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Theoretical model for torque differential magnetometry of single-domain magnets
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We present a generic theoretical model for torque differential magnetometry (TDM)—an experimental method
for determining the magnetic properties of a magnetic specimen by recording the resonance frequency of a
mechanical oscillator, on which the magnetic specimen has been mounted, as a function of the applied magnetic
field. The effective stiffness change, and hence the resonance frequency shift, of the oscillator due to the magnetic
torque on the specimen is calculated, treating the magnetic specimen as a single magnetic domain. Our model
can deal with an arbitrary magnetic free-energy density characterizing the specimen, as well as any relative
orientation of the applied magnetic field, the specimen, and the oscillator. Our calculations agree well with
published experimental data. The theoretical model presented here allows one to take full advantage of TDM as
an efficient magnetometry method.
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I. INTRODUCTION

While the exchange interaction is the prerequisite for the
existence of ferromagnetism in a solid, the static equilibrium
and low-energy dynamic properties of a magnet are determined
by the dipolar and magnetocrystalline anisotropy [1]. Hence,
several experimental methods, under the general name of
“magnetometry,” have been devised to determine the magnetic
anisotropy of a given specimen [2,3]. Some of these methods
additionally allow investigating the saturation magnetization,
magnetic switching, magnetic phase transitions, and other
properties of a magnet [4–9]. State-of-the-art magnetometry is
also sensitive enough for the investigation of thin magnetic
films, which can have a strong shape (dipolar) or surface
anisotropy [10,11].

Torque magnetometry is a widely used magnetometry
method and has been referred to as “the most accurate
means of measuring magnetic anisotropy.” [2,3] In torque
magnetometry, the mechanical torque exerted on a magnetic
specimen by an externally applied magnetic field is recorded as
a function of the field’s orientation in a given plane of interest.
Since torque can be expressed in terms of the derivative
of the free-energy density F , the experimental data can be
used to infer the constants parametrizing F [3]. Cantilever
torque magnetometry (CTM) [12] takes advantage of the small
stiffness of AFM cantilevers to detect very small torques. The
magnetization sensitivity of CTM is comparable to supercon-
ducting quantum interference device magnetometry [13] over
a broad temperature range [14–16]. An important advantage
of torque magnetometry is its relatively fast response which
allows for the investigation of dynamic phenomena in magnets
and high-Tc superconductors [15,17].

Instead of measuring the static “magnetic force” (the
dc torque) on a cantilever, one can also study the shift
in the resonance frequency of the cantilever as a function
of the applied magnetic field. The magnetic field dependence
of the resonance frequency comes about via enhanced (or
reduced) stiffness of the cantilever owing to the change in mag-
netic (in addition to elastic) energy as the cantilever deviates
from equilibrium. Although this technique has simply been

called “cantilever magnetometry” in the literature [4,18,19], it
is more appropriate to call it torque differential magnetometry
(TDM), to emphasize the fact that the derivative of torque, as
opposed to the torque itself, is measured as will be discussed
in Sec. II. The relation between dc torque magnetometry and
TDM is analogous to the relation between contact mode and
frequency modulated AFM [20]. TDM thus offers similar
advantages—namely less 1/f noise, low drift, and higher
sensitivity at a given measurement rate [21]. Recent advances
in using quartz tuning forks, instead of cantilever systems,
for microscopy [20,22] and magnetometry [23,24] have made
TDM particularly attractive due to the simplicity and wider
operation range of the experimental setup. Hence, in this paper,
we use the terms “cantilever” and “mechanical oscillator” (or
simply “oscillator”) interchangeably.

In contrast to torque magnetometry [3], a consistent and
complete theoretical modeling of TDM is still lacking in
literature. Here, we present a generic formalism to calculate the
magnetic field dependent shift in the resonance frequency of
the mechanical oscillator, on which the magnetic specimen has
been mounted, for any given magnetic free-energy density, and
configuration of the specimen, the oscillator, and the applied
magnetic field. We work within the macrospin approximation
[Stoner-Wohlfarth (SW) model] [25] treating the specimen
as a single domain magnet. The theoretical formalism is
developed in Sec. II, followed by comparison of our model
to existing literature in Sec. III. The high magnetic field limit,
which is the normal mode of operation in conventional torque
magnetometry, is discussed for TDM in Sec. IV. Section IV
(and Appendix C) discusses some generic principles which
can be employed in determining the required properties of
the magnetic specimen in a simple and efficient manner. We
conclude with a short discussion in Sec. V.

II. THEORY

We start our discussion of TDM by considering the
properties of the mechanical oscillator to which the magnetic
specimen is attached. Any mechanical oscillator can be
modeled as an effective mass and spring system [Fig. 1(a)]
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FIG. 1. (Color online) Comparison between (a) cantilever torque magnetometry (CTM) and (b) torque differential magnetometry (TDM).
The magnetic specimen (light blue) is mounted at the tip of the cantilever (red), the motion of which can be modeled by an effective mass
and spring system. (a) In CTM, one measures the static equilibrium deflection of the cantilever, which translates to the torque (modeled as an
effective force Fm) exerted on the magnetic specimen by the applied magnetic field. (b) In TDM, one measures the magnetic field dependent
resonance frequency shift of the cantilever which translates to a stiffness change due to magnetic torque km [cf. Eq. (3)]. In both (a) and (b),
the physical quantity that the experiment measures is shown in blue color.

with x denoting the displacement of its tip from the
equilibrium position [26]. The resonance frequency is then
expressed in terms of effective mass (meff) and spring constant
(keff),

f = 1

2π

√
keff

meff
. (1)

