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We use finite-difference time-domain modeling to investigate plasma generation induced by multiphoton
absorption of intense laser light in dielectrics with tiny inhomogeneities. Plasma generation is found to be strongly
amplified around nanometer-sized inhomogeneities as present in glasses. Each inhomogeneity acts as the seed
of a plasma structure growing against the direction of light propagation. Plasma structures originating from
randomly distributed inhomogeneities are found to interact strongly and to organize in regularly spaced planes
oriented perpendicularly to the laser polarization. We discuss similarities between our results and nanogratings
in fused silica written by laser beams with spatially homogeneous as well as radial and azimuthal polarizations.
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I. INTRODUCTION

Many dielectrics as, e.g., silica glasses, are known to be
transparent within a wide frequency range. Only at high inten-
sities absorption becomes possible as electrons are promoted to
the conduction band by nonlinear ionization processes [1]. The
strong intensity dependence of multiphoton ionization allows
for the selective excitation and laser-induced modification
of a small focal region situated inside a material volume.
Different kinds of material modifications have been observed,
including refractive index changes [2], void formation [3], and
subwavelength volume grating formation [4–6].

Previous modeling efforts concerning laser energy depo-
sition in dielectrics have concentrated on the temporal and
spatial evolutions of the laser pulse itself while treating
the material as homogeneous [7–10]. As far as nonlinear
self-organization is concerned, a certain seed is required to
start the process. Therefore, we follow a different approach and
investigate the interaction of laser light with nanometer-sized
inhomogeneities. This is of fundamental interest due to the
inherent inhomogeneity of amorphous materials, such as silica
glasses [11]. Such inhomogeneities have also been suggested
to play a major role in volume nanograting formation [12].

Our simulations are based on the standard parameters which
can be found in the literature. A good overview of the parame-
ters of laser light and free carriers present during nanograting
formation has been given by Bulgakova et al. [9]. There, the
intensities achieved by focusing and nonlinear propagation
inside the homogeneous material cause smooth submetallic
carrier density distributions. We use similar parameters, but in
our case material inhomogeneities increase the local intensity
and cause the formation of plasma spots. We demonstrate that
the ionization process is independent of the exact shape and
nature of the initial inhomogeneities. However we can identify
two regimes depending on the local carrier densities that are
reached during irradiation. For low carrier densities, ionization
enhancement remains confined to the initial region of field
enhancement close to an inhomogeneity. For higher carrier
densities, a single nanoplasma forming at an inhomogeneity
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site enhances further ionization in its vicinity and acts as a
seed for the growth of an extended structure. This regime of
strong interaction is similar to the ionization instability which
has been predicted for tunneling ionization in gases [13,14]
and which has been suggested to play a similar role in the
ionization of transparent dielectrics [9]. In both cases, intricate
structures with high carrier densities can be formed. However,
the local field enhancement around an existing nanoplasma
plays a much more important role in our case.

We further examine optical self-organization in material
systems with randomly distributed nanometer-sized inho-
mogeneities. We observe the formation of planar structures
aligned perpendicularly to the laser polarization with a
self-organized period related to the laser wavelength. We
discuss the similarities to experimentally observed nanograting
damage patterns and the possible connection of our results to
these phenomena.

II. NUMERICAL MODEL

For our model, we use a nonlinear finite-difference time-
domain (FDTD) approach, which previously has been applied
to the modeling of ionization and void formation in silica
[10,15]. Maxwell’s equations,

∂

∂t
�D = 1

μ0
∇ × �B − �J ,

(1)
∂

∂t
�B = −∇ × �E,

with �D = ε �E + �P are solved using the standard FDTD
algorithm [16,17]. The response of the unexcited medium,
which is dominated by valence-band electrons, is included in
the background permittivity ε = n2ε0 using a linear refractive
index n = 1.45.

