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We investigate the ground states of s = 1/2 Heisenberg antiferromagnets on the 11 two-dimensional (2D)
Archimedean lattices by using the coupled-cluster method. Magnetic interactions and quantum fluctuations play
against each other subtly in 2D quantum magnets and the magnetic ordering is thus sensitive to the features of
lattice topology. Archimedean lattices are those lattices that have 2D arrangements of regular polygons and they
often build the underlying magnetic lattices of insulating quasi-two-dimensional quantum magnetic materials.
Hence they allow a systematic study of the relationship between lattice topology and magnetic ordering. We find
that the Archimedean lattices fall into three groups: those with semiclassical magnetic ground-state long-range
order, those with a magnetically disordered (cooperative quantum paramagnetic) ground state, and those with a
fragile magnetic order. The most relevant parameters affecting the magnetic ordering are the coordination number
and the degree of frustration present.
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I. INTRODUCTION

In two-dimensional (2D) quantum Heisenberg antiferro-
magnets (HAFMs) the balance between quantum fluctuations
and interactions depends subtly on the topology of the
underlying lattice. Thus, a large variety of ground-state (GS)
phases are found in 2D quantum magnets, among them exotic
quantum states (see, e.g., Refs. [1,2]). The prototypes of
2D arrangements of spins are the 11 uniform Archimedean
lattices (ALs) (see, e.g., Refs. [3,4]), which present an
ideal playground for a systematic study of the interplay
between lattice topology, magnetic interactions, and quantum
fluctuations. ALs are formed from 2D arrangements of regular
polygons. Moreover, all sites of a given AL are topologically
equivalent, but the nearest-neighbor (NN) bonds are allowed to
be topologically inequivalent. Well-known (and well-studied)
members of the ALs are the square, honeycomb, triangular,
and kagome lattices. More exotic (and less-studied) lattices
are the star, “CaVO,” “SHD,” maple-leaf, trellis, “SrCuBO,”
and bounce lattices (see, e.g., Fig. 1).

Four of the ALs (namely, square, honeycomb, CaVO,
and SHD) are bipartite lattices (i.e., only even polygons
are present). Triangles are present in the other seven
ALs and so the HAFM is frustrated. In particular, the triangular
and the kagome lattices have attracted much attention as
paradigms of 2D frustrated lattices (see, e.g., Refs. [5–17]).
Interestingly, not only are the well-known ALs found to
be the underlying lattice structures of the magnetic ions of
various compounds, but also the more exotic ones are realized
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by naturally occurring materials [see, e.g., CaV4O9 (CaVO)
[18], SrCu2(BO3)2 (SrCuBO) [19], a polymeric iron(III)
acetate (star) [20], or Mx[Fe(O2CCH2)2NCH2PO3]6 · nH2O
and Cu6Al(SO4)(OH)12Cl · 3H2O (maple leaf) [21,22]. Very
recently, an overview of the experimental realizations of
Archimedean spin lattice materials (and from the point of
view of a chemist) has been given in Ref. [23]. Hence, a
systematic and comparative investigation of the HAFM on
the ALs is not only interesting as a “paradigmatic” study of
the role of topology in 2D quantum systems, but also from the
experimental point of view in the field of quantum magnetism.
We note here too that the special lattice topology of the ALs
plays a role in a large variety of interacting quantum systems
such as Chern insulators (see, e.g., Refs. [24,25]) or chiral spin
liquids (see, e.g., Ref. [26]).

A first attempt to study the GS properties systematically
was given in Ref. [4] where exact diagonalization (ED) results
for the GS energies and order parameters for the spin-1/2
HAFM on the ALs were presented. We note, however, that
the ED technique is severely limited by the maximum lattice
size that can be treated by using even very large computational
resources [5,6,27,28]. Since only two of the ALs are primitive
lattices with only one site per geometric unit cell (namely,
square and triangular), one may therefore only have two
or three data points from different finite-sized lattices to
extrapolate to the infinite-lattice limit [4]. We mention that due
to the sign problem [29] frustrated quantum magnets cannot be
treated adequately by efficient quantum Monte Carlo (QMC)
techniques. Hence, a clear picture regarding whether or not
magnetic long-range order (LRO) exists for some of the ALs
has yet to emerge.