For a small displacement x about the equilibrium point, the
restoring force is given by the sum of elastic [Fe(x)] and
magnetic [Fm(x)] forces. Fm(x) is an effective force repre-
senting the effect of the torque τ⊥

m (x) exerted on the magnetic
specimen by the applied magnetic field [27]. The superscript
⊥ denotes that the component of torque perpendicular to the
plane of oscillation should be considered as discussed below in
Sec. II A. Assuming an effective oscillator length Le (distance
between the tip and an effective oscillation center), [26] and
Taylor expanding the torque τ⊥

m (x) around the equilibrium
position, we obtain the following for the restoring force:

Fr = −kelx + 1

Le

dτ⊥
m

dx

∣∣∣∣
eq

x = −kelx − km(Bext)x, (2)

where kel is the effective elastic spring constant, and |eq denotes
that the derivative has been calculated at the magnetization
equilibrium configuration. Transforming the torque derivative
from the linear variable x to the angular variable β (dx =
Ledβ) in the equation above, the effective spring constant due
to magnetic torque becomes

km(Bext) = − 1

L2
e

dτ⊥
m

dβ

∣∣∣∣
eq

. (3)

Considering keff = kel + km(Bext) with km(Bext) � kel in
Eq. (1), we introduce the frequency shift owing to the magnetic

torque as �f/fel = �k/2kel which yields [with �k = km and
Eq. (3)]

�f = fel

km

2kel

= − fel

2kelL2
e

dτ⊥
m

dβ

∣∣∣∣
eq

(4)

for the magnetic field dependent resonance frequency shift
�f = f (B = Bext) − f (B = 0). Thus, the frequency shift
measured in a TDM experiment is proportional to the magnetic
torque derivative [28]. In writing the above equation, we
have disregarded any changes in the elastic properties of the
magnetic specimen owing to magnetostriction [3].

In the following subsection, we express the required
derivative of the “perpendicular” component of the magnetic
torque in terms of the magnetic free-energy density and the
variables defining the configuration of the system. Unless
stated otherwise, we work in a spherical polar coordinate
system attached to the lattice of the magnetic specimen (see
Table I). The relevant variables that characterize the system
are summarized below (see Fig. 2).

Without loss of generality, we consider the motion of the
oscillator tip to be along the θ̂θθc0 direction.

A. Torque in (quasi)equilibrium

The magnetic free-energy density (henceforth simply called
“free-energy density”) is written as F (Ms,θm,φm,Hext,θh,φh),
where Ms is the saturation magnetization density of the spec-
imen, and Hext is the magnitude of the applied magnetic field.
Within the macrospin model [25], we consider a uniformly
magnetized sample which implies that the variables θm and
φm are position independent. The effective magnetic field is
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TABLE I. Description of the polar coordinates used to specify the
directions of the applied magnetic field, the magnetization, and the
oscillator. The frame of reference, with respect to which the angles
above are defined, is attached to the magnetic specimen.

θh, φh Instantaneous polar and azimuthal angles of the
magnetic field direction.

θh0, φh0 Values of θh and φh for equilibrium orientation
of the oscillator.

θm, φm Instantaneous polar and azimuthal angles of the
magnetization direction.

θh
m, φh

m (Quasi)Equilibrium values of θm and φm for a
given magnetic field. These are functions of the angles
that define the magnetic field direction (θh,φh).

θh
m0, φh

m0 Values of θh
m and φh

m for the magnetic field orientation
when the oscillator is in equilibrium position.
This implies θh

m0 = θh
m(θh0,φh0) and φh

m0 = φh
m(θh0,φh0).

θc0, φc0 Equilibrium values of θc and φc. The tip oscillates
along the θ̂θθc0 direction.

given by

μ0HHH eff = −∇∇∇MF = − ∂F

∂Ms

r̂rrm − 1

Ms

∂F

∂θm

θ̂θθm

− 1

Ms sin θm

∂F

∂φm

φ̂φφm, (5)

where we have used a spherical coordinate system,
i.e., MMM = Ms(r̂rrm,θ̂θθm,φ̂φφm). The stable equilibrium val-
ues of θm and φm are obtained by minimizing
the free energy [∂F/∂(θm,φm) = 0,(∂2F/∂θ2

m)(∂2F/∂φ2
m) −

(∂2F/∂θm∂φm)2 > 0,∂2F/∂θ2
m > 0]. Let us call these values

θh
m ≡ θh

m(θh,φh) and φh
m ≡ φh

m(θh,φh). Here the superscript
h emphasizes that these are the values for a given applied
magnetic field magnitude and direction.

It is mathematically convenient to separate the free-energy
density F = F i + Fe into internal free-energy density F i

(consisting of anisotropy, magnetostatic energy, etc.) and

ext

FIG. 2. (Color online) Schematic of the magnetic specimen (light
blue) mounted on a cantilever (red) in an applied magnetic field.
r̂rrc (red arrow), r̂rrm = �M/|M| (blue arrow), and r̂rrh = �H/|H | (green
arrow) denote the unit vectors along the oscillator axis, magnetization,
and applied magnetic field, respectively. The angles characterizing the
unit vectors are depicted in the specimen frame of reference.

external free-energy density Fe = FZeeman = −μ0MMM · HHH ext.
This separation along with the mathematical condition for
equilibrium:

∂F

∂(θm,φm)

∣∣∣∣
(θh

m,φh
m)

= ∂F e

∂(θm,φm)

∣∣∣∣
(θh

m,φh
m)

+ ∂F i

∂(θm,φm)

∣∣∣∣
(θh

m,φh
m)

= 0,

(6)

allows us to express the component of the externally applied
field orthogonal to the magnetization in terms of the derivatives
of F i at magnetic equilibrium conditions, i.e.,

rrrh
m × μ0HHH ext = rrrh

m × −∇∇∇MFe|(θh
m,φh

m,θh,φh)

= rrrh
m × ∇∇∇MF i |(θh

m,φh
m). (7)

The advantage of this substitution is that while Fe is an explicit
function of all four variables θh

m,φh
m,θh,φh, F i involves only

the first two variables. This leads to simpler expressions in the
rest of the analysis (cf. Appendix A).