We also incorporate the Kerr effect using the third-order ma-
terial polarization �P = ε0χ3E

2 �E. This formulation assumes a
scalar third-order susceptibility χ3 = 2 × 10−22 m2 V

−2
[18],

which is a good approximation for linearly polarized light
propagating in glass.

The remaining contributions to the material response are
included via the current density �J = �Jd + �Jmpi, where the
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ionization current �Jmpi is used to model the energy loss of
the electric field due to multiphoton ionization, which excites
electrons to the conduction band. �Jd describes the optical
response of these newly generated conduction-band electrons
based on a Drude model,

∂

∂t
�Jd = −νe

�Jd + e2

me

ρ �E. (2)

In a complete model, the electron collision frequency νe

would have to be assumed to depend on carrier density and
temperature. As a simplification, we assume it to have a
constant value of νe = 1014 s−1 lying in the range of reported
values [9,19,20]. As long as the resonant field enhancement
close to a nanoplasma is not completely damped by collisions,
final results have turned out to be mostly independent of νe.

The time-dependent conduction-band carrier density ρ is
described with a rate equation taking into account multiphoton
ionization and recombination,

∂

∂t
ρ = (ρ0 − ρ)νmpi − ρ

τrec
. (3)

In this model, the free carrier density reaches saturation at a
value of ρ0 = 2 × 1028 m−3 [15]. The electron recombination
time is τrec = 150 × 10−15 s [21]. For an excitation wavelength
of λ = 800 nm and a fused-silica target with a band gap of
Wion = 9 eV, six photons are needed to promote an electron

to the conduction band, resulting in an ionization rate,

νmpi = σ6I
6

ρ0
, (4)

with a cross section of σ6 = 2 × 10−65 m9 W−6 s
−1

[18]. An
expression for �Jmpi can be derived by equating the energy
gain of electrons ∂

∂t
W = Wionνmpi(ρ0 − ρ) due to multiphoton

ionization to the energy loss of the electric field �Jmpi �E, yielding

�Jmpi = σ6

ρ0
WionI

5 �E(ρ0 − ρ). (5)

The nonlinear equations that describe the electric field,
ionization loss, and carrier density are solved using a fixed-
point iteration method at each FDTD time step.

Additional attention has to be paid to the modeling of
inhomogeneities. As glass is an amorphous solid, nanosize
inhomogeneities are always present due to local variations in
the chemical structure [22] and to actual voids or gas inclusions
[11,23]. It has also been reported that material nonlinearities
can be enhanced by a history of previous laser irradiation
[22,24,25]. Such effects could lead to an additional inhomo-
geneity in the nonlinear response. According to literature,
voids in conventional silica take up a fraction of 3% of the
material volume [11] and have an average size of d = 0.6 nm
[23] resulting in a mean spacing below 20 nm. Such voids
should be an appropriate model for a typical inhomogeneity.As
will be shown in Sec. III, ionization around a void leads to
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FIG. 1. (Color online) Scattering on a small inhomogeneity. (a) and (b) Local intensity enhancement for plasma spheres with different
carrier densities ρ (to illustrate the field structure, calculations are performed using the electrostatic approximation. Refractive indices are
obtained from the Drude model). (a) ρ = 1026 m−3 � ρMie, (b) ρ = 2 × 1028 m−3 > ρMie, and (c) temporal evolution of the carrier density and
electric field in a small ionizable sphere in glass irradiated with a plane wave (amplitude of E0 = 1.7 × 1010 V m−1).
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the same final plasma structure as ionization around a region
with an enhanced ionization cross section. Additionally, final
results do not depend on the actual shape of the inhomogeneity
as long as the initial size does not exceed a few nanometers.
This is to be expected since scattering from small objects
is dominated by the dipole mode and does not depend on
the specific shape [26]. This means that once initial results
are established with a fine discretization (
x = 0.5 nm) and
realistic inhomogeneities, we can safely use comparatively
large seed inhomogeneities and coarse discretizations. Nev-
ertheless, to properly resolve the inhomogeneities and the
induced plasma structures, the resolution should not exceed

x = 5 nm. As the simulation of multiple laser pulses and
the subsequent material modifications is outside the reach
of present computational resources, we limit our scope to
continuous illumination in order to understand the potential of
purely optical self-organization processes. This approach can
be viewed both as a limiting case of single-pulse excitation
and as an extrapolation of the excitation with multiple pulses.