In this paper we analyze the GS energy Eg and the magnetic
order parameter (sublattice magnetization) M of the HAFM on
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FIG. 1. The 11 Archimedean lattices.

all of the ALs for the extreme quantum case, i.e., spin quantum
number s = 1/2, by using the coupled-cluster method (CCM).
The corresponding Hamiltonian is given by

H = J
∑

〈i,j〉
si · sj . (1)

The symbol 〈i,j 〉 indicates those bonds connecting NN sites
(counting each bond once only) on all of the ALs. We set the
energy scale by setting J = 1.

II. BRIEF ILLUSTRATION OF THE
COUPLED-CLUSTER METHOD

We discuss here only some of the most important key
features of the CCM. For more general information on the
methodology of the CCM, see, e.g., Refs. [30–34]. The CCM
has recently been applied computationally at high orders
of approximation to a wide variety of quantum magnetic
systems with much success (see, e.g., Refs. [15,35–42]). In
the field of quantum magnetism, some specific advantages
of this approach are that it can be applied to strongly
frustrated quantum spin systems in an arbitrary number of
dimensions and with arbitrary spin quantum numbers. It can
also be applied, at any level of approximation, directly in the
thermodynamic limit (where the number of spins N → ∞),

thereby obviating the need for any subsequent finite-size
scaling, as is required by most alternative methods.

A basic element of the single-reference CCM used here
is the parametrization of the ket and bra GS energy eigen-
vectors, |�〉 and 〈�̃|, of a many-body system described by a
Hamiltonian H , such that

H |�〉 = Eg|�〉, 〈�̃|H = Eg〈�̃|. (2)

They are specified within the single-reference CCM as follows:

|�〉 = eS |�〉, S =
∑

I �=0

SIC
+
I ,

(3)
〈�̃| = 〈�|S̃e−S, S̃ = 1 +

∑

I �=0

S̃IC
−
I .

The single model or reference state |�〉 is required to have
the property of being a cyclic vector with respect to two
well-defined Abelian subalgebras of multiconfigurational cre-
ation operators {C+

I } and their Hermitian-adjoint destruction
counterparts {C−

I ≡ (C+
I )†}. Thus, |�〉 plays the role of a

vacuum state with respect to a suitable set of (mutually
commuting) many-body creation operators {C+

I },
C−

I |�〉 = 0, I �= 0, (4)

with C−
0 ≡ 1 the identity operator. These operators are

complete (and normalized) in the many-body Hilbert (or Fock)
space,

1 = |�〉〈�| +
∑

I �=0

C+
I |�〉〈�|C−

I . (5)

The correlation operator S is decomposed entirely in terms
of these creation operators {C+

I }, which, when acting on the
model state ({C+

I |�〉}), create multiparticle excitations on top
of the model state. We note that although the manifest Her-
miticity (〈�̃|† = |�〉/〈�|�〉) is lost in these parametrizations,
the intermediate normalization condition 〈�̃|�〉 = 〈�|�〉 =
〈�|�〉 ≡ 1 is explicitly imposed. The correlation coefficients
{SI ,S̃I } are regarded as being independent variables, even
though formally we have the relation

〈�|S̃ = 〈�|eS†
eS

〈�|eS†
eS |�〉 . (6)

The full set {SI ,S̃I } thus provides a complete description of
the ground state. For instance, an arbitrary operator A will
have a GS expectation value given as

Ā ≡ 〈�̃|A|�〉 = 〈�|S̃e−SAeS |�〉 = Ā({SI ,S̃I }). (7)

We note that the exponentiated form of the CCM
parametrization of the GS |�〉 in Eq. (3) ensures the correct
counting of the independent excited correlated many-body
clusters with respect to |�〉 which are present in the exact
ground state |�〉. It also ensures the exact incorporation of the
Goldstone linked-cluster theorem, which itself guarantees the
size extensivity of all relevant extensive physical quantities.

