
PHYSICAL REVIEW B 89, 184110 (2014)

Electric-field dependent freezing in relaxor ferroelectrics
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The concept of polar nanoregions (PNRs) in relaxor ferroelectrics has recently been discussed in several
numerical and theoretical studies for the special case of barium zirconate-titanate Ba(ZrxTi1−x)O3 (BZT). Here
we present a semiphenomenological model of relaxation in BZT and related systems in order to show that the
correlation radius of a PNR is determined by the condition that the surrounding medium undergoes a local phase
transformation into a correlated polar state. The model describes the growth and percolation of the PNRs on
lowering the temperature or under the application of an electric field, leading to a generalized Vogel-Fulcher-type
dielectric relaxation time. It is suggested that the above condition might be applied to discriminate between the
relaxor state and the analogous dipolar glass state.
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I. INTRODUCTION

Relaxor ferroelectrics (relaxors) are inorganic as well
as organic compositionally disordered ferroelectric systems,
which are characterized by strong frequency dispersion and
a broad temperature peak of the dielectric permittivity, and
by the absence of spontaneous ferroelectric long range order
at all temperatures [1,2]. In view of their excellent dielectric,
electrostrictive, and piezoelectric properties relaxors have long
been of special interest for numerous practical applications,
especially in electromechanical [3,4] and electrocaloric de-
vices [5,6]. Typical representatives of inorganic relaxors are
mixed ABO3 perovskites, such as lead magnesium niobate
PbMg1/3Nb2/3O3 or PMN and mixed barium zirconate-titanate
Ba(ZrxTi1−x)O3 or BZT in the concentration range 0.25 �
x � 0.75 [7]. Since the ionic charges of Zr4+ and Ti4+ in BZT
are the same, this system is an example of isovalent relaxors.
BZT has recently been the subject of several theoretical [8–12]
and experimental [13–16] studies. In particular, in Ref. [8] it
has been shown by means of Monte Carlo simulations based on
a first-principles model of BZT (x = 0.5) that below T ∼ 250
K the so-called polar nanoregions (PNRs) represented by areas
of correlated Ti displacements appear, and on further lowering
the temperature they grow in size and gradually coalesce into
larger entities. Moreover, it has been argued [8] that contrary
to common belief random electric fields and random strains
are not needed to explain the microscopic origins of relaxors.

In a subsequent paper [9], it was shown that when an electric
field is applied at fixed temperature, the PNRs also grow in
size along the field and percolate through the sample. Similarly,
strain-induced rotation and elongation of the PNR dipoles as
well as an increase of the PNR size has been predicted to
occur in epitaxial BZT films [10]. Recently, it has been argued
[11,12] that the onset of PNRs and ergodicity found in first-
principles-based simulations can be understood by mapping
the system on a soft pseudospin glass model.

Relaxors share many common features with the dipolar
glasses (DGs) [1,2], the latter being a physical realization of
fixed-length reorientable electric dipoles randomly distributed
in a dielectric medium. Actually, there are binary systems
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that can show either relaxor or DG behavior depending
on the concentration x of the constituents, for example,
CuInP2(SxSe1−x)6 [17], and in fact BZT has also been claimed
to be a DG for concentrations 0.45 < x < 0.75 [14,16].

From a microscopic point of view, a distinction between
DGs and relaxors appears to be trivial. Namely, in DGs one is
dealing with randomly interacting individual dipoles, whereas
in relaxors some clustering of the dipoles occurs, giving rise
to the above-mentioned PNRs [18]. This view is supported
by the probability distribution of local polarization W (p),
which can be measured by NMR; it has a Gaussian shape
at all temperatures in relaxors [19], but develops two or more
side peaks in DGs at low temperatures [20,21]. This behavior
can be quantitatively explained by the random bond–random
field (RBRF) model in the case of DGs [22], and by the
spherical random bond–random field (SRBRF) model for
relaxor ferroelectrics [23].