The total torque exerted by an external magnetic-flux
density BBBext = μ0HHH ext on a magnetization distribution MMM(rrr)
is given by [29]

τττm =
∫
V
MMM(rrr) × BBBext(rrr) d3r. (8)

For the case of uniform magnetization and magnetic
field, the torque experienced by the magnetic specimen in
(quasi)equilibrium becomes

τττm = MsV
(
rrrh

m × μ0HHH ext
)
, (9)

where V is the volume of the magnetic specimen. Using
Eqs. (5) and (7),

τττm = V

(
F i

θm

(
θh
m,φh

m

)
φ̂φφ

h

m − 1

sin θh
m

F i
φm

(
θh
m,φh

m

)
θ̂θθ

h

m

)
, (10)

where we adapt the compact notation ∂F i/∂θm|(θh
m,φh

m) =
F i

θm
(θh

m,φh
m) and so on.

The motion of the oscillator tip and hence the restoring force
is along the θ̂θθc0 direction (Figs. 1 and 2). This implies that the
relevant component of the torque (corresponding to effective
force along θ̂θθc0) is perpendicular to the plane of oscillation and
points along φ̂φφc0:

τ⊥
m = τττm · φ̂φφc0. (11)

Using Eq. (10),

τ⊥
m = V

(
F i

θm

(
θh
m,φh

m

)
φ̂φφ

h

m · φ̂φφc0 − 1

sin θh
m

F i
φm

(
θh
m,φh

m

)
θ̂θθ

h

m · φ̂φφc0

)
,

(12)

= V
[
F i

θm

(
θh
m,φh

m

)
cos (φh

m − φc0) − F i
φm

(
θh
m,φh

m

)
× cot

(
θh
m

)
sin

(
φh

m − φc0
)]

. (13)

The scalar products θ̂θθ
h

m · φ̂φφc0 and φ̂φφ
h

m · φ̂φφc0 have been calculated
in Appendix B. The expression obtained above is an explicit
function of two variables (θh

m,φh
m) which are implicitly depen-

dent on the magnetic field direction.
Equation (13) enables us to obtain the torque, or equiva-

lently the effective force along the deflection direction, expe-
rienced by the oscillator in a quasistatic state. Equation (13)
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thus represents a generic description of CTM measurements.
In contrast, TDM measures the derivative of this torque with
respect to the deflection angle, requiring a more sophisticated
analysis.

B. Oscillator deflection and torque derivative

Before we proceed with the calculation of the torque
derivative, let us first emphasize that the deviation angle β

[Fig. 1(b)] enters the torque expression [Eq. (13)] via the
magnetic field direction. A deflection of the oscillator (tip
moves along θ̂θθc0) from its equilibrium orientation by an angle
β = −α mathematically implies that the lattice coordinate
system has rotated about the axis parallel to φ̂φφc0 and passing
through the (effective) center of the oscillator, by the angle
−α. In the lattice coordinate system, this can be visualized as
a rotation of the laboratory frame by an angle +α. Since the
magnetic field is fixed in the laboratory frame of reference,
the net effect of this deflection is to rotate the magnetic field
vector by an angle +α in the lattice frame of reference. We
thus obtain the new direction of magnetic field in the lattice
coordinate system as a function of α.

The rotation operator written in Cartesian coordinate basis
for a small rotation (α � 1) about a unit vector ûuu = uxx̂xx +
uyŷyy + uzẑzz = [uxuyuz]T passing through the origin is given
by [30]

R̃α(ux,uy,uz) =

⎡
⎢⎣

1 −αuz αuy

αuz 1 −αux

−αuy αux 1

⎤
⎥⎦ . (14)

For the case at hand, the unit vector φ̂φφc0 is written as
[− sin φc0 cos φc00]T in Cartesian coordinates. The unit vector
along the equilibrium magnetic field (ĥhh0) is then given by
[sin θh0 cos φh0 sin θh0 sin φh0 cos θh0]T . Therefore the rotated
unit vector in Cartesian coordinates is given by

ĥhh
′ =

⎡
⎢⎣

1 0 α cos φc0

0 1 α sin φc0

−α cos φc0 −α sin φc0 1

⎤
⎥⎦

×

⎡
⎢⎣

sin θh0 cos φh0

sin θh0 sin φh0

cos θh0

⎤
⎥⎦ , (15)

=

⎡
⎢⎣

sin (θh0 + δθh) cos (φh0 + δφh)

sin (θh0 + δθh) sin (φh0 + δφh)

cos (θh0 + δθh)

⎤
⎥⎦ , (16)

with

δθh = θh − θh0 = α cos (φc0 − φh0), (17)

δφh = φh − φh0 = α cot (θh0) sin (φc0 − φh0). (18)

When θh0 = 0 or π , correct transformations are obtained
with φh0 − φc0 = 0 or π respectively, so that δφh vanishes
identically [31].

In the remainder of this paper, it is deemed understood
that all derivatives are calculated at oscillator equilibrium
orientation (θh = θh0,θ

h
m = θh

m0, etc.). The derivative of torque

at equilibrium conditions can now be evaluated:

−dτ⊥
m

dβ
= dτ⊥

m

dα
= ∂τ⊥

m

∂θh
m

dθh
m

dα
+ ∂τ⊥

m

∂φh
m

dφh
m

dα
, (19)

= ∂τ⊥
m

∂θh
m

(
∂θh

m

∂θh

dθh

dα
+ ∂θh

m

∂φh

dφh

dα

)

+ ∂τ⊥
m

∂φh
m

(
∂φh

m

∂θh

dθh

dα
+ ∂φh

m

∂φh

dφh

dα

)
. (20)

Using Eqs. (17) and (18),

−dτ⊥
m

dβ
= cos (φc0 − φh0)

(
∂τ⊥

m

∂θh
m

∂θh
m

∂θh

+ ∂τ⊥
m

∂φh
m

∂φh
m

∂θh

)

+ cot (θh0) sin (φc0 −φh0)

(
∂τ⊥

m

∂θh
m

∂θh
m

∂φh

+ ∂τ⊥
m

∂φh
m

∂φh
m

∂φh

)
.