The determination of the correlation coefficients {SI ,S̃I }
is achieved by taking appropriate projections onto the GS
Schrödinger equations of Eq. (2). Equivalently, they may
be determined variationally by requiring the GS energy
expectation functional H̄ ({SI ,S̃I }), defined as in Eq. (7),
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to be stationary with respect to variations in each of the
(independent) variables of the full set. We thereby easily derive
the following coupled set of equations:

δH̄/δS̃I = 0 ⇒ 〈�|C−
I e−SHeS |�〉 = 0, ∀I �= 0, (8)

δH̄/δSI = 0 ⇒ 〈�|S̃e−S[H,C+
I ]eS |�〉 = 0, ∀I �= 0. (9)

Equation (8) also shows that the GS energy at the stationary
point has the simple form

Eg = Eg({SI }) = 〈�|e−SHeS |�〉. (10)

It is important to realize that this (bi)variational formulation
does not lead to an upper bound for Eg when the summations
for S and S̃ in Eq. (3) are truncated, due to the lack of exact
Hermiticity when such approximations are made. However,
it is clear that the important Hellmann-Feynman theorem is
preserved in all such approximations.

We also note that Eq. (8) represents a coupled set of
nonlinear multinomial equations for the c-number correlation
coefficients {SI }. The nested commutator expansion of the
similarity-transformed Hamiltonian,

Ĥ ≡ e−SHeS = H + [H,S] + 1

2!
[[H,S],S] + · · · , (11)

together with the fact that all of the individual components of S

in the sum in Eq. (3) commute with one another, imply that each
element of S in Eq. (3) is linked directly to the Hamiltonian
in each of the terms in Eq. (11). Thus, each of the coupled
equations (8) is of linked-cluster type. Furthermore, each of
these equations is of finite length when expanded, since the
otherwise infinite series of Eq. (11) will always terminate at a
finite order, provided (as is usually the case) only that each term
in the second-quantized form of the Hamiltonian H contains
a finite number of single-body destruction operators, defined
with respect to the reference (vacuum) state |�〉. Therefore, the
CCM parametrization naturally leads to a workable scheme
which can be efficiently implemented computationally. It is
also important to note that at the heart of the CCM lies a similar-
ity transformation, in contrast with the unitary transformation
in a standard variational formulation in which the bra state 〈�̃|
is simply taken as the explicit Hermitian adjoint of |�〉.

Any CCM calculation thus starts with the choice of a
suitable model (or reference) state |�〉. In order to treat each
lattice site of the spin systems discussed here on an equal
footing, we rotate (passively) each spin in each model state, so
that in its own local spin-coordinate frame it points downwards
(i.e., along the local negative z axis). In these local spin
coordinates every model state thus takes the universal form
|�〉 = |↓↓↓ · · · ↓〉 and the Hamiltonian has to be rewritten
accordingly. In the local spin-coordinate frames, C+

I also
takes a universal form, C+

I = s+
l1
s+
l2

· · · s+
ln

, a product of single
spin-raising operators, s+

l ≡ sx
l + is

y

l , where the set index
I → {l1,l2, . . . ,ln; n = 1,2, . . . ,2sN}. The GS magnetic or-
der parameter is defined as M = − 1

N
〈�̃| ∑N

k=1 2sz
k |�〉, the

average local on-site magnetization, with respect to the local
(rotated) spin coordinates.