In all presented cases, the simulation volume is situated
deep inside the bulk of the material. At the material boundaries
far away from the focal region of the laser, intensities are
considerably lower. We will start out with simple geometries
where the exciting field is approximated as a plane wave
and then will proceed to more realistic simulations with
focused sources. The simulation volume is terminated by
perfectly matched layers [17] in the propagation direction.

In the transverse direction, we choose periodic boundary
conditions. Initially, the material is taken to be unexcited, and
the conduction-band carrier density is set to ρ = 0.

III. SIMULATION RESULTS

Our simulations focus on the interaction of intense laser
light with materials with randomly distributed nanometer-
sized inhomogeneities. To get a feeling for the basic processes,
we start with a very simplified, but quasianalytical model. We
consider a spherical subwavelength inhomogeneity in which
plasma generation can occur due to a nonvanishing ionization
cross section. Plasma generated inside the sphere according to
Eq. (3) causes a decrease in the dielectric constant according
to Eq. (2). In the case of a sphere much smaller than the
exciting wavelength, the fields can be calculated in a quasistatic
approximation[26,27] [Figs. 1(a) and 1(b)]. Combined with
envelope approximations of Eqs. (2) and (3), this model can
also serve to estimate the temporal evolution of the carrier
density and electric-field strength inside the sphere [Fig. 1(c)].
According to the electrostatic approximation, a dipole wave
is excited at the inhomogeneity site and interferes with the
incident plane wave. Intensity is enhanced both inside the
sphere and at its equator perpendicular to the incident electric-
field vector [Fig. 1(a)]. The free-electron density inside the
sphere increases due to the positive feedback between the
local electric field and the plasma refractive index [Fig. 1(c)].
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FIG. 2. (Color online) Carrier density (2D FDTD) for early stages of ionization around spherical voids (σ6,inh = 0, n = 1.0) with different
sizes as indicated in the figure as well as a region with an enhanced ionization cross section σ6,inh = σ6 × 5. Illumination is a continuous plane
wave with an amplitude of E0 = 1.7 × 1010 V m−1 normally incident from the left in all three cases.
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Eventually, the plasma reaches a carrier density where the
dipole resonance of the sphere comes close to the excitation
frequency [εplasma(ρMie,ωsource) = −2εbackground]. At this point,
carrier densities increase almost exponentially. The scattered
field is now strongly enhanced and solely determines the near-
field intensity pattern. Due to the strong field enhancement,
ionization continues even up to the maximum carrier density
ρ = ρ0 where saturation sets in. Pronounced intensity maxima
now lie at the poles of the nanoplasma [Fig. 1(b)].

If ionization in the surrounding medium is taken into
account, this field enhancement leads to the formation of
an ionized region growing into the direction of the electric
field. Since scattering is now mostly caused by the induced
nanoplasma, the final structure is invariant concerning the
microscopic details, such as shape, size, and chemical nature
of the seed inhomogeneity. Even if the initial inhomogeneity is
a void instead of a region with an enhanced nonlinearity, field
enhancement around the void leads to an amplified plasma
generation, resulting in a similar evolution if a certain threshold
is exceeded. To verify these guesses, we turn our attention to
the complete FDTD-based model as described in Sec. II.

We initially restrict simulations to a two-dimensional (2D)
geometry since this has shown to illustrate the growth process
more clearly than the full three-dimensional case. For our later
simulations we will return to three-dimensional geometries
and will show that the plasma structures growing in random
media tend to reproduce the features seen in a 2D simulation.