(21)

In general, θh
m and φh

m may not be available as explicit functions
of θh and φh. The necessary derivatives at equilibrium
can still be calculated in terms of the free-energy density,
via Eqs. (A3)–(A6) detailed in Appendix A. Equations (4),
(13), and (21) constitute the main result of this section.
Supplemented with the equations for the determination
of magnetic equilibrium [∂F/∂(θm,φm) = 0, (∂2F/∂θ2

m)
(∂2F/∂φ2

m) − (∂2F/∂θm∂φm)2 > 0, ∂2F/∂θ2
m > 0], the equa-

tions yield a consistent and quantitative description of CTM
and TDM.

C. Determination of anisotropy constants

While Eqs. (13) and (21) appear very complex at first sight,
in many cases they simplify dramatically as is evident from
the discussion in the next section. In any case, the anisotropy
constants can be obtained by following the procedure outlined
here.

Given TDM experimental data, we first need to assume a
free-energy density. Then,

(i) Determine the equilibrium magnetization by minimizing
the free energy density.

(ii) Evaluate the necessary partial derivatives using the
mathematics discussed in Appendix A.

(iii) Evaluate the torque derivative using Eqs. (13) and (21).
(iv) Evaluate the frequency shift using Eq. (4).
(v) Fit the frequency shift expression thus obtained to the

experimental data treating the anisotropy constants as fitting
parameters.

An analytical expression for the frequency shift can be
obtained in several special cases of interest. If this is not the
case, one needs to follow an iterative procedure where one
calculates the frequency shift numerically assuming a fixed set
of anisotropy parameters, compares the calculation with the
experimental data, and then adjusts the assumed parameters
until the numerical calculation and experimental data agree
within the desired accuracy.

III. MAGNETIC FIELD STRENGTH DEPENDENCE

The formalism developed in the previous section is now
employed to calculate the frequency shift for two cases that
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FIG. 3. (Color online) Frequency shift vs applied magnetic-flux density for two special cases of interest. Red open circles depict
experimental data taken from Ref. [18] while the blue solid line is the frequency shift calculated from Eq. (21), using the oscillator and
free-energy density parameters presented in Table II. The configurations are depicted in the corresponding insets. The uniaxial easy axis is
along the longer dimension of the specimen and the green dotted arrow represents the applied magnetic field. The magnitude of the uniaxial
anisotropy field Bu is indicated on top of the figures by a black arrow. The base resonance frequency fel is a few kHz.

have been investigated in literature [4,18]. We here state only
the final expressions for the frequency shift, a more detailed
description is given in Appendix C. Consider a magnetic
specimen with a single easy axis along the ẑzz direction (a
magnetic wire) so that the free energy density is given by
the sum of a uniaxial anisotropy and the Zeeman energy:

F = Ku sin2(θm) − μ0HextMs[sin(θh) sin(θm) cos(φm − φh)

+ cos(θh) cos(θm)], (22)

with Ku > 0. The applied magnetic field is always directed
along the oscillator axis unless stated otherwise.

First, the specimen shall be mounted such that its magnetic
easy axis is also along the oscillator axis [see Fig. 3(a)]. This
implies θh0 = θc0 = 0, φh0 = φc0, and the stable equilibrium
solution for the magnetization direction is θm0 = 0 and φm0 =
φh0. The frequency shift is then given by

�f

fel

= MsV

2kelL2
e

BextBu

Bu + Bext
, (23)

where we define Bu = 2Ku/Ms as the effective anisotropy
field, and Bext = μ0Hext is the applied magnetic flux density.
Equation (23) is shown as a blue solid line (using the set of
parameters quoted in Table II) along with the experimental data
(red open circles) from Ref. [18] in Fig. 3(a). The agreement
between experiment and the theoretical model is good.

Next we consider the same sample mounted on the oscillator
such that the oscillator is pointing along the x̂xx direction
[Fig. 3(b)]. This implies θh0 = θc0 = π/2 and φh0 = φc0 = 0.

The equilibrium magnetization direction then is

φm0 = 0, (24)

θm0 =
{

sin−1
(

Bext
Bu

)
Bext < Bu,

π
2 Bext > Bu.

(25)

The frequency shift is accordingly obtained in the two different
regimes:

�f

fel

= MsV

2kelL2
e

⎧⎪⎨
⎪⎩

B2
ext

(
B2

u−2B2
ext

)
Bu

(
B2

u−B2
ext

) Bext < Bu,

− BextBu

Bext−Bu
Bext > Bu,

(26)

and has been plotted, along with the experimental data (red
open circles) from Ref. [18], in Fig. 3(b). We note that the
frequency shift given by Eq. (26) using a consistent free-energy
expression [Eq. (22)] for both cases is found to be in agreement
with the existing literature [4,18]. We investigate some more
cases of interest in Appendix C.

IV. HIGH-FIELD LIMIT

Conventional torque magnetometers [3] record the torque
exerted on a magnetic specimen by a large external mag-
netic field. In this high-field limit, magnetic domains are
irrelevant. In the present section, we consider the high-field
limit of TDM and obtain simple expressions relating the
recorded frequency shift with derivatives of the free-energy
density. An external field much larger than the anisotropy
fields in the specimen yields θh

m = θh and φh
m = φh. Hence,

TABLE II. Oscillator and magnetic specimen parameters used for calculating frequency shift in Fig. 3(b) (second set) and all other figures
(first set). Source: Ref. [18].