For the unfrustrated “bipartite” lattices (namely, square,
CaVO, SHD, and honeycomb), the model state |�〉 is taken to
be the classical collinear two-sublattice Néel GS. Noncollinear

classical GSs are typical for the frustrated “nonbipartite”
lattices (namely, triangular, kagome, star, maple leaf, trellis,
SrCuBO, and bounce). An exception is the SrCuBO lattice,
which has a pattern of exchange bonds that is topologically
equivalent [4] to the famous Shastry-Sutherland model [43].
For this frustrated model also the collinear two-sublattice Néel
ground state is appropriate as our model state [4,38,44]. For the
triangular lattice we have the well-known 120◦ three-sublattice
state. For the maple-leaf and bounce lattices the classical GS
used as the model state has six sublattices with a characteristic
pitch angle [4,42]. The classical GS of the trellis lattice is an
incommensurate spiral one along a chain [4,45]. As quantum
fluctuations may lead to a “quantum” pitch angle that deviates
from the classical one [37,38], we consider the pitch angle in
the model states of the maple-leaf, bounce, and trellis lattices as
a free parameter, which is chosen in practice so as to minimize
the corresponding estimate for the GS energy at each level of
approximation. The situation for the kagome and star lattices is
more subtle as there are an infinite number of possible classical
ground states to choose from. However, current understanding
is that quantum fluctuations favor coplanar states for these
systems, such as

√
3 × √

3 and q = 0 states [4,46–48], which
are used here as model states.

In order to perform the CCM calculations for quantum
many-body problems, naturally one has to use approximations.
The only approximation now made in the CCM is to truncate
the set of indices {I } in the expansions of the correlation
operators S and S̃. We use here the well-studied (lattice-
animal-based subsystem) LSUBm scheme in which, at the
mth level of approximation, one retains all multi-spin-flip
configurations {I } defined over no more than m contiguous
lattice sites (for details, see Refs. [15,35–38,41,42]). Such
cluster configurations are defined to be contiguous if every site
is NN to at least one other. The number Nf of such fundamental
configurations is reduced by exploiting the space- and point-
group symmetries and any conservation laws that pertain to
the Hamiltonian and the model state being used. Even so, Nf

increases rapidly with increasing LSUBm truncation index
m, and it becomes necessary to use massive parallelization
together with supercomputing resources [49]. In order to
analyze the GS magnetic LRO, we consider the sublattice
magnetization M(m) that can be straightforwardly calculated
at each CCM-LSUBm level of approximation [35,37,38]. For
more information about the definition of the order parameter
m+ used in the ED study of the ALs in Ref. [4], see pp. 93 and
94 of that reference.

Since the LSUBm approximation becomes exact only in the
limit m → ∞, it is useful to extrapolate the LSUBm results
to this limit. For the GS energy the extrapolation scheme
Eg(m)/N = Eg(m = ∞)/N + a1/m2 + a2/m4 is well estab-
lished [15,35–38,41,42]. For the magnetic order parameter M

the choice of an appropriate extrapolation scheme is more
subtle. In cases where GS magnetic LRO is present, e.g.,
for the square lattice, the scheme I with M(m) = MI(m =
∞) + b1/m + b2/m2 leads to excellent results for the order
parameter [35,36]. On the other hand, for systems where the
GS magnetic LRO is unstable, the scheme II with M(m) =
MII(m = ∞) + c1/m1/2 + c2/m3/2 is favorable [15,41]. It is
also well known that low-level LSUBm approximations are
poor approximations, and they do not follow the extrapolation
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rules well. Hence, LSUB2 and LSUB3 data are excluded from
extrapolation. Moreover, since for collinear model states (i.e.,
for bipartite square, honeycomb, CaVO, and SHD lattices,
and for the SrCuBO lattice) no odd-numbered multi-spin-flip
configurations appear in the retained index set {I } [35,36],
we take into account in the extrapolations for these lattices
only LSUBm data with even m � 4. On the other hand, for
the triangular, kagome, star, maple-leaf, trellis, and bounce
lattices where we use noncollinear model states (and, hence,
where multi-spin-flip configurations are included with an odd
number of spins as well) we take into account in the extrap-
olations all LSUBm, m � 4 [50]. Due to the different levels
of complexity of the lattices and the corresponding model
states the maximum level mmax of LSUBm approximations
accessible within our CCM code [49] varies from case to case.
Thus, we have mmax = 12 for the square, honeycomb, CaVO,
SHD, mmax = 10 for the triangular, kagome, star, SrCuBO,
and mmax = 8 for the bounce, maple-leaf, and trellis lattices. In
order to illustrate briefly the scale of the CCM calculations, the
LSUB12 approximation on the square lattice employs Nf =
766 220 fundamental clusters and the LSUB10 approximation
on the triangular lattice employs Nf = 1 054 841 fundamental
clusters (the largest calculation carried out here).