We consider regions with an enhanced ionization cross
section σ6 [Figs. 2(c) and 4] being conceptually close to the

analytical model as well as nanovoids with a diameter of
d = 0.6 nm as present in silica and with a diameter increased
by a factor of 10 (Figs. 2 and 3). The results in Fig. 2 have
been produced with a spatial resolution of 
x = 0.5 nm. For
the larger simulation volumes in Figs. 3 and 4, a much coarser
resolution of 
x = 5 nm has been used.

We find that all three inhomogeneity models reproduce the
initial predictions of the analytical model and lead to an almost
exponential growth of identical plasma structures into the
polarization direction [Fig. 2(a)]. Additionally we observe that
the results do not differ significantly if a coarser discretization
is used. We conclude that the final plasma structure is indeed
invariant concerning the seed. However, the irradiation time
or intensity needed to initiate the quasiexponential growth de-
pends on the nature and strength of the inhomogeneity. Based
on Fig. 1(c), we can say that growth is initiated if a carrier
density of approximately half the resonant density is reached
locally. For λ = 800 nm and n = 1.45 this corresponds to a
value of ρMie

2 ≈ 5 × 1027 m−3.
Growth in the polarization direction only slows down as

the resulting structure leaves the subwavelength domain. Now
the plasma acts as a nanoantenna whose maximum reflectivity
would be reached at a size of λ

2n
. However, there is strong

backreflection already at smaller sizes. Due to constructive
interference with the incident wave, further ionization is
stimulated along the negative propagation direction [Fig. 3(b)],
and a new structure is formed in front of the old one. At this
point, the lateral growth of the initial structure is inhibited,
leading to a finite size in the polarization direction.
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FIG. 3. (Color online) Plasma density (2D FDTD) around a single void (σ6,inh = 0, n = 1.0, and d = 7 nm) at the coordinate origin for
several stages of structure growth. (a) Plasma growth into the polarization direction. (b) Saturation of growth and initiation of a second structure.
(c) Periodic plasma structure formed by subsequent growth. Illumination is a cw plane wave with an amplitude of E0 = 1.7 × 1010 V m−1

incident from the left.
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FIG. 4. (Color online) Plasma density (2D FDTD) around a single inhomogeneity with an enhanced ionization cross section (σ6,inh =
σ6 × 15, d = 7 nm) at the coordinate origin. Illumination is a cw plane wave with an amplitude of E0 = 1.7 × 1010 V m−1 incident from the
left.

During few optical cycles, a new structure is formed at
the intensity maximum caused by reflection from the previous
one. In this way, a periodic plasma chain with wavelength
dimensions is initiated by a tiny seed inhomogeneity of
almost arbitrary nature [compare Figs. 3(c) and 4] and grows
backwards against the propagation direction.

We now turn to the study of randomly distributed inhomo-
geneities in a three-dimensional volume. In all the simulations
presented here, we place pixel-sized inhomogeneities with a
density pinh and leave the background medium unperturbed.
As expected, we again observe structure growth starting from
the individual seed inhomogeneities. For nanovoids or regions
with a weakly enhanced ionization cross section as described
above, the structures are sparsely distributed throughout the
material volume and do not interact. However, for higher
densities, a large number of plasma structures competes in
the growth process, resulting in an onset of self-organization.
To explore such effects, we now allow for stronger ionization
enhancement inside the inhomogeneities (Figs. 5–8).

In such systems, we observe the dense growth of the
structures we already described for the two-dimensional case.
During their backwards directed growth, the structures also
expand into the third direction not covered by our previous
two-dimensional simulations. They do so until they merge
with their neighbors to form extended plasma planes oriented
perpendicularly to the polarization direction. Due to destruc-
tive interference of scattered and incident light, ionization
is suppressed directly adjacent to each plasma plane and is
enhanced at a distance of approximately λ

n
. We note that the

field suppression and enhancement pattern in the polarization
direction around a single complex plasma structure is still
similar to the one for a small plasma sphere despite the
differences in shape and size.

