + X i − Xj ) in powers of the
phonon displacements [21]. However, in collinear magnets
such a procedure does not take into account the dominant
source of the magnon-phonon interaction, which is generated
by relativistic effects such as dipole-dipole interactions and
spin-orbit coupling [9]. These effects involve the charge
degrees of freedom so that they cannot be simply included in
our effective spin model (2.1). To derive the proper quantized
interaction between magnons and phonons in YIG, we there-
fore follow the semiphenomenological approach pioneered by
Abrahams and Kittel [2], which relies on the quantization of the
phenomenological expression for the classical magnetoelastic
energy.

A. Classical magnetoelastic energy in YIG

To second order in the spin-density field M(r) and to
first order in the displacement field X(r) associated with
long-wavelength acoustic phonons the phenomenological ex-
pression for the magnetoelastic energy is [2–4,7,9]

Eme[M,X] = n

M2
s

∫
d3r

∑
αβ

[
BαβMα(r)Mβ(r)

+B ′
αβ

∂ M(r)

∂rα

∂ M(r)

∂rβ

]
Xαβ(r), (3.1)

where M(r) is the local magnetization (i.e., the magnetic
moment per unit volume at position r), Ms is the saturation
magnetization, n = N/V is the number density of the mag-
netic particles in the system, and

Xαβ(r) = 1

2

[
∂Xα(r)

∂rβ

+ ∂Xβ(r)

∂rα

]
(3.2)

is the symmetric strain tensor. Here Xα(r) = eα · X(r) are the
projections of the phonon displacement field X(r) onto the
cartesian unit vectors eα , where α = x,y,z. The first term on
the right-hand side of Eq. (3.1) involving the couplings Bαβ is
due to relativistic effects such as dipole-dipole interactions and
spin-orbit coupling, while the gradient term involving B ′

αβ is
generated by the dependence of the exchange interaction on the
phonon coordinates. For a cubic lattice the phenomenological
coupling tensors Bαβ and B ′

αβ have the structure

Bαβ = δαβB‖ + (1 − δαβ)B⊥, (3.3a)

B ′
αβ = δαβB ′

‖ + (1 − δαβ)B ′
⊥. (3.3b)

The prefactor of n/M2
s in Eq. (3.1) is introduced such that

B⊥ and B‖ have units of energy. Transforming to wave vector
space,

M(r) =
∫

k
eik·r M(k), (3.4a)

X(r) =
∫

k
eik·r X(k), (3.4b)

Xαβ(r) =
∫

k
eik·rXαβ(k), (3.4c)

where
∫

k = ∫
d3k

(2π)3 , the matrix elements of the strain tensor in
Fourier space are

Xαβ(k) = i

2
[Xα(k)kβ + Xβ(k)kα], (3.5)

and the magnetoelastic energy can be written as

Eme[M,X]

= n

M2
s

∫
k

∫
k′

∫
q
(2π )3δ(k + k′ + q)

∑
αβ

[BαβMα(k)Mβ(k′)

−B ′
αβkαk′

β M(k) · M(k′)]Xαβ(q). (3.6)

At long wavelength the dominant contribution to the
magnetoelastic coupling is due to spin-orbit coupling [9]
so that in this work we shall neglect the exchange contri-
bution, setting B ′

αβ = 0. For YIG at room temperature the
numerical values for the magnetoelastic coupling constants are
[9,22,23]

nB‖ = 3.48 × 106 erg/cm3, nB⊥ = 6.96 × 106 erg/cm3.

(3.7)

The number density of the magnetic ions in YIG is [20]

n = 1/a3, a = 12.376 Å, (3.8)

so that in units where the Boltzmann constant and 2π� are set
equal to unity

B‖ = 47.8 K = 994 GHz,
(3.9)

B⊥ = 95.6 K = 1988 GHz.

B. Quantized magnon-phonon interaction in the
Holstein-Primakoff basis

Let us now quantize the magnetoelastic energy. For the
phonon field we adopt the usual strategy of expressing the
displacement field by the bosonic creation and annihilation
operators a

†
kλ and akλ of the phonon eigenmodes with

momentum k and polarization ekλ,

X(k) → V√
N

X k, (3.10)

X k =
∑

λ

Xkλekλ =
∑

λ

akλ + a
†
−kλ√

2mωkλ

ekλ, (3.11)

where λ = 1,2,3 labels the three acoustic phonon branches,
ωkλ = cλ|k| are the phonon dispersions, m is the effective
ionic mass in a unit cell, V is the volume of the system, and N

is the number of unit cells. Note that in general the polarization
vectors satisfy [24] the orthogonality relations e∗

kλ · ekλ′ = δλλ′

and the completeness relation
∑

λ ekλe†kλ = 1, so that we may
identify

Xkλ = e∗
kλ · X k = akλ + a

†
−kλ√

2mωkλ

. (3.12)

Below we shall denote the Fourier transform of the quantized
strain tensor by

X
αβ

k = i

2
kαβ · X k, kαβ = kαeβ + kβ eα. (3.13)
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We may also choose the phases of the unit vectors such that
[24] e∗

kλ = e−kλ. For a quasi-two-dimensional YIG stripe in
the yz plane we parametrize the in-plane wave vectors as
k = |k|(cos θkez + sin θkey), as shown in Fig. 1. A convenient
choice for the polarization vectors of the longitudinal and
transverse phonons is then

ek‖ = i(ez cos θk + ey sin θk), (3.14a)

ek⊥1 = i(ez sin θk − ey cos θk), (3.14b)

ek⊥2 = ex. (3.14c)

For YIG the relevant value of the effective ionic mass
appearing in Eqs. (3.11) and (3.12) is [9,20]

m = ρa3, ρ = 5.17 g/cm3, (3.15)

and the longitudinal and transverse phonon velocities are

c‖ = 7.209 × 105 cm/s,
(3.16)

c⊥ = 3.843 × 105 cm/s.

To quantize the magnetic sector, we follow Refs. [2–4] and
replace the magnetization M(r) at lattice site r = Ri by the
corresponding spin-operator Si according to the prescription

M(Ri) → 2μBnSi , (3.17)

where n = N/V = 1/a3 is the number density. In Fourier
space Eq. (3.17) corresponds to

M(k) → gμB

√
N Sk = gμB

∑
i

e−ik·Ri Si . (3.18)

Assuming that the macroscopic magnetization points along
the z axis, we may express the components of the spin
operators at lattice site Ri in terms of Holstein-Primakoff
bosons (magnons) bi and b

†
i as usual with Eqs. (2.3a)–(2.3c).