In order to decide which extrapolation scheme for the order
parameter is appropriate, we begin by applying both extrapo-
lation schemes I and II. When MI(m = ∞) > 0 and MII(m =
∞) > 0 we have clear evidence for GS magnetic LRO, and we
use scheme I for further consideration. Conversely, we have
clear evidence for the breakdown of GS magnetic LRO when
both MI(m = ∞) and MII(m = ∞) tend to zero. However,
there are also some cases where MI(m = ∞) > 0 but where
MII(m = ∞) vanishes (see Table II). In these cases a clear
statement about GS magnetic LRO is problematic, although
the magnetic LRO is at best very fragile, and a nonmagnetic
cooperative quantum paramagnetic GS is likely.

It is appropriate to mention earlier attempts to calculate
the GS quantities by means of the CCM for some of the
ALs, namely, Refs. [36,51] (square), Ref. [52] (triangular),
Ref. [37] (honeycomb), Ref. [53] (CaVO), Ref. [15] (kagome),
Ref. [42] (maple leaf), and Ref. [42] (bounce). However, most
of these previous calculations are limited to lower levels of
the LSUBm approximation. Hence the extrapolations based
on higher-order LSUBm results are more accurate than the
earlier ones.

Let us now discuss briefly the question as to what extent
the choice of the classical ground states as the reference
state for the CCM calculations might yield a tendency
to overestimate magnetic order. As mentioned above, the
LSUBm approximation used here becomes exact in the
limit m → ∞ because all possible multispin operators C+

I

applied to the model state are taken into account. Hence,
the higher the order m of approximation (with subsequent
extrapolation to m → ∞), the less influence has the choice
of the model state. Indeed, it has been demonstrated in
several recent applications of the CCM to 2D frustrated
quantum spin systems that high-order implementations of
the CCM are able to detect magnetically disordered phases
starting from classically ordered states. A striking example is
the much studied problem of the quantum phase transition
between antiferromagnetic long-range order and magnetic

disorder in the square-lattice J1-J2 Heisenberg model, in which
NN bonds with exchange coupling strength J1 > 0 compete
with frustrating next-nearest-neighbor (diagonal) bonds with
strength J2 > 0. The CCM provides accurate estimates for the
location of transition points for this system (see Ref. [34]).
An investigation of the nature of the magnetically disordered
phase has also been carried out [34] using the CCM.

III. RESULTS AND DISCUSSION

We collect our CCM results for the GS energy per bond
in Table I and for the order parameter M in Table II. These
are compared to the corresponding ED results quoted on p.
118 of Ref. [4]. Moreover, we also present available data from
previous investigations using other methods.

All of the bipartite ALs (namely, the unfrustrated HAFM
systems) exhibit magnetic LRO, although the order parameter
is significantly reduced by quantum fluctuations from the
classical value of unity. This reduction is strongest for the
two lattices with nonequivalent NN bonds (CaVO and SHD),
indicating a possible incipient instability against a nonmag-
netic valence-bond state [55]. Thus, for example, the order
parameter for the SHD lattice is only 37% of the classical value.
Note that our results for the bipartite square, honeycomb, and
CaVO lattices are in excellent agreement with available QMC
data [54–56,59,60], which can be considered as benchmark
results. For example, our CCM results for the GS energy for
the HAFM on the square and honeycomb lattices essentially
coincide with the very precise QMC results. QMC results have
yet to be published for the bipartite SHD lattice. The results
reported in Ref. [57] for the SHD lattice are obtained by a
variational technique and they are certainly less accurate than
our high-order CCM results.