This effect leads to an interaction between separate
structures. As a result, order emerges during growth, and a
periodic pattern can be formed. Since many structures form
simultaneously and interaction only becomes relevant during
the growth process, the resulting period is not completely
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FIG. 5. (Color online) Carrier density generated by a plane wave (amplitude of E0 = 1.7 × 1010 V m−1) normally incident on a half-space
(z > 0) filled with inhomogeneities (pinh = 0.01, σ6,inh = 60σ6). Structures grow backwards from the inhomogeneous/homogeneous border at
z = 0 and form a grating with a period of ∼ λ

2n
= 275 nm. Polarization and laser propagation direction are indicated in panel (a). Panel (b)

shows a cut through the grating planes at z = −300 nm.
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determined by the position of the intensity maximum but
also depends on growth conditions, such as the density
and ionization cross section of seed inhomogeneities or the
intensity of the excitation.

The smallest period can be observed under plane-wave
illumination. In this case, structures closest to the source plane
tend to grow first and scatter light backwards, thus preventing
any growth inside the simulation volume behind them. To
observe the free growth and competition between different
structures, we only fill a subspace with inhomogeneities,
leaving the space close to the source unperturbed. Plasma
structures form mainly at the border of the inhomogeneous
region and grow backwards into the unperturbed region where
intensity is high (Fig. 5). Now only strong suppression close to
the individual structures inhibits the growth of their neighbors,
resulting in a period as small as λ

2n
. Note that although growth

starts at an interface, the resulting structure formation remains
a volume effect which can only to a certain extent be compared
to surface grating formation, which has been explained in terms
of interference of dipole radiation initiated at a rough material
surface [28,29]. In our case, the self-organized period is caused

by the growth of densely arranged metallic plasma structures
initiated at the inhomogeneities on the interface.

In more realistic simulations, we fill the entire simulation
volume with inhomogeneities and use focused sources to
control the location of initial structure growth. First we use
a source polarized in the x direction and focused only in
the y direction with z being the propagation direction (see
Fig. 6). In the x direction the source profile has an infinite
size to allow for the formation of many grating planes. In the
y direction the beam is assumed to have a Gaussian shape.
As expected, structures first emerge in the focal volume and
grow backwards over micrometer distances into regions of
decreasing intensity (Fig. 6). Self-organization in this case is
dominated by mutual enhancement, and we observe periods
around λ

n
. Since the planes form inside an initially disordered

volume, self-organization only starts after a certain distance of
backwards growth outside the original focus. As can be seen
in Fig. 6(c), the transverse size of the ionized region increases
at the distance where self-organization sets in (approximately
500 nm behind the original focus), leading to a “carrot-shaped”
growth. We observe that the individual grating planes as
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FIG. 6. (Color online) Carrier density within an inhomogeneous volume (pinh = 0.01, σ6,inh = 40 × σ6) illuminated with a beam (maximum
field strength in the homogeneous case E0 = 1.9 × 1010 V m−1, NA = 0.8) [numerical aperture (NA)] focused in the y direction, polarized in
the x direction, and propagating in the z direction. The linear focus is located at z = 0 [see overlay of lines of equal field strength |E|2 in panel
(c)]. The sketch shows the focusing geometry and orientation of periodic structures.
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highlighted with a dashed ellipse in Fig. 6(a) consist of several
smaller structures as highlighted with a second ellipse having
a finite size below λ

2n
in the polarization direction. These

correspond to the original wing structure as it was observed
in Fig. 3(a). Similar to the case of Fig. 5, the individual
structures tend to merge in the direction perpendicular to the
polarization. However due to the random distribution of seed
inhomogeneities, the emerging structures are not as regular as
the ones observed previously.