On the other hand, the actual probability distribution of
dielectric relaxation times f (log τ ), as extracted from the
complex permittivity by the Tikhonov regularization method
[24], shows a single-peak structure in DGs, whereas in relaxors
it develops a second peak at low temperatures [21,25,26]. This
suggests that the relaxation processes in relaxors may be more
complex than in DGs, as realized in the framework of the
extended polarizability model of ferroelectricity in perovskites
[27]. In this way the two-component relaxation can be related
to the flipping and breathing of the PNRs, corresponding to the
in-gap local modes and discrete breathers in the anharmonic
lattice model [28,29]. Recent neutron scattering experiments
on PMN with 30% PT (PMN-30PT) by Manley et al. [30] have
established the existence of in-gap localized phonon modes as
the origin of PNRs, thus confirming the predictions of the
lattice dynamical model of relaxors [27–29].

Both in DGs and relaxors [26], the longest relaxation time
diverges on approaching the freezing temperature T0 according
to the Vogel-Fulcher (VF) law, namely,

τ = τ0 exp[U/(T − T0)], for T > T0, (1)

and τ = ∞ for T � T0. This means that ergodicity is
effectively broken at T = T0 both in DGs and in relaxors,
although the relaxation mechanism in the two cases may
not be the same. The first application of Eq. (1) to relaxors
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was for the ceramic system PMN with 10% PT (PMN-10PT)
by Viehland et al. [31], who also discussed how the leading
edge of f (log τ ) extends towards macroscopic times as T0 is
approached from above.

It has also been found empirically that in relaxors a
macrosocpic ferroelectric domain state can be induced by ap-
plying a sufficiently large electric field, whereas in prototypical
DGs this could not be achieved [14,20,32]. It should also be
noted that in 1994 Dai et al. [33] studied the spontaneous
relaxor to normal ferroelectric transition in 12/40/60PLZT and
concluded that the relaxor state differs from a dipolar or spin
glass state in that at low temperatures the long-range ordered
state in a relaxor is thermodynamically achievable due to a
competition between short- and long-range order. The above
considerations suggest that the existence of PNRs in relaxors
might be instrumental for the appearance of a field-induced
long range ordered ferroelectric state, but not in DGs where
the response is due to uncorrelated single dipoles.

In the present paper, we formulate a quantitative thermo-
dynamic criterion in terms of a phenomenological Landau
model for the polarizable medium into which the elementary
dipolar entities in relaxors (i.e., PNRs) and in DGs (isolated
fixed-length dipoles) are embedded. Specifically, we will
show that the growth of PNRs in relaxors is due to a local
phase transformation occurring in the medium within a certain
correlation volume, which is a function of temperature and of
the applied field. On the other hand, in DGs the polarizability
of the medium does not allow a local phase transition into a
correlated polarization cloud to occur, and a different freezing
mechanism is needed.

II. MECHANISM OF GROWTH OF POLAR
NANOREGIONS

In the following we consider a typical perovskite relaxor
such as BZT. On a microscopic scale, three distinct types
of chemical regions can be identified, namely, those corre-
sponding to clusters of (i) barium titanate (BTO), (ii) barium
zirconate (BZO), and (iii) mixed BTO-BZO regions. In a
schematic picture, an isolated BTO region will be represented
by a spherically shaped PNR, which is embedded in a
polarizable dielectric medium, i.e., a BTO-BZO region. Let
us assume that the PNR is fully polarized inside a core radius
r0, but its dipolar density falls off with distance according to
the theory of diffusion-limited aggregation [34]. Thus at large
distances the density is expected to obey the universal power
law [34] P (r) ∼ r−α , and we can write

�P (r) = �P0

(
r0

r

)α

, for r > r0, (2)

and �P (r) = �P0 for r � r0. For illustration purposes, we will
choose in the following the trial value α = 3, which has been
found earlier to reproduce the empirically observed behavior
[35]. Also, we will consider only one polarization component,
say, P = Pz.