In momentum space we have

Sz
k =

√
NSδk,0 − 1√

N

∑
q

b†qbq+k, (3.19)

and to leading order in an expansion in powers of 1/S,

Sx
k ≈

√
2S

2
(bk + b

†
−k), (3.20)

S
y

k ≈
√

2S

2i
(bk − b

†
−k). (3.21)

For large S it is reasonable to retain only terms up to quadratic
order in the magnons, so that the resulting magnetoelastic
Hamiltonian can be written as

Hme = H(2)
me + H(3)

me, (3.22)

where the superscript indicates the number of operators
involved. The quadratic term H(2)

me is

H(2)
me = B⊥

√
2

S

∑
k

[
Xzx

−k(bk + b
†
−k) − iX

zy

−k(bk − b
†
−k)

]

=
∑

k

X−k · [�kbk + �∗
−kb

†
−k]

=
∑

k

[X∗
k · �kbk + X k · �∗

kb
†
k], (3.23)

where we have used the fact that the X k are the Fourier
components of a hermitian operator so that

X−k = X∗
k, (3.24)

and the vector vertex �k is defined by

�k = − B⊥√
2S

(kyz + ikxz)

= − B⊥√
2S

[(ky + ikx)ez + kz(ey + iex)]. (3.25)

Expanding

X k =
∑

λ

Xkλekλ, �k =
∑

λ


kλekλ, (3.26)

with

Xkλ = e∗
kλ · X k, 
kλ = e∗

kλ · �k, (3.27)

the Hamiltonian (3.23) can be written as

H(2)
me =

∑
kλ

[
kλX
∗
kλbk + 
∗

kλXkλb
†
k]

=
∑
kλ

X−kλ[
kλbk + 
∗
−kλb

†
−k]. (3.28)

This part of the magnetoelastic Hamiltonian describes the
hybridization between the phonon and magnon degrees of
freedom. With the choice (3.14a)–(3.14c) of the phonon
basis we obtain for the projections of the hybridization
vertex


k‖ = i
B⊥√

2S

2kykz

|k| = i
B⊥√

2S
|k| sin(2θk), (3.29a)


k⊥1 = i
B⊥√

2S

k2
y − k2

z

|k| = −i
B⊥√

2S
|k| cos(2θk), (3.29b)


k⊥2 = −i
B⊥√

2S
kz = −i

B⊥√
2S

|k| cos θk. (3.29c)

Before discussing the spectrum of the magnetoelastic
modes, let us write down the cubic term H(3)

me of the mag-
netoelastic Hamiltonian in the form [21]

H(3)
me = 1√

N

∑
kk′

[
�b̄b

k,k′ · X k−k′b
†
kbk′

+ 1

2!

(
�bb

k,k′ · X−k−k′bkbk′ + �b̄b̄
k,k′ · X k+k′b

†
kb

†
k′
)]

= 1√
N

∑
kq

X−q ·
[

U−qb
†
kbk+q

+ 1

2!

(
V −qb−kbk+q + V ∗

qb
†
kb

†
−k−q

)]
, (3.30)

where the vector vertices are given by

�b̄b
k,k′ = U k−k′ , (3.31a)

�bb
k,k′ = V k+k′ , (3.31b)

�b̄b̄
k,k′ = V ∗

−k−k′ , (3.31c)
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with

U q = iB‖
S

(qxex + qyey − 2qzez), (3.32a)

V q = iB‖
S

(qxex − qyey) + B⊥
S

qxy

= iB‖
S

(qxex − qyey) + B⊥
S

(qxey + qyex). (3.32b)

C. Magnetoelastic interaction vertices in the quasiparticle basis

For the calculation of the spectral function of the magnons
it is useful to express the magnetoelastic interaction in terms of
the magnon quasiparticle operators βk and β

†
k which are related

to the Holstein-Primakoff bosons bk and b
†
k via the Bogoliubov

transformation (2.7). Substituting this transformation into
Eqs. (3.23) and (3.30) we obtain for the hybridization part

H(2)
me =

∑
kλ

X−kλ

[



β

kλβk + 

β̄

−kλβ
†
−k

]
, (3.33)

with



β

kλ = uk
kλ − v∗
k


∗
−kλ, (3.34)



β̄

kλ = uk

∗
kλ − vk
−kλ = (



β

kλ

)∗
. (3.35)

The magnon-phonon interaction defined in Eq. (3.30) can be
written as

H(3)
me = 1√

N

∑
kk′

[
�

β̄β

k,k′ · X k−k′β
†
kβk′

+ 1

2!

(
�

ββ

k,k′ · X−k−k′βkβk′ + �
β̄β̄

k,k′ · X k+k′β
†
kβ

†
k′
)]

,

(3.36)

with

�
β̄β

k,k′ = ukuk′�b̄b
k,k′ + vkv

∗
k′�

b̄b
−k′,−k

− vkuk′�bb
−k,k′ − ukv

∗
k′�

b̄b̄
k,−k′

= (ukuk′ + vkv
∗
k′)U k−k′ − vkuk′ V k′−k − ukv

∗
k′ V ∗

k′−k,

(3.37a)

�
ββ

k,k′ = ukuk′�bb
k,k′ + v∗

kv
∗
k′�

b̄b̄
−k,−k′

− v∗
kuk′�b̄b

−k,k′ − ukv
∗
k′�

b̄b
−k′,k

= ukuk′ V k+k′ + v∗
kv

∗
k′ V ∗

k+k′ − (v∗
kuk′ + ukv

∗
k′)U−k−k′ ,

(3.37b)

�
β̄β̄

k,k′ = ukuk′�b̄b̄
k,k′ + vkvk′�bb

−k,−k′

−ukvk′�b̄b
k,−k′ − vkuk′�b̄b

k′,−k

= ukuk′ V ∗
−k−k′ + vkvk′ V −k−k′ − (ukvk′ + vkuk′)U k+k′ .