To further demonstrate the effect of polarization, we
continue using the beam geometry of Fig. 6 but choose an
excitation polarized in the y direction (Fig. 7). In this case, one
would expect the grating planes to be extended along the x and
z directions and arranged periodically along the y direction.
Since the exciting beam has a limited size in the y direction,
we only observe a single structure, corresponding to a single
grating plane [Fig. 7(c)]. As one would expect, no periodicity
in the x direction can be found [Fig. 7(a)]. However, similar
to Fig. 6(a), the grating plane consists of smaller structures,
which have grown from seed inhomogeneities and which have

partly merged in the x direction. As suggested by the plasma
structures in Figs. 3(c) and 4, we also observe some periodicity
along the propagation direction [Fig. 7(b)].

We further consider spatially localized radially and
azimuthally polarized beams. Again, we observe the formation
of plasma planes perpendicular to the local polarization. For an
azimuthally polarized beam, this leads to a star-shaped pattern
containing several planes [Figs. 8(a) and 8(b)]. In the radially
polarized case, we obtain a single ring structure caused by the
transverse field components and a small structure in the beam
center caused by the maximum of the longitudinal component
[Figs. 8(c) and 8(d)]. Again, the individual planes in the
star-shaped pattern in Figs. 8(a) and 8(b) and the single ring
structure in Figs. 8(c) and 8(d) are made up of smaller struc-
tures which tend to merge in the directions perpendicular to the
exciting polarization. In general the plasma planes generated
by radially polarized beams are more regular and cohesive.
In that case, the polarization-enforced ring structure almost
coincides with the region of maximum electric-field
strength. In contrast, plasma planes generated by an
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FIG. 7. (Color online) Carrier density within an inhomogeneous volume (pinh = 0.01, σ6,inh = 40 × σ6) illuminated with a beam (maximum
field strength in the homogeneous case E0 = 1.9 × 1010 V m−1, NA = 0.8) focused and polarized in the y direction and propagating in the z

direction. The linear focus is located at z = 0 [see overlay of lines of equal field strength |E|2 in panel (c)]. The sketch shows the focusing
geometry and orientation of ionization structures.
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FIG. 8. (Color online) Carrier density inside a volume filled with inhomogeneities (pinh = 0.01) and irradiated with beams with a local
polarization structure (maximum field strength in the homogeneous case E0 = 1.7 × 1010 V m−1, NA = 0.5) propagating in the z direction.
(a) and (b) Azimuthally polarized beam σ6,inh = 60σ6. (c) and (d) Radially polarized beam σ6,inh = 30σ6. Lines of equal field strength |E|2 as
expected in the linear case are overlaid on panels (b) and (d).

azimuthally polarized beam point in the radial direction,
extending perpendicularly to the region of maximum field
strength.

To perform a more quantitative analysis of the ionization
patterns in Fig. 8, we transformed the data of Figs. 8(a) and 8(c)
into a radial coordinate system and took directional averages
in both radial and azimuthal directions [Figs. 9(a) and 9(c)].
For the azimuthally polarized beam, the radial averages exhibit
a strong periodic modulation in the azimuthal direction. In the
case of the radially polarized beam, the modulation is weak,
and high carrier densities above half the maximum are present
across the whole ring structure. The azimuthal averages show
the finite size of the plasma structure, which is determined
by the finite beam size for both polarization conditions.
Figures 9(b) and 9(d) show respective Fourier transforms.
Only in the case of the azimuthally polarized beam
[Fig. 9(b)] a distinct periodicity of about 500 nm in the
azimuthal direction can be identified in the radial average
(green line).

IV. RELATION TO EXPERIMENTAL RESULTS

In the simulations of our model systems with randomly
distributed inhomogeneities, we note strong similarities to
experimentally observed volume nanogratings both for beams
with spatially homogeneous polarization [30] and for beams
with a local polarization structure [6].