Set Le fel kel V Ms Ku

First 105.4 μm 2808.5 Hz 70 μN m−1 8.3 × 10−19 m3 330 kA m−1 42 kJ m−3

Second 105.4 μm 2093.8 Hz 50 μN m−1 7.7 × 10−19 m3 420 kA m−1 52 kJ m−3
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the required partial derivatives are ∂θh
m/∂θh = 1, ∂θh

m/∂φh = 0, ∂φh
m/∂θh = 0, and ∂φh

m/∂φh = 1. Using these in Eq. (21), we
obtain

−dτ⊥
m

dβ

∣∣∣∣
eq

= cos (φc0 − φh0)
∂τ⊥

m

∂θh
m

∣∣∣∣
eq

+ cot (θh0) sin (φc0 − φh0)
∂τ⊥

m

∂φh
m

∣∣∣∣
eq

, (27)

which gives the following magnetic field dependent frequency shift using Eq. (4):

�f

fel

= V

2kelL2
e

{
∂2F i

∂θ2
m

∣∣
eq

φh0 = φc0,

−(
cot (θh0) ∂F i

∂θm

∣∣
eq

+ cot2(θh0) ∂2F i

∂φ2
m

∣∣
eq

)
φh0 = φc0 − π

2 .
(28)

The parameters that appear in the free-energy density can be extracted by fitting the frequency shift data using the above
equations. The experimental configuration (viz. the magnetic field rotation plane) which is most useful will depend on the form
of the free-energy density.

The frequency shift for thin films with cubic magnetocrystalline anisotropy [free-energy density given by Eq. (C11)] can be
calculated using Eq. (28) above:

�f

fel

= V

2kelL2
e

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2K1 cos(4θh0) − 2Ks cos(2θh0), φh0 = φc0 = 0,

K1[2 cos(4θh0) + 3 sin2(θh0) − 4 sin4(θh0)] − 2Ks cos(2θh0)
+ K2

2 [6 sin2(θh0) cos4(θh0) − 11 sin4(θh0) cos2(θh0) + sin6(θh0)], φh0 = φc0 = π
4 ,

2 cos2(θh0)[Ks − (K1 + K2) cos2(θh0) + K2 cos4(θh0)], φh0 = φc0 − π
2 = 0,

cos2(θh0)
2 [6K1 + K2 + 4Ks − 10K1 cos2(θh0) − K2 cos4(θh0)], φh0 = φc0 − π

2 = π
4 ,

(29)

where K1,2 characterize the cubic magnetocrystalline
anisotropy, and Ks parametrizes the easy-plane shape
anisotropy. Any of the above, but the first, configuration can
be used in experiment for determining all three constants
(K1,K2,Ks) in a single measurement. Fourier analysis is
commonly used to isolate the contributions from different
powers of the sin functions [3]. The frequency shift for the
two configurations corresponding to φh0 = 0 is plotted in
Fig. 4. We note that the frequency shift can get comparable
to the base oscillator frequency (fel) thereby violating our

assumption of km � kel , and necessitating use of the full
resonance frequency expression Eq. (1). This issue can be
circumvented by relatively stiff oscillators which have higher
elastic stiffness and frequency [20,23].

V. CONCLUSION

We have discussed a generic formulation for evaluating the
resonance frequency shift of a mechanical oscillator mounted
with a magnetic specimen as a function of the applied magnetic

0 45 90 135 180

−100

0

100

200

0 45 90

(a) (b)

135 180

−200

0

200

400

600

˚ ˚

FIG. 4. (Color online) Frequency shift (�f ) vs polar angle of the applied magnetic field direction (θh0) for cases φh0 = φc0 = 0 (a) and
φh0 = φc0 − π

2 = 0 (b) from Eq. (29). The corresponding measurement configurations are depicted in the respective insets. The cubic thin-film
sample (light blue) is mounted on an oscillator (red). We consider K1 = 47.5 kJ m−3,K2 = 0.75 kJ m−3 corresponding to magnetocrystalline
anisotropy constants of iron [3] for different values of Ks (also in units of kJ m−3). The qualitative shape of the curve depends upon the
value of Ks in relation to K1. The oscillator and free-energy density parameters are given in Table II. The base resonance frequency fel is
about 2.8 kHz.
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field [4,18,19]. In addition to this frequency shift, which is
measured in a TDM experiment, we also calculated a generic
expression for the magnetic torque that is useful in CTM or
“dc torque magnetometry” experiments. The latter technique,
however, involves measurement of a static signal which makes
it prone to noise and drift [20]. Oscillators with very low kel are
used to boost the signal which strongly limits the maximum
size of the specimen that can be measured, and complicates the
data analysis due to nonlinearities of the oscillator. TDM, on
the other hand, circumvents all of the above disadvantages, but
requires the somewhat more sophisticated analysis presented
here.

Equipped with the results presented herein, TDM can be a
powerful technique for investigating magnetic contribution to
the free-energy density of a specimen. For fields large enough
to saturate the magnetization along the HHH ext direction, we
obtain relatively simple expressions for the frequency shift
in terms of the free-energy density [Eq. (28)]. Given that a
sensitivity large enough to investigate magnetic nanoparticles
via TDM has already been demonstrated [4], and the progress
towards simpler and cheaper experimental setups [23], the
calculations reported herein are expected to offer an impetus
for further interest in this technique as a probe into magnetic
properties of a system.
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APPENDIX A: PARTIAL DERIVATIVES

In general, it might not be possible to obtain θh
m and φh

m as
closed-form functions of θh and φh. This makes the evaluation
of some partial derivatives required in Eq. (21) (∂θh

m/∂θh,
etc.) nontrivial. Here we present a method to evaluate these
derivatives without having a closed-form expression for θh

m

and φh
m.