(3.37c)

Note that the hermiticity of the Hamiltonian implies

�
β̄β

k,k′ = (
�

β̄β

k′,k

)∗
, �

ββ

k,k′ = (
�

β̄β̄

k,k′
)∗

. (3.38)

Below we shall need these interaction vertices to calculate
the damping of the magnons in YIG due to the coupling to

the phonons. In fact, we shall need the projections of the
three-legged vertices onto the phonon basis, which we define
by



β̄β

k,k′,λ = e∗
k′−k,λ · �

β̄β

k,k′ , (3.39a)



ββ

k,k′,λ = e∗
k′+k,λ · �

ββ

k,k′ , (3.39b)

or in terms of shifted labels,



β̄β

k,k+q,λ = e∗
q,λ · �

β̄β

k,k+q, (3.40a)



ββ

k,−k+q,λ = e∗
q,λ · �

ββ

k,−k+q . (3.40b)

These vertices should also be useful in microscopic calcula-
tions of the nonequilibrium dynamics of magnons in YIG. Note
that in Ref. [25] only the Cherenkov type of process described

by the vertex �
β†β
k,k′ has been taken into account (however,

using a simple phenomenological expression for this vertex).
It should be interesting to repeat the calculations of Ref. [25]
for the nonequilibrium magnon dynamics in YIG using the
more realistic magnon-phonon vertices given above.

IV. MAGNETOELASTIC MODES IN YIG

To calculate the energy dispersion of the magnetoelastic
modes, it is sufficient to retain only terms which are quadratic
in the magnon and phonon operators. The Hamiltonian of the
coupled magnon-phonon system can then be approximated by

H(2) = H(2)
m + H(2)

e + H(2)
me, (4.1)

where the quadratic spin wave part H(2)
m is given in Eqs. (2.5)

and (2.10), the pure phonon part can be written as

H(2)
e =

∑
kλ

[
P−kλPkλ

2m
+ m

2
ω2

kλX−kλXkλ

]

=
∑
kλ

ωkλ

[
a
†
kλakλ + 1

2

]
, (4.2)

and the magnon-phonon hybridization H(2)
me is given in

Eqs. (3.28) and (3.33).

A. Effective magnon action and magnon self-energies

To study the effect of the lattice vibrations on the spin exci-
tations, it is convenient to use a functional integral formulation
of the coupled magnon-phonon system and integrate over the
phonon degrees of freedom, which in our approximation can
be done exactly because we have truncated the expansion
(3.1) of the magnetoelastic energy at the linear order in the
phonon coordinates. The magnon operators βk and β

†
k in the

quasiparticle basis should then be represented by complex
fields βK and β̄K depending on momentum k and bosonic
Matsubara frequency iω, which we collect into the label
K = (k,iω). The resulting Euclidean effective action of the
magnons is of the form

S[β̄,β] = S2[β̄,β] + S3[β̄,β] + S4[β̄,β], (4.3)
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where the Gaussian part is given by

S2[β̄,β] = − 1

T

∑
K

{
[iω − Ek − �1(K)]β̄KβK

− 1

2
[�1(K)β−KβK + �∗

1(K)β̄K β̄−K ]

}
. (4.4)

Here the normal and anomalous self-energies to first order in
the small parameter 1/S are given by

�1(K) = −
∑

λ

∣∣
β

kλ

∣∣2

m
(
ω2 + ω2

kλ

) = −
∑

λ

∣∣
β

kλ

∣∣2
F0(Kλ),

(4.5)

�1(K) = −
∑

λ



β

kλ

β

−kλ

m
(
ω2 + ω2

kλ

) = −
∑

λ



β

kλ

β

−kλF0(Kλ),

(4.6)

where we have introduced the symmetric phonon propagator

F0(Kλ) = 1

m
(
ω2 + ω2

kλ

) . (4.7)

The interference of the magnon-phonon hybridization with
the cubic term of the magnetoelastic coupling yields a cubic
contribution to the effective magnon-magnon interaction,

S3[β̄,β] = − 1

T
√

N

∑
K1K2K3

δK1+K2+K3,0

×
[

1

2



β̄ββ

1;23 β̄−1β2β3 + 1

2



β̄β̄β

12;3 β̄−1β̄−2β3

+ 1

3!



βββ

123 β1β2β3 + 1

3!



β̄β̄β̄

123 β̄−1β̄−2β̄−3

]
. (4.8)

Here δK,K ′ = δk,k′δω,ω′ and for simplicity we have abbreviated

β1 ≡ βK1 and 

β̄ββ

K1;K2K3
≡ 


β̄ββ

1;23 , and similarly for the other
labels. Introducing the notation F0(K1λ) = F1λ, the properly
symmetrized cubic interaction vertices can be written as



β̄ββ

1;23 =
∑

λ

[
F1λ


β̄

−1λ

ββ

2,3,λ + F2λ

β

2λ

β̄β

−1,3,λ

+F3λ

β

3λ

β̄β

−1,2,λ

]
, (4.9a)



β̄β̄β

12;3 =
∑

λ

[
F1λ


β̄

−1λ

β̄β

−2,3,λ + F2λ

β̄

−2λ

β̄β

−1,3,λ

+F3λ

β

3λ

β̄β̄

−1,−2,λ

]
, (4.9b)



βββ

123 =
∑

λ

[
F1λ


β

1λ

ββ

2,3,λ + (1 ↔ 2) + (1 ↔ 3)
]
, (4.9c)



β̄β̄β̄

123 =
∑

λ

[
F1λ


β̄

−1λ

β̄β̄

−2,−3,λ + (1 ↔ 2) + (1 ↔ 3)
]
.

(4.9d)

Finally, the quartic magnon-magnon interaction is gener-
ated from the square of the cubic magnetoelastic coupling via

the exchange of a virtual phonon,

S4[β̄,β] = − 1

T N

∑
K1...K4

δK1+···+K4,0

[
1

(2!)2



β̄β̄ββ

12;34 β̄−1β̄−2β3β4

+ 1

3!



β̄βββ

1;234 β̄−1β2β3β4 + 1

3!



β̄β̄β̄β

123;4 β̄−1β̄−2β̄−3β4

+ 1

4!



ββββ

1234 β1β2β3β4 + 1

4!



β̄β̄β̄β̄

1234 β̄−1β̄−2β̄−3β̄−4

]
.