Our physical model describes localized ionization and
the subsequent growth of nanoplasma while neglecting the

hydrodynamic behavior of the generated plasma. It thus
corresponds to the nanoplasmonic model of grating formation
suggested in the paper by Rajeev et al. [12]. Contrary to the
hypothesis presented there, we do not observe any growth
of extended plasma structures for dielectric plasma densities.
However close to and above the resonant plasma density where
εplasma = −2εbackground, we do observe the stimulated growth
of ionized regions. Although the structures initially grow into
the polarization direction, they later organize into thick planes
with an orientation orthogonal to the incident electric field.

Despite these similarities with experimental observations
our results can only be regarded as an attempt to understand
the laser-induced formation of volume gratings in bulk glasses.
Due to the numerical complexity of the subject, we had to
simplify the model considerably. Up to now we did not model
the evolution of the material in the excited region after the
pulse. In fact, real nanogratings form only over the course of
many laser pulses. Between individual pulses, the conduction-
band carriers recombine completely leaving only chemical and
mechanical material modifications as a feedback mechanism
for further pulses [22,24,25].Self-organization emerges as a
cumulative effect and, therefore quite likely requires much
lower ionization rates.

In our model systems, inhomogeneities are strongly en-
hanced, allowing for faster ionization of the material. Thus, the
purely optical aspects of self-organization can be studied in the
course of a single irradiation cycle. Due to its dependence on
polarization and wavelength, nanograting formation must be
expected to be dominated by optical processes. Consequently,
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FIG. 9. (Color online) Structural analysis of the data in Fig. 8. (a) Directional averages in both azimuthal and radial directions of the data
in Fig. 8(a). (b) Fourier transforms of the data in (a) plotted for structure periods below 1 μm. (c) Directional averages of the data in Fig. 8(c).
(d) Fourier transforms of the data in (c) plotted for structure periods below 1 μm. To obtain the directional averages, the image data have
been transformed to a radial coordinate system and have been averaged over each axis. The radial averages are plotted over the arc length
l = θRstructure for a nominal structure radius of Rstructure = 600 nm.

our model should be able to capture some of the essential
physics involved.Indeed, self-organization of planes with
the correct orientation and a wavelength-related period is
reproduced. In the case of an inhomogeneous half-space under
plane-wave irradiation, the commonly observed nanograting
period of λ

2n
is matched by the simulated plasma structures.

Although most papers focusing on high pulse numbers and
fully formed gratings report on thin planes with a period of
λ
2n

, also larger periods around λ
n

[31] as well as much thicker
grating planes [32] have been observed in experiments with
low pulse numbers. Since our model does not include the
material modification between pulses, it is not surprising that
we observe similar features in the majority of our simulations.

Our results further reproduce the large size as well as
the increase in self-organization along the negative z axis of
nanogratings [32]. Both observations can be explained by the
backwards growth of plasma structures, which is driven by
near-field enhancement and continues well out of the focal
region. Experiments have shown that a similar growth takes
place over the course of multiple laser pulses during the
generation of nanogratings [31].

V. CONCLUSION

We have modeled the interaction of light with nanoscale
inhomogeneities in dielectrics undergoing multiphoton

ionization. We observed that nanoscale inhomogeneities as,
e.g., voids, influence the plasma formation considerably. They
induce the formation of large-scale plasma structures with
a final shape independent of the initial void. In the case of
randomly distributed inhomogeneities, we observe a strong in-
teraction and subsequent self-organization of evolving plasma
structures reproducing some of the key features of nanograting
damage patterns in glass.

Further research will include additional ionization mech-
anisms and a more detailed description of the free-
carrier dynamics including carrier heating, density, and
temperature-dependent changes in the collision frequency
and hydrodynamic phenomena. To fully understand the phe-
nomenon of nanograting formation, detailed simulations of
the material modifications taking place between pulses are
required.
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