The QMC method cannot, by contrast, provide accurate
benchmark results for the frustrated lattices. Hence, typically

TABLE I. Extrapolated CCM results for the GS energy per bond
of the spin-1/2 HAFM on the various Archimedean lattices compared
to ED results from Ref. [4] and other available data. (Results for the
star and kagome lattices are given for both the q = 0 and

√
3 × √

3
model states.)

Lattice CCM ED (Ref. [4]) Other results

Bipartite
Square −0.3348 −0.3350 −0.3347 [59]
Honeycomb −0.3631 −0.3632 −0.3630 [61]
CaVO −0.3689 −0.3689 −0.3691 [56]
SHD −0.3702 −0.3713 −0.3688 [57]
Frustrated
SrCuBO −0.2312 −0.2310 −0.23 . . . 0.24 [62]
Triangular −0.1843 −0.1842 −0.1823 [8]
Bounce −0.2824 −0.2837
Trellis −0.2416 −0.2471
Maple leaf −0.2124 −0.2171
Kagome: −0.2172 −0.2190 . . . 0.2193 [63]
q = 0 −0.2179√

3 × √
3 −0.2159

Star: −0.3093 −0.316 . . . 0.318 [64]
q = 0 −0.3110√

3 × √
3 −0.3101
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TABLE II. Extrapolated CCM results for the order parameter M

of the spin-1/2 HAFM on the various Archimedean lattices compared
to ED results from Ref. [4] and other available data. (Results for the
star and kagome lattices are given for both the q = 0 and

√
3 × √

3
model states.)

Lattice CCM ED (Ref. [4]) Other results

Bipartite
Square 0.619 0.635 0.614 . . . 0.617 [58–60]
Honeycomb 0.547 0.558 0.535 [54]
CaVO 0.431 0.461 0.356 [55]
SHD 0.366 0.425 0.509 [57]
Frustrated
SrCuBO 0.404 0.456 0.42 [62]
Triangular 0.373 0.386 0.410 [7]
Bounce MI: 0.122 0.286

MII: 0
Trellis MI: 0.040 0.222

MII: 0
Maple leaf MI: 0.178 0.218

MII: 0
Kagome: 0 0 [65]
q = 0 0√

3 × √
3 0

Star: 0.094 . . . 0.15 0 [27,64]
q = 0 0√

3 × √
3 0

the previously published results may have limited accuracy and
our high-order CCM data may now contribute to a refinement
of the GS data and a better understanding of these frustrated
quantum HAFMs. The reference data quoted in Tables I and
II are obtained by a tensor-network approach [62], spin-wave
theory [8], the density-matrix renormalization group method
[7,11,12], and a bond-operator technique [64]. Among the
frustrated ALs the SrCuBO lattice is special, since it is the
only lattice among this class having a classical collinear Néel
GS. Hence it is not surprising that the quantum GS possesses
Néel LRO with the largest order parameter M of the frustrated
ALs. However, the effect of frustration is still evidenced by a
noticeably reduced M compared to the square lattice.

Particular attention has been paid in the literature to the
famous kagome HAFM [5,6,10–17]. The good agreement
of the CCM GS energy given in Table I with recent large-
scale density-matrix renormalization group [11,12] and exact
diagonalization [5,6] results gives an indication of the accuracy
of our CCM approach for frustrated lattices. Another example
for a nonmagnetic GS, first mentioned in Ref. [4], is the
star-lattice HAFM. For the kagome and the star lattices the
two extrapolation schemes yield vanishing order parameters
for both model states, q = 0 and

√
3 × √

3, that are consistent
with previous studies of these lattices [4–6,11,12,15,27,64,66].
We mention that for both lattices the CCM GS energy for
the q = 0 model state is lower than that for the

√
3 × √

3
model state. That is different from previous studies of the
GS selection based on an expansion around the classical limit
[46–48], where for the kagome lattice the

√
3 × √

3 state was
found to be selected by quantum fluctuations. This may be
related to the extreme quantum case of s = 1/2 considered

here that is not well described by an expansion around the
classical limit (see also the discussion in Ref. [15]).