(4.10)

The symmetrized quartic vertices are



β̄β̄ββ

12;34 =
∑

λ

[
F1+2,λ


β̄β̄

−1,−2,λ

ββ

3,4,λ + F2+3,λ

β̄β

−2,3,λ

β̄β

−1,4,λ

+F3+1,λ

β̄β

−1,3,λ

β̄β

−2,4,λ

]
, (4.11a)



β̄βββ

1;234 =
∑

λ

[
F1+2,λ


β̄β

−1,2,λ

ββ

3,4,λ + (2 ↔ 3) + (2 ↔ 4)
]
,

(4.11b)



β̄β̄β̄β

123;4 =
∑

λ

[
F1+2,λ


β̄β̄

−1,−2,λ

β̄β

−3,4,λ + (2 ↔ 3) + (1 ↔ 3)
]
,

(4.11c)



ββββ

1234 =
∑

λ

[
F1+2,λ


ββ

1,2,λ

ββ

3,4,λ + (2 ↔ 3) + (2 ↔ 4)
]
,

(4.11d)



β̄β̄β̄β̄

1234 =
∑

λ

[
F1+2,λ


β̄β̄

−1,−2,λ

β̄β̄

−3,−4,λ + (2 ↔ 3) + (2 ↔ 4)
]
.

(4.11e)

To leading order in 1/S, the damping of the magnons is
determined by the 1/S2 correction to the normal component
of the magnon self-energy, which can be written as

�2(K) = T

N

∑
K ′



β̄β̄ββ

−K,−K ′,K ′,KG0(K ′)

= T

N

∑
K ′λ

[∣∣
β̄β

k,k′,λ

∣∣2
F0(K − K ′,λ)

+ ∣∣
ββ

k,k′,λ

∣∣2
F0(K + K ′,λ)

]
G0(K ′), (4.12)

where

G0(K) = 1

iω − Ek
(4.13)

is the noninteracting magnon Green function.

B. Magnon spectral function and dynamic structure factor

Due to the off-diagonal self-energy �(K) generated by the
magnon-phonon interaction, the magnon Green function has
also an off-diagonal component, so that we should consider
the normal and anomalous propagators. In terms of the normal
irreducible self-energies the normal magnon propagator can
be written as

G(K) = −T 〈βKβ̄K〉 = − iω + Ek + �(−K)

D(K)
, (4.14)

184413-6



MAGNETOELASTIC MODES AND LIFETIME OF MAGNONS . . . PHYSICAL REVIEW B 89, 184413 (2014)

while the anomalous magnon propagator is

P (K) = −T 〈βKβ−K〉 = �∗(K)

D(K)
. (4.15)

Here

D(K) = −[iω − �−(K)]2 + [Ek + �+(K)]2 − |�(K)|2
(4.16)

can be identified with the determinant of the inverse matrix
Green function, and

�±(K) = 1
2 [�(K) ± �(−K)]. (4.17)

The spectrum of the magnetoelastic modes can be obtained
from the roots of the equation

D(k,ω + iη) = 0, (4.18)

with infinitesimal positive η. Hence, the magnetoelastic modes
are determined by

[ω − �−(k,ω)]2 − E2
k − 2Ek�+(k,ω)

= [�+(k,ω)]2 − |�(k,ω)|2. (4.19)

For large effective spin S we may approximate the self-
energies by the first order corrections given in Eqs. (4.5)
and (4.6). Using the explicit polarization basis given in
Eqs. (3.14a)–(3.14c) it is easy to see that �−(K) = 0 in
this approximation, so that we may identify �+(K) = �(K).
Still, Eq. (4.19) amounts in general to finding the solutions
of a sixth order polynomial. However, the last two terms on
the right-hand side involving the square of the self-energies
are of order 1/S2 and can be neglected; we have checked
numerically that these terms do not have any significant effect
for the parameters relevant to YIG. The equation for the
magnetoelastic modes then reduces to

ω2 − E2
k = 2Ek�1(k,ω), (4.20)

where �1(k,ω) is defined in Eq. (4.5). To further simplify this
equation let us assume that either the energy of the longitudinal
phonon mode or the energy of the transverse phonon modes
is close to the magnon energy Ek. In the first case we may
approximate

�1(k,ω) ≈
∣∣
β

k‖
∣∣2

m
(
ω2 − ω2

k‖
) , (4.21)

while in the second case

�1(k,ω) ≈
∣∣
β

k⊥
∣∣2

m
(
ω2 − ω2

k⊥
) , (4.22)

where ∣∣
β

k⊥
∣∣2 = ∣∣
β

k⊥,1

∣∣2 + ∣∣
β

k⊥,2

∣∣2
. (4.23)

Equation (4.20) is then biquadratic and has the solutions

�2
kλ± = ω2

kλ + E2
k

2
±

√(
ω2

kλ − E2
k

)2

4
+ 	4

kλ, (4.24)

where

	4
kλ = 2

Ek

m

∣∣
β

kλ

∣∣2
. (4.25)
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FIG. 2. (Color online) Dispersions of the magnetoelastic modes
of a thin YIG stripe with thickness d = 6.7 μm in an external
magnetic field H = 1710 Oe, for k = kez parallel to the in-plane
magnetic field. The inset shows a magnified view of the hybridization
at the crossing of magnon and transverse phonon dispersions.

The energy dispersion of these modes is shown graphically in
Fig. 2 for k = kez parallel to the in-plane magnetic field. Note
that for this propagation direction the longitudinal phonon does
not hybridize with the magnon dispersion because for ky = 0
(corresponding to θk = 0) the relevant hybridization function

k‖ given in Eq. (3.29a) vanishes.

The normal component of the magnon Green function is in
this approximation

G(k,iω) = iω + Ek + �1(k,iω)

(iω)2 − E2
k − 2Ek�1(k,iω)

. (4.26)

If iω is close to ωkλ this can be approximated by

G(k,iω) ≈ [iω + Ek]
[
(iω)2 − ω2

kλ

] + |
β

kλ|2
m[

(iω)2 − E2
k

][
(iω)2 − ω2

kλ

] − 2Ek
|
β

kλ|2
m

. (4.27)

After analytic continuation to the real frequency axis we obtain
for the corresponding spectral function

A(k,ω) = − 1

π
ImG(k,ω + iη)

≈ Zkλ(ω)
∑
s=±

s[δ(ω − �kλs) + δ(ω + �kλs)],

(4.28)

where

Zkλ(ω) = [ω + Ek]
[
ω2 − ω2

kλ

] + |
β

kλ|2
m

2ω
[
�2

kλ+ − �2
kλ−

] . (4.29)