The Landau free energy density of the medium in the BTO-
BZO region at some distance r from the PNR center can be
written as

f = 1

2
ap2 + 1

4
bp4 + 1

6
cp6 + · · · − gpP − pE, (3)

where p is the polarization of the medium and g the coupling
[36] between p and the PNR polarization cloud P , and E is
the external field. We will assume that the PNR is oriented
along the direction of the field; however, it should be noted
that this assumption may be valid only for sufficiently strong
fields [9]. In general, the coefficients a,b,c, . . . ,g may depend
on the concentration x.

In a paraelectric medium, the first coefficient in Eq. (3) is
given by

a = T

�
, (4)

where � = �(x) is the Curie constant, and the coupling g is
essentially a local-field factor.

The equilibrium condition (∂f/∂p)T = 0 leads to the
relation

ap + bp3 + cp5 − h = 0, (5)

where we have introduced an effective field

h = gP (r) + E. (6)

Equation (5) can be solved numerically; however, only
those solutions that correspond to stable minima of Eq. (3)
are relevant. Therefore, to eliminate any unstable solutions,
p(h,T ) has been determined by direct numerical minimization
of the free energy (3).

The behavior of p(h,T ) will crucially depend on the sign
of the coefficient b. If b > 0, the solutions p(h,T ) simply
increase with h and decrease with T , as expected for a normal
paraelectric medium. On the other hand, for b < 0 and an
infinitesimally small value of h a jump in p(T ) occurs. This
corresponds to a local first-order field-induced phase transition
from a paraelectric to a ferroelectric state, in which the Ti
dipoles are correlated with the core of the PNR. The solutions
p(h,T ) for the case b < 0 are shown in Fig. 1 for b = −1/3,
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FIG. 1. (Color online) Polarization of the medium as a function
of effective field h/hcp for several values of temperature, calculated
by numerical minimization of the free energy. pcp, hcp, and Tcp

are values of polarization, field, and temperature at critical point,
respectively.
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c = +1/3, 0 � T/Tcp � 2, and h in the range 0 � h/hcp � 2,
where the scale parameters Tcp and hcp are specified below. As
h increases, the jump in p decreases, and eventually vanishes
at a critical point (cp), where the derivative (∂p/∂a)E diverges.
This is analogous to the occurrence of a critical point in normal
ferroelectrics as well as in relaxors [37–39]. The value of a at
the critical point is acp = 9b2/20c, corresponding to a critical
temperature Tcp = (9b2/20c)�, whereas the polarization pcp

and the field hcp are given by [37,39]

pcp =
(

3|b|
10c

)1/2

, hcp = 6b2

25c
pcp. (7)

For the above values of b and c we find pcp = 0.548 and
hcp = 0.0438. For T > Tcp and/or h > hcp the medium is in a
“supercritical” state, characterized by a continuous evolution
of p(h,T ), where the Ti dipoles are essentially uncorrelated
with the PNR core.

Since h depends on the distance r according to Eqs. (6) and
(2), we can define a correlation radius rc such that for r � rc

the Ti dipoles are part of the PNR, i.e., they remain correlated
with the PNR core, but for r > rc they are uncorrelated and
thus part of the paraelectric medium. Thus rc is a measure of
the size of the PNR. At a given temperature, rc corresponds
to the field h1(T ) at which the field-induced first-order phase
transformation into a polarized state occurs. From Eqs. (2) and
(6) we have the relation

gP0r
3
0 /r3

c + E = h1(T ). (8)

The function h1(T ) can be found numerically by determining
the value of h at which a jump of p appears for a given value
of T (see Fig. 2). It turns out that h1(t) can be rather well
approximated by a linear function

h1(T )/hcp
∼= κ0(T − Tm)/Tcp, for T > Tm, (9)

and h1 = 0 for 0 � T � Tm. For the above values of b and c

we find Tm/Tcp
∼= 0.418 and κ0

∼= 1.72.
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FIG. 2. (Color online) Relation between effective field h1 and
temperature T at first order phase transitions, evaluated numerically
from the positions of polarization jumps (see Fig. 1). CP: critical
point.

The corresponding correlation volume vc = 4πr3
c /3 can

now be written in the form

vc = v0
gP0

κ(T − Tm) − E
, (10)

where v0 = 4πr3
0