The defining equations for θh
m,φh

m are

Fθm

(
θh
m,φh

m,θh,φh

) ≡ X(θh
m,φh

m,θh,φh) = 0, (A1)

Fφm

(
θh
m,φh

m,θh,φh

) ≡ Y (θh
m,φh

m,θh,φh) = 0, (A2)

where we have defined new functions X and Y for convenience.
Differentiating the upper equation above with respect to θh:

dX

dθh

= ∂X

∂θh

+ ∂X

∂θh
m

∂θh
m

∂θh

+ ∂X

∂φh
m

∂φh
m

∂θh

= 0. (A3)

Similarly, by differentiating X and Y with respect to θh and
φh, we obtain

∂X

∂φh

+ ∂X

∂θh
m

∂θh
m

∂φh

+ ∂X

∂φh
m

∂φh
m

∂φh

= 0, (A4)

∂Y

∂θh

+ ∂Y

∂θh
m

∂θh
m

∂θh

+ ∂Y

∂φh
m

∂φh
m

∂θh

= 0, (A5)

∂Y

∂φh

+ ∂Y

∂θh
m

∂θh
m

∂φh

+ ∂Y

∂φh
m

∂φh
m

∂φh

= 0. (A6)

Hence we can solve the four linear equations above [Eqs. (A3)–
(A6)] to obtain the four required derivatives ∂θh

m/∂θh,
∂φh

m/∂θh, ∂θh
m/∂φh, and ∂φh

m/∂φh in terms of derivatives of
the free-energy density.

APPENDIX B: SCALAR PRODUCTS

In order to evaluate the scalar products required to write
Eq. (13), we note the coordinate transformation between
Cartesian coordinates and polar coordinates [30]:⎡

⎢⎣
r̂rr

θ̂θθ

φ̂φφ

⎤
⎥⎦ =

⎡
⎢⎣

sin (θ ) cos (φ) sin (θ ) sin (φ) cos (θ )

cos (θ ) cos (φ) cos (θ ) sin (φ) − sin (θ )

− sin (φ) cos (φ) 0

⎤
⎥⎦

×

⎡
⎢⎣

x̂xx

ŷyy

ẑzz

⎤
⎥⎦ , (B1)

P̃θ,φ = S̃(θ,φ) C̃, (B2)

where the emphasizes that the quantity is a matrix. Therefore
we obtain the following relation between the spherical unit
vectors at different values of θ and φ:

P̃θc0,φc0 = S̃(θc0,φc0) C̃, (B3)

= (
S̃(θc0,φc0)S̃−1(θh

m,φh
m

))
P̃θh

m,φh
m
, (B4)

whence we obtain

φ̂φφc0 · φ̂φφh

m = [
S(θc0,φc0)S−1

(
θh
m,φh

m

)]
3,3, (B5)

= cos
(
φh

m − φc0
)
. (B6)

φ̂φφc0 · θ̂θθh

m = [
S(θc0,φc0)S−1

(
θh
m,φh

m

)]
3,2, (B7)

= cos
(
θh
m) sin (φh

m − φc0
)
. (B8)

APPENDIX C: MAGNETIC FIELD STRENGTH
DEPENDENCE

The formalism developed in Sec. II is now applied to some
special cases of interest. We start by considering a magnetic
specimen with a single easy axis along the ẑzz direction (a
magnetic wire) so that the free-energy density is given by
the sum of a uniaxial anisotropy and the Zeeman energy:

F = Ku sin2(θm) − μ0HextMs[sin(θh) sin(θm) cos(φm − φh)

+ cos(θh) cos(θm)], (C1)

with Ku > 0. In the remainder of the discussion, we consider
the applied magnetic field to be along the oscillator axis unless
stated otherwise.

First, the specimen shall be mounted such that its magnetic
easy axis is also along the oscillator axis [see Fig. 3(a)]. This
implies θh0 = θc0 = 0, φh0 = φc0, and the stable equilibrium
solution for the magnetization direction is θm0 = 0 and
φm0 = φh0. The following expression is then obtained for the
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frequency shift [Fig. 3(a)]:

�f

fel

= MsV

2kelL2
e

BextBu

Bu + Bext
, (C2)

where we define Bu = 2Ku/Ms as the effective anisotropy
field, and Bext = μ0Hext is the applied magnetic-flux density.

Next we consider the same sample mounted on the oscillator
with a different orientation such that the oscillator is pointing
along the x̂xx direction [Fig. 3(b)]. This implies θh0 = θc0 = π/2
and φh0 = φc0 = 0. The equilibrium magnetization direction
then is

φm0 = 0, (C3)

θm0 =
{

sin−1
(

Bext
Bu

)
Bext < Bu,

π
2 Bext > Bu.

(C4)

The frequency shift is accordingly obtained in the two different
regimes:

�f

fel

= MsV

2kelL2
e

⎧⎪⎨
⎪⎩

B2
ext

(
B2

u−2B2
ext

)
Bu

(
B2

u−B2
ext

) Bext < Bu,

− BextBu

Bext−Bu
Bext > Bu.

(C5)

The diverging frequency shift at Bext = Bu renders our
assumption km � kel invalid and requires the full expression
Eq. (1) for exact frequency shift calculation in a narrow
window. In practice, experiments measure a large but finite
response in a small applied magnetic field range [18]. One of
the advantages of this measurement scheme becomes apparent
from Fig. 3(b). The anisotropy field Bu can be directly read
from the plot as the field corresponding to the maximum
frequency shift. The frequency shift calculated in the two cases
above is found to be in agreement with the existing literature
(see Fig. 3) [4,18].