An intensity plot of the magnon spectral function for YIG
is shown in Fig. 3. One clearly sees the transfer of spectral
weight between the magnon and the phonon branch at
the crossing point. Actually, the Brillouin light scattering
intensity is proportional to the transverse spin structure

184413-7
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FIG. 3. (Color online) Magnon spectral function A(k,ω) of a thin
YIG stripe with thickness d = 6.7 μm in an external magnetic field
H = 1710 Oe, for k = kez parallel to the in-plane magnetic field.
The Dirac distributions were artificially broadened with a lifetime of
10 ns.

factor [26,27]

S⊥(k,ω) =
∫ ∞

−∞

dt

2π
eiωt

〈
Sx

−k(0)Sx
k (t) + S

y

−k(0)Sy

k (t)
〉
, (4.30)

where the Fourier transform of the spin operator is defined in
Eq. (3.18). To leading order in spin wave theory we obtain

S⊥(k,ω) = S

1 − e−ω/T

{(
u2

k + |vk|2
)
[A(−k,ω)

−A(k,−ω)] − 2(ukv
∗
k + ukvk)B(k,ω)

}
,

(4.31)

where

B(k,ω) = − 1

π
ImP (k,ω + iη) (4.32)

is the spectral function of the anomalous magnon Green
function P (k,iω), which for imaginary frequencies is defined
by Eq. (4.15). We obtain

B(k,ω) ≈ Ykλ(ω)
∑
s=±

s[δ(ω − �kλs) + δ(ω + �kλs)], (4.33)

FIG. 4. (Color online) Transverse spin dynamic structure factor
of a thin YIG stripe at temperature T = 300 K, with thickness
d = 6.7 μm in an external magnetic field H = 1710 Oe, for k = kez

parallel to the in-plane magnetic field. The Dirac distributions were
artificially broadened with a lifetime of 10 ns.

where

Ykλ(ω) = −

β̄

−k⊥,1

β̄

k⊥,1 + 

β̄

−k⊥,2

β̄

k⊥,2

2mω
[
�2

kλ+ − �2
kλ−

] . (4.34)

An intensity plot of the transverse dynamic structure factor
is shown in Fig. 4. Note that the qualitative behavior is very
similar to the behavior of the magnon spectral function, which
is due to the fact that the Bogoliubov transformation has only
a small effect because of the smallness of the Boguliubov
coefficient vk in the entire Brillouin zone.

V. MAGNON DAMPING

In this section we calculate the decay rate (i.e., the damping)
of the magnons due to the magnon-phonon interaction in YIG
at room temperature. The damping γ (k) of magnons with wave
vector k and energy Ek can be obtained from the imaginary part
of the self-energy �(K) = �(k,iω) after analytic continuation
to the real frequency axis,

γ (k) = −Im�(k,iω → Ek + iη). (5.1)

To leading order in 1/S the damping is determined by the
second order self-energy given in Eq. (4.12); after carrying
out the frequency sum we obtain

�2(k,iω) = 1

N

∑
k′λ

{ ∣∣
β̄β

k,k′,λ

∣∣2

2mωk−k′λ

[
b(ωk−k′λ) − b(Ek′)

iω + ωk−k′λ − Ek′
+ 1 + b(ωk−k′λ) + b(Ek′)

iω − ωk−k′λ − Ek′

]

−
∣∣
ββ

k,k′,λ

∣∣2

2mωk+k′λ

[
1 + b(ωk+k′λ) + b(Ek′)

iω + ωk+k′λ + Ek′
+ b(ωk+k′λ) − b(Ek′)

iω − ωk+k′λ + Ek′

]}
. (5.2)
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Here b(ω) = 1/(eω/T − 1) is the Bose function. The corresponding damping function off resonance is

γ2(k,ω) = −Im�2(k,ω + iη) = (1 − e−ω/T )
π

N

∑
k′λ

( ∣∣
β̄β

k,k′,λ

∣∣2

2mωk−k′λ
{δ(ω − Ek′ + ωk−k′λ)[1 + b(Ek′)]b(ωk−k′λ)

+ δ(ω − Ek′ − ωk−k′λ)[1 + b(Ek′)][1 + b(ωk−k′λ)]} +
∣∣
ββ

k,k′,λ

∣∣2

2mωk+k′λ
{δ(ω + Ek′ + ωk+k′λ)b(Ek′ )b(ωk+k′λ)

+ δ(ω + Ek′ − ωk−k′λ)b(Ek′)[1 + b(ωk+k′λ)]}
)

. (5.3)

Since the experiments of interest to us are performed at room temperature, which is large compared with all other energy scales,
we may use the high-temperature expansion of the Bose functions, b(ω) ≈ T/ω. Setting now ω = Ek we obtain for the magnon
damping on resonance at high temperatures,

γ2(k) = πT Ek

2mN

∑
k′λ

{ ∣∣
β̄β

k,k′,λ

∣∣2

Ek′ω2
k−k′λ

[δ(Ek − Ek′ + ωk−k′λ) + δ(Ek − Ek′ − ωk−k′λ)] +
∣∣
ββ

k,k′,λ

∣∣2

Ek′ω2
k+k′λ

δ(Ek + Ek′ − ωk+k′λ)

}

= γ Che
2a (k) + γ Che

2b (k) + γ con
2 (k), (5.4)

where

γ Che
2a (k) = πT Ek

2mN

∑
qλ

∣∣
β̄β

k,k+q,λ

∣∣2

Ek+qω
2
qλ

δ(Ek − Ek+q + ωqλ),

(5.5)

γ Che
2b (k) = πT Ek

2mN

∑
qλ

∣∣
β̄β

k,k−q,λ

∣∣2

Ek−qω
2
qλ

δ(Ek − Ek−q − ωqλ),

(5.6)

γ con
2 (k) = πT Ek

2mN

∑
qλ

∣∣
ββ

k,−k+q,λ

∣∣2

E−k+qω
2
qλ

δ(Ek + E−k+q − ωqλ).