For the trellis, maple-leaf, and bounce lattices the results are
less clear, since both extrapolation schemes lead to different
conclusions with respect to magnetic LRO. In general, for
systems near to a quantum critical point the results may depend
on details of both the extrapolation scheme and the orders of
approximation used [67]. Due to the computational difficulty
for these lattices, these extrapolations used LSUB4 to LSUB8
approximations only, the lowest orders of approximation
used in this paper, and we find that extrapolation scheme
I yields a small but finite order parameter [58] M that is
significantly below the ED results reported in Ref. [4]. By way
of comparison, we note that extrapolations using scheme I with
LSUB5 to LSUB8 indicate that the order parameter is 29%,
21%, and 29% of its classical value for the bounce, trellis, and
maple-leaf lattices, respectively. Note also that the finite-size
extrapolation of the ED data for these lattices is particularly
poor, since only two (bounce, maple leaf) or three (trellis)
data points could be used. Moreover, the periodic boundary
conditions used for the ED calculations in Ref. [4] might
be not well suited for the incommensurate spiral correlations
present for the trellis lattice. On the other hand, an application
of extrapolation scheme II using LSUB4 to LSUB8 for these
three lattices leads to vanishing order parameters. Hence, we
may conclude that these lattices either exhibit a weak magnetic
LRO or are even in a magnetically disordered GS phase. Hence,
they are candidates to find nonmagnetic states in experiments
(see also Ref. [22]). We mention that in Ref. [45] similar
conclusions for the trellis lattice were found by means of
spin-wave and variational techniques.

IV. CONCLUSIONS

In this paper we have presented a survey of results for
the GS energy and order parameter of the s = 1/2 HAFMs
on all 11 Archimedean lattices by using the CCM. In 2D
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FIG. 2. (Color online) Sketch of semiclassical magnetic order
and quantum magnetic disorder of the ALs in a parameter space
spanned by frustration (classical GS energy per bond; see Ref. [68]
and main text) and coordination number z.
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quantum magnets the competition between fluctuations and
interaction determines the GS features. Our results show a clear
correspondence between lattice topology and the existence of
GS magnetic LRO. The most important ingredients affecting
the magnetic ordering are geometric frustration and the coor-
dination number. Moreover, the competition of nonequivalent
NN bonds is relevant. To illustrate the role of geometric
frustration and coordination number, we summarize our
findings in Fig. 2 in a parameter space spanned by frustration
and coordination number z. We use an idea proposed by Kobe
and co-workers [68] in order to measure frustration, namely,
by considering the GS energy of the classical HAFM (i.e.,
the spins si are ordinary classical unit vectors). Nonfrustrated
(bipartite) lattices have the lowest possible energy per bond,
Eclass

0 /bond = −1. Geometric frustration leads to unsatisfied
bonds and hence to an increase of classical GS energy. This
increase of energy can be used as a quantitative measure of
the degree of frustration. Clearly there are three regions of
magnetic GS ordering: semiclassical magnetic LRO (collinear
or noncollinear), magnetic disorder (cooperative quantum

paramagnetism). and an intermediate region with ALs, namely,
trellis, bounce, maple leaf, which may have either a GS
with fragile magnetic LRO, a critical GS order, or a GS
with weak disorder. This group of ALs deserves particular
further attention to clarify the nature of the GSs. We think
that our results ought to provide also a useful benchmark
for the Archimedean lattices against which experimental
studies and other approximate theoretical methods might be
tested.

Finally we remark that for the lattices with topologically
inequivalent NN bonds a change in the relative strength of such
bonds can modify the ground-state physics because this change
would substantially influence the interplay of frustration and
lattice topology. A famous example is given by the Shastry-
Sutherland model [43], which is topologically equivalent to the
SrCuBO lattice. For this system, an increase in the strength of
the NN bonds that belong only to triangles, relative to the
strength of the remaining bonds that belong to both triangles
and squares (cf. Fig. 1), will lead to a magnetically disordered
valence-bond ground state [38,43,69].
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