Extraction of all parameters in a single measurement: Now
we consider a similar specimen as above mounted with the
oscillator (and magnetic field) and oscillation direction (θ̂ c0)
perpendicular to the easy axis. With the coordinate system used
above (easy axis along ẑzz), our assumption of the tip oscillating
along θ̂ c0 cannot capture this configuration. Hence, we choose
a different coordinate system for this case so that the easy axis
is along the ŷyy direction and the oscillator points towards ẑzz

direction (Fig. 5).
The deviation of the oscillator from its equilibrium position

in this configuration does not change the magnetic free energy
due to the latter’s axial symmetry. This implies that τ⊥

m and
hence the frequency shift should vanish for a purely uniaxial
anisotropy. However, if in addition, we consider a small cubic
anisotropy (Ku � Kc > 0), the total magnetic free-energy
density in the new coordinate system is given by

F = Kc

4

[
sin2(2θm) + sin4(θm) sin2(2φm)

]
−Ku sin2(θm) sin2(φm)

−BextMs[sin(θh) sin(θm) cos(φm − φh)

+ cos(θh) cos(θm)]. (C6)

Under the condition Kc → 0, the equilibrium magnetization
orientation is given by

0 0.4 0.8 1.2 1.6 2
0

1

2

3

4

FIG. 5. (Color online) Frequency shift vs applied magnetic-flux
density. The configuration is depicted in the inset of the figure. The
uniaxial easy axis is along the longer dimension of the specimen
and the green dotted arrow represents the applied magnetic field.
We consider a weak cubic anisotropy (Kc = 1 kJ m−3) in addition.
The magnitude of the uniaxial anisotropy field Bu is indicated on
top of the figure by a black arrow. The oscillator and free-energy
density parameters used are quoted as the first set in Table II. The
base resonance frequency fel is about 2.8 kHz. This measurement
configuration allows for isolation of axially symmetric and polar
anisotropies in a single measurement.

θh
m0 =

{
cos−1

(
Bext
Bu

)
, Bext < Bu,

0, Bext > Bu,
(C7)

φh
m0 =

{
π/2 or 3π/2, Bext < Bu,

0 or π, Bext > Bu,
(C8)

which yields the following for the frequency shift (both values
of φh

m0 give the same shift):

�f

fel

= MsV

2kelL2
e

{
BcB

4
ext

B4
u

Bext < Bu,
BextBc

Bext+Bc
Bext > Bu,

(C9)

where Bc = 2Kc/Ms . This configuration allows us to isolate
the axial and polar dependencies of the internal free-energy
density. Furthermore, we can deduce both parameters Ku and
Kc from a single measurement with the magnetic field along a
fixed direction. The location of the discontinuity in the slope of
�f gives Ku while the maximum frequency shift can be used
to deduce Kc. If the sample is mounted so that the oscillator
points in a direction perpendicular to the uniaxial easy axis
and at an angle γ to the cubic easy axis, the frequency shift
calculated above [Eq. (C9)] is multiplied by cos(4γ ).

Cubic magnetocrystalline anisotropy. We now consider a
thick film (xy plane) specimen with strong cubic magnetocrys-
talline anisotropy and a weak easy-plane shape anisotropy
(K1 � Ks > 0, K2 > −9K1) [2,3],

F i = K1
(
m2

xm
2
y + m2

ym
2
z + m2

zm
2
x

) + K2m
2
xm

2
ym

2
z + Ksm

2
z,

(C10)
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= K1

4
[sin2(2θm) + sin4 θm sin2(2φm)]

+ K2

4
sin4 θm cos2 θm sin2(2φm) + Ks cos2 θm, (C11)

where mx,y,z denote the direction cosines of the magnetization
vector. We only consider the cases when the oscillator axis
is along x̂xx and ẑzz (magnetocrystalline easy axes). Since the
shape anisotropy has been considered weak, the equilibrium
magnetization is also along the oscillator axis [32],

�f

fel

= MsV

2kelL2
e

BextBa

Ba + Bext
, (C12)

where Ba is B1 + Bs and B1 − Bs for the oscillator along the
x̂xx and ẑzz direction, respectively, with B1,s = 2K1,s/Ms . This
implies that measurements in at least two configurations are
required to obtain K1 and Ks , while K2 is not accessible to
measurements along the easy axes [33].

Another possibility is a magnetic thin film so that the shape
anisotropy is stronger than the magnetocrystalline anisotropy
(Ks > K1). The case of in-plane applied magnetic field is
covered by the general principle to be discussed later in
the section. Here we discuss the configuration in which
the oscillator axis is perpendicular to the easy plane. For
simplicity, we disregard the K2 term in the cubic anisotropy
[Eq. (C11)]. The equilibrium magnetization direction is
discussed in Appendix D. The frequency shift is obtained as
follows:

�f

fel

= MsV

2kelL2
e

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B2
ext(Bs+B1)2

(Bs+B1)3−B2
ext(Bs+7B1)

, φh
m0 = 0 and Bext � Bs − B1,

− B2
extBs (Bs+B1)

B1((Bs+B1)2−B2
ext)

, φh
m0 = π/2 and Bext � Bs − B1,

− Bext(Bs−B1)
Bext−(Bs−B1) , Bext > Bs − B1,

(C13)

where B1,s = 2K1,s/Ms . An analytical expression for the
equilibrium magnetization, and hence the frequency shift, is
not available for the middle range of magnetic-flux densities
(Fig. 6). The orientations φh

m0 = 0 or π/2 can be distinguished
easily as the low-field frequency shift has different signs
in the two cases. One can also anticipate, on the basis of