(5.7)

The contributions γ Che
2a (k) and γ Che

2b (k) are due to the
Cherenkov type process where a magnon with energy Ek

emits or absorbs a phonon with energy ωq and decays into
a magnon with energy Ek±q . The last contribution γ con

2 (k)
describes a confluent scattering process where two magnons
with energies Ek and E−k+q decay into a phonon with

K K
Q

K+Q
K K

Q

K−Q
K K

−K+Q

Q

(a) (b) (c)

FIG. 5. These Feynman diagrams gives rise to the three con-
tributions to the magnon decay rate given in Eqs. (5.5)–(5.7):
(a) Cherenkov process with absorption of a virtual phonon,
(b) Cherenkov process with emission of a virtual phonon, and
(c) confluent process. The solid arrows represent magnon propagators
while the wavy arrows represent phonon propagators. The arrows
represent the direction of the energy-momentum flow. Black dots
represent the relevant components of the three-legged vertices �β̄β

and �ββ defined in Eqs. (3.37a) and (3.37b).

energy ωq . The corresponding Feynman diagrams are shown
in Fig. 5. Taking into account that for YIG the interaction
vertices in the quasiparticle basis can be approximated by the
corresponding interaction vertices in the Holstein-Primakoff
basis, we may approximate the squared matrix elements in the
above expressions by∣∣
β̄β

k,k±q,λ

∣∣2 ≡ ∣∣e∗
qλ · �

β̄β

k,k±q

∣∣2 ≈ ∣∣e∗
qλ · �b̄b

k,k±q

∣∣2

= |e∗
qλ · U±q |2 ≡ |q|2U 2

λ (q̂), (5.8)

∣∣
ββ

k,−k+q,λ

∣∣2 ≡ ∣∣e∗
qλ · �

ββ

k,−k+q

∣∣2 ≈ ∣∣e∗
qλ · �bb

k,−k+q

∣∣2

= |e∗
qλ · V q |2 ≡ |q|2V 2

λ (q̂), (5.9)

where

U 2
λ (q̂) = B2

‖
S2

|e∗
qλ · (q̂xey + q̂yex − 2q̂zez)|2, (5.10)

V 2
λ (q̂) = B2

‖
S2

|e∗
qλ · (q̂xex − q̂yey)|2

+ B2
⊥

S2
|e∗

qλ · (q̂xey + q̂yex)|2. (5.11)

Here q̂α = qα/|q| are the components of the unit vector in the
direction of q. Using the phonon basis in Eqs. (3.14a)–(3.14c)
we obtain for qx = 0,

U 2
‖ (q̂) = B2

‖
S2

(
q̂2

y − 2q̂2
z

)2 = B2
‖

S2
(1 − 3 cos2 θq)2, (5.12a)

U 2
⊥1(q̂) = B2

‖
S2

(3q̂y q̂z)
2 = B2

‖
S2

9

4
sin2(2θq), (5.12b)

U 2
⊥2(q̂) = 0, (5.12c)

and

V 2
‖ (q̂) = B2

‖
S2

q̂4
y = B2

‖
S2

sin4 θq, (5.13a)
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FIG. 6. (Color online) The shaded areas denote the momentum
range where the group velocity v(k) of the magnons exceeds either
the longitudinal or the transverse phonon velocity. The parameters
are the same as in Fig. 4.

V 2
⊥1(q̂) = B2

‖
S2

(q̂y q̂z)
2 = B2

‖
S2

1

4
sin2(2θq), (5.13b)

V 2
⊥2(q̂) = B2

⊥
S2

q̂2
y = B2

⊥
S2

sin2 θq, (5.13c)

where we have set q̂z = cos θq and q̂y = sin θq .

A. Dipolar regime: Theory

In the long-wavelength regime |k| �
√

	/ρs the behavior
of the magnon damping (5.4) strongly depends on the size
v(k) = |v(k)| of the group velocity v(k) = ∇kEk of the
magnons in comparison with the phonon velocities. In Fig. 6
we show the momentum range where the magnon velocity
v(k) exceeds the phonon velocities cλ. In regime around
the minima of the dispersion, the velocity v(k) is small
compared with the phonon velocities, while at very small
wave vectors v(k) > cλ. In this regime around the minima of
the dispersion the decay rate of the magnons is dominated by
the confluent process given in Eq. (5.7) because the Cherenkov
processes are kinematically suppressed. In fact, in a substantial
regime around dispersion minima the quasiparticle velocity is
small compared with the phonon velocities, so that we may
approximate E−k+q ≈ Ek − v(k) · q and expand the decay
rate in powers of v(k)/cλ. The momentum integration in
Eq. (5.7) can then be carried out and we obtain

γ con
2 (k) = T Ek

4S2

a2

m

[
B2

⊥
c4
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. (5.14)
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FIG. 7. (Color online) Numerical evaluation of our result (5.4)
for the damping rate of magnons in a thin YIG stripe at temperature
T = 300 K, in the dipolar momentum regime. The plot is for a thin
stripe of thickness d = 6.7 μm in an external magnetic field H =
1710 Oe, for k = kez parallel to the in-plane magnetic field. Solid
lines correspond to the total damping rate, while the dashed and
the dotted lines are the contribution from the Cherenkov and the
confluent processes, respectively. The corresponding thin dotted line
is the approximation (5.14) in the dipolar momentum regime.

The confluent contribution to the high-temperature damping
rate in the dipolar regime is shown graphically as the thin
dotted line in Fig. 7. On the other hand, the Cherenkov-type
process contributes only for very small k, when v(k) � cλ,
see Fig. 6. However, for those momenta it is no longer valid
to linearize the dispersion due to the strong effect of the
Bogoliubov transformation, and no analytical approximation
can be obtained. Therefore we only present the numerical
solution as dashed line in Fig. 7. Obviously, apart from an
enhancement for k � 2 × 104 cm−1, the damping exhibits a
rather weak dependence on the wave vector in this regime.

B. Dipolar regime: Experiment

For a comparison of our calculation with experiments
one should keep in mind that we have only considered the
contribution from the magnon-phonon interactions on the
damping of the magnons. Of course, in the real system there
are other sources leading to magnon decay, such as magnon-
magnon interactions or the elastic scattering of magnons by
impurities. We therefore expect that the magnon damping
due to magnon-phonon interactions is a lower limit to the
experimentally observed magnon damping rate. In fact, our
experimental data presented below show that in the dipolar
regime magnon-phonon interactions are not the dominant
source of magnon damping.