0 1 2 3 4 5
−500

−400

−300

−200

−100

0

50

FIG. 6. (Color online) Frequency shift vs applied magnetic-flux
density for a thin-film sample with cubic magnetocrystalline
anisotropy. Magnetic field and oscillator axis point in the out-of-plane
direction. We consider V = 10−20 m−3, K1 = 47.2 kJ m−3, and Ks =
1846 kJ m−3 corresponding to an iron thin film [3] and oscillator
parameters quoted as the first set in Table II. The base oscillator
frequency fel is about 2.8 kHz. Energetically equivalent magnetiza-
tion directions φh

m0 = 0 and π/2 can easily be distinguished using
low fields. There is a unique energetically favorable equilibrium
orientation at high fields. The critical field separating the two regimes
Bs − B1 is indicated by an arrow on the top. The frequency shift close
to the critical field is not shown as the expressions given in Eq. (C13)
are, strictly speaking, not valid in this region.

continuity, the φh
m0 = 0 curve in Fig. 6 to go to negative infinity

close to Bext = Bs − B1. In this respect, the behavior of this
curve is qualitatively similar to the case of uniaxial anisotropy
considered earlier [Fig. 3(b)]. Hence it is possible, once again,
to obtain both shape and crystalline anisotropy fields in a single
unidirectional measurement.

Effective uniaxial anisotropy. Equations (C2) and (C12)
look identical with different anisotropy fields. This is an
example of a generic principle according to which any
“effective” easy axis uniaxial anisotropy field can be obtained
by mounting the specimen with its easy axis along the
oscillator axis. Under the mathematical conditions (which we
treat as the definition of an effective uniaxial anisotropy),

∂2F i

∂φm∂θm

∣∣∣∣
eq

= ∂2F i

∂φ2
m

∣∣∣∣
eq

= 0, (C14)

the frequency shift reduces to Eq. (C12) with Ba as
the appropriate anisotropy field. In this case equilibrium
magnetization direction is necessarily along the easy axis and
hence the oscillator axis.

APPENDIX D: EQUILIBRIUM MAGNETIZATION
OF A THIN FILM

We now consider the evaluation of the equilibrium
magnetization direction of a thin film (xy plane) with an
applied magnetic field along ẑzz. The free-energy density
includes a cubic magnetocrystalline anisotropy and shape
anisotropy [see Eq. (C11)],

F i = K1

4

[
sin2(2θm) + sin4 θm sin2(2φm)

] + Ks cos2 θm.

(D1)

We disregard the K2 term for simplicity. We further make
the following assumption: Ks > K1 > 0. The equilibrium
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orientation of the magnetization is then given by the following
equations:

K1
[

sin
(
2θh

m0

)
cos

(
2θh

m0

) + sin3
(
θh
m0

)
cos

(
θh
m0

)
sin2

(
2φh

m0

)]
−Ks sin

(
2θh

m0

) + BextMssin
(
θh
m0

)
0, (D2)

= K1 sin4 (
θh
m0

)
sin

(
4φh

m0

) = 0. (D3)

The second equation above admits θh
m0 = 0,π or

φh
m0 = nπ/4,n = 0,1,2 . . . as possible solutions. Of these we

consider only θh
m0 = 0 and φh

m0 = 0,π/2 as other solutions
either represent a maximum in free energy (and hence
an unstable equilibrium) or solutions that are completely
equivalent to the considered solutions.

Equation (D2) clearly admits θh
m0 = 0,π as a solution

of which we consider only θh
m0 = 0 again due to energy

considerations. Further θh
m0 = 0 does not correspond to the

global minimum in energy for low fields due to the shape
anisotropy term. Hence we look for other solutions to the
equation,

K1
[
2 cos

(
θh
m0

)
cos

(
2θh

m0

) + sin2 (
θh
m0

)
cos

(
θh
m0

)
sin2 (

2φh
m0

)]
− 2Ks cos

(
θh
m0

) + BextMs = 0. (D4)

Since we seek a solution with sin(θh
m0) 
= 0, we need φh

m0 =
0 or π/2 to satisfy Eq. (D3). For both these values of φh

m0, the
equation above reduces to the following:

2K1 cos
(
θh
m0

)
cos

(
2θh

m0

) − 2Ks cos
(
θh
m0

) + BextMs = 0.

(D5)

With the substitutions cos(θh
m0) = x, Ks/K1 = k and

Bext/B1 = b, the above equation can be written as follows:

2x3 − x(1 + k) + b = 0. (D6)

This is a cubic equation in x which technically has analytic
solutions, but these solutions do not offer useful insights since
the expressions are rather unwieldy. We adapt an alternative
approach and obtain the solution in the limit of small b. Clearly
x = 0 is a solution when b = 0. Since the equation above is
invariant with respect to the transformation x → −x,b → −b,
we conclude that the Taylor expansion of x in terms of b

will contain only odd powered terms. Hence we substitute
x = a1b + a3b

3 in the equation above, retain terms up to b3

only, and obtain the following solution:

x = b

1 + k
+ 2

1 + k

(
b

1 + k

)3

, (D7)

= Bext

Bs + B1
+ 2B1

Bs + B1

(
Bext

Bs + B1

)3

. (D8)

The maximum value of x to represent the cosine of another
variable is 1. The following is true when x = 1 is a solution:

b = k − 1. (D9)

Since x is a monotonically increasing function of b, we
conclude that a real solution for θh

m0 satisfying Eq. (D6) exists
only for b < k − 1, i.e., Bext < Bs − B1. When this is not the
case, the solution is given by θh

m0 = 0. Hence we have obtained
the equilibrium orientation of magnetization:

θh
m0 =

⎧⎨
⎩cos−1

[
Bext

Bs+B1
+ 2B1

Bs+B1

(
Bext

Bs+B1

)3
]

≈ cos−1
(

Bext
Bs+B1

)
, Bext � Bs − B1,

0, Bext > Bs − B1,

(D10)

φh
m0 =

{
0 or π/2, Bext < Bs − B1,

φh0 = 0, Bext > Bs − B1.
(D11)
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