In order to determine the relaxation time of different
groups of magnons, a measurements of the spectral distribution
of magnon gas densities as a function of the frequency
and wave vector using time- and wave-vector-resolved BLS
spectroscopy [14] has been performed. Due to technical
reasons only in-plane wave vectors from 0 up to the kmax

z =
11 × 104 cm−1 are accessible within our apparatus. The
measurements were performed using a YIG film with thickness
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FIG. 8. (Color online) Experimentally determined dependence
of the total magnon damping γtot on the in-plane wave vector
in the dipolar regime where the magnon dispersion is dominated
by the competition between the dipole-dipole and the exchange
interaction. The shaded regions represent the estimated experimental
uncertainties.

6.7 μm, which was liquid-phase epitaxialy grown on a 500 μm
thick gallium gadolinium garnet substrate.

The magnon spectrum was populated by intensive ther-
malization [25,28,29] of magnons, which were injected by
the parallel parametric pumping technique [30] at half of
the pumping frequency fp = 13.62 GHz. The bias magnetic
field of H = 1710 Oe was tuned to provide the excitation of
parametric magnons at the ferromagnetic resonance frequency.
In this case the direct transition of magnons to the bottom of
spin wave spectrum is prohibited by conservation laws. This
ensures high efficiency of multistage four-magnon scattering
which is necessary for thermalization and thus population of
the spectrum.

We have measured the redistribution of thermalized
magnons along the fundamental backward-volume magneto-
static spin wave mode as a function of time and wave vector.
After switching off the pumping, the magnons are allowed to
relax freely. By fitting the relaxation times for different groups
of thermalized magnons we were able to extract the damping
rates. The obtained dependence of measured total damping
rate γtot on the in-plane wave vector for dipolar-exchange spin
waves is shown in Fig. 8. Obviously the value of relaxation rate
is roughly three orders of magnitude larger than our calculated
relaxation rate due to magnon-phonon interactions shown
Fig. 7. We thus conclude that in the long-wavelength dipolar
regime other relaxation channels (in particular two-magnon
scattering processes [31–34]) dominate the magnon damping.
The rather irregular behavior of the measured damping rate in
Fig. 8 suggests that elastic scattering of magnons by impurities
might play an important role in this regime. Note that within
the tolerance limits of the experiment the measured relaxation
rate has a rather weak dependence on the in-plane wave
vectors in the entire accessible range of wave vectors. In this
respect the experimental results agree with our prediction of a
momentum-independent damping rate in this regime.

Unfortunately, microscopic calculations of the magnon
decay rates at room temperature, taking magnon-impurity and

magnon-magnon interactions into account, are not available in
the momentum range relevant for our experiment. One should
keep in mind, however, that magnon-impurity scattering can
only explain the momentum relaxation of the magnon gas;
for the equilibration of the different temperatures of the
magnon and the phonon systems magnon-phonon interactions
are essential.

C. Exchange regime

For wave vectors in the regime where the exchange energy
ρs k2 exceeds the characteristic dipolar energy 	 we may
ignore the dipole-dipole interaction in the magnon dispersion
(2.11) and approximate the long-wavelength magnon disper-
sion by Ek ≈ h + ρs k2. Then the evaluation of the integrals in
Eqs. (5.5)–(5.7) simplifies. We obtain for the Cherenkov part

γ Che
2 (k) ≡ γ Che

2a (k) + γ Che
2b (k)

= T Ek

2

ms

m

∑
λ

a2

c2
λ

×
∫ 2π

0

dϕ

2π

U 2
λ (q̂ϕ)

Ek + 2mscλ[cλ − v(k) cos ϕ]
.

(5.15)

where v(k) = |k|/ms , the mass ms is defined via ρs =
1/(2ms), and the angle-dependent unit vector q̂ϕ is defined
by

q̂ϕ = [v̂y(k) cos ϕ − v̂z(k) sin ϕ]ey

+ [v̂z(k) cos ϕ + v̂y(k) sin ϕ]ez. (5.16)

Here v̂α(k) are the components of the unit vector in the direc-
tion of the magnon velocity v(k) = ∇kEk = k/ms . Although
the angular integration in Eq. (5.15) can be done analytically,
the result is not very transparent so that we omit it here. A
graph of the Cherenkov contribution to the high-temperature
damping rate in the exchange regime is shown as the thin
dashed line in Fig. 9. Next, consider the contribution (5.7)
of the confluent scattering process to the damping rate in the
exchange regime. Setting again Ek ≈ h + ρs k2 and carrying
out the integration over |q| we obtain

γ con
2 (k) = T Ek

4

a2

m

∑
λ

∫ 2π

0

dϕ

2π

V 2
λ (q̂ϕ)

c3
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×
�

[
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√
4Ek
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]
√

[cλ + v(k) cos ϕ]2 − 4Ek
ms

×
[

cλq+
cλq+ − Ek

+ cλq−
cλq− − Ek

]
, (5.17)

where

q± = ms[cλ + v(k) cos ϕ] ± ms

√
[cλ + v(k) cos ϕ]2 − 4Ek

ms

.

(5.18)

The confluent contribution to the high-temperature damping
rate in the exchange regime is shown graphically as the thin
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FIG. 9. (Color online) Numerical evaluation of our result (5.4)
for the damping rate of magnons in a thin YIG stripe at temperature
T = 300 K, in the exchange momentum regime. The plot is for a
thin stripe of thickness d = 6.7 μm in an external magnetic field
H = 1710 Oe, for k = kez parallel to the in-plane magnetic field.
Solid lines correspond to the total damping rate, while the dashed
and the dotted lines are the contribution from the Cherenkov and the
confluent processes, respectively. The corresponding thin lines are the
approximations in the exchange momentum regime, see Eqs. (5.15)
and (5.17).

dotted line in Fig. 9. As one can see, the magnon damping
is strongly k dependent. In particular, it exhibits peaks at the
crossing points of magnon and phonon dispersions as well
as velocities. It also increases by two orders of magnitude
between dipolar and exchange regimes, which are dominated
by confluence and Cherenkov processes, respectively. For the
magnon lifetime τ (k) = 1/[2πγ (k)], this implies values of
the order of 50 μs in the dipolar momentum range, while it
can be as low as 480 ns for exchange momenta.

VI. SUMMARY AND CONCLUSIONS

In this work we have studied magnetoelastic interactions
in experimentally relevant thin films of the magnetic insulator
YIG. As the dominant sources of magnetoelastic interactions
are due to relativistic effects [9], which cannot be taken
into account within an effective model containing only spin
degrees of freedom, we have used a semiphenomenological
approach [2], which relies on the quantization of a suitable
phenomenological expression for the magnetoelastic energy.
For the quantized theory we have then carefully derived the
momentum dependence of the magnetoelastic interaction ver-
tices within the framework of the conventional 1/S expansion
for ordered quantum spin systems. Using these vertices, we
have explicitly calculated the leading contributions to the
hybridization between magnon and phonon modes, as well as
the damping of the magnons due to spin-lattice coupling. The
hybridization has been shown to give rise to a characteristic
minimum in the spin dynamic structure factor at the crossing
point of magnon and transversal phonon dispersions, where
the spectral weight is transferred from the magnons to the
transverse phonon mode. The position of this minimum
quantitatively agrees with the recent experimental observation
of the magnetoelastic mode [35].

The damping at room temperature has been shown to
be strongly momentum dependent. In the long-wavelength
dipolar regime it is rather flat and almost exclusively driven
by confluent magnon-phonon scattering processes where two
magnons decay into a phonon or vice versa. In this regime we
have also presented experimental results for the magnon damp-
ing obtained by wave-vector-resolved Brillouin light scattering
spectroscopy. The fact that the experimental results for the
magnon damping are roughly three orders of magnitude larger
than our theoretical results indicate that in the dipolar regime
magnon-phonon interactions are not the dominant source of
magnon damping in our samples at room temperature. We
suspect that in this regime the magnon damping is dominated
by elastic scattering of magnons from impurities. On the
other hand, in the short-wavelength exchange regime the
damping is due to magnon-phonon scattering processes of
the Cherenkov type and is two orders of magnitude larger than
in the dipolar regime. The damping rate exhibits pronounced
peaks at the crossing points of magnon and phonon dispersions
and velocities. This agrees very well with the conclusions
of the experiment [12], where the authors suggested that the
spin-lattice relaxation in the dipolar regime should be much
slower than in the exchange regime in order to reconcile their
results with earlier work on the spin Seebeck effect.

The present work can be extended in two directions: On
the theoretical side, it would be useful to have quantitatively
accurate calculations of the magnon damping due to magnon-
impurity and magnon-magnon interactions in the dipolar
regime; we expect that this can provide a better explanation
for our experimental results shown in Fig. 8, which is three
orders of magnitude larger than the damping due to magnon-
phonon interactions in this regime. Note, however, that
recently Chernyshev [36] has considered spontaneous magnon
decays of the k = 0 magnon in YIG due to magnon-magnon
interactions in high magnetic fields. On the experimental side,
it would be useful to measure magnon damping in the exchange
regime and compare the data with our theoretical prediction
shown in Fig. 9.
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APPENDIX: MAGNETOELASTIC MODES FROM
EQUATIONS OF MOTION

In this Appendix we show how to obtain the energy
dispersions of the magnetoelastic modes from the linearized
equations of motion of the coupled magnon-phonon system.
Although our derivation using the effective magnon action
presented in Sec. IV is simpler, the derivation in this Appendix
is more in the spirit of previous work [9] using classical
equations of motion.

To obtain the energy dispersions of the eigenmodes we
write down the Heisenberg equations of motion of both the
Holstein-Primakoff bosons and the phonon operators. Within
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the linear approximation we have

iḃk = Akbk + Bkb
†
−k + �∗

k · X k, (A1a)

−iḃ
†
−k = Akb

†
−k + Bkbk + �−k · X k, (A1b)

Ẋkλ = Pkλ

m
, (A2a)

Ṗkλ = −mω2
kλXkλ − 
kλbk − 
∗

−kλb
†
−k. (A2b)

It is useful to express the equations of motion for the
Holstein-Primakoff bosons in terms of the transverse spin
components, which to leading order in the 1/S expansion can
be identified with

Sx
k =

√
2S

2
(bk + b

†
−k), (A3)

S
y

k =
√

2S

2i
(bk − b

†
−k). (A4)

Then Eqs. (A1a) and (A1b) can be written as

Ṡx
k = (Ak − Bk)Sy

k + iB⊥kyz · X k, (A5a)

Ṡ
y

k = −(Ak + Bk)Sx
k − iB⊥kxz · X k, (A5b)

while the phonon momenta satisfy

Ṗkλ = −mω2
kλXkλ + i

B⊥
S

e∗
kλ

(
kxzS

x
k + kyzS

y

k

)
, (A6)

implying

Ẍkλ + ω2
kλXkλ = i

B⊥
mS

e∗
kλ

(
kxzS

x
k + kyzS

y

k

)
. (A7)

If we ignore the magnon-phonon coupling, we obtain from
Eqs. (A5a) and (A5b),

S̈α
k + E2

kS
α
k = 0, α = x,y, (A8)

where the magnon dispersion in the absence of phonons is
given in Eq. (2.9). With finite magnon-phonon hybridization
we obtain the energies of the magnetoelastic modes from the
roots of the secular determinant of the above equations of
motion. For simplicity let us assume that the energy of only
one particular phonon mode ωkλ is close to Ek. To calculate
the energy of the magnetoelastic mode close to the crossing
point, it is then sufficient to approximate X k ≈ Xkλekλ in the
above equations of motion. Then we obtain the energies of the
magnetoelastic modes from the roots of the following quartic
secular equation,(

ω2 − ω2
kλ

)(
ω2 − E2

k

)
= B2

⊥
mS

{(Ak + Bk)|kyz · ekλ|2 + (Ak − Bk)|kxz · ekλ|2

+ 2ωIm[(kxz · ekλ)(kyz · e∗
kλ)]}. (A9)

For the phonons in a thin YIG stripe the basis vectors ekλ can
always be chosen such that the last term in Eq. (A9) vanishes,
so that the secular equation is biquadratic and can be explicitly
solved. The square of the energies of the magnetoelastic modes
in a thin YIG stripe are therefore

(�±
kλ)2 = ω2

kλ + E2
k

2
±

√(
ω2

kλ − E2
k

)2

4
+ 	4

kλ, (A10)

where

	4
kλ = B2

⊥

[
(Ak + Bk)

|kyz · ekλ|2
mS

+ (Ak − Bk)
|kxz · ekλ|2

mS

]
.

(A11)

If we approximate Bk ≈ 0 (which corresponds to neglecting
quantum fluctuations generated by the dipolar interaction)
Eq. (A10) agrees with the result obtained via the classical
equations of motion [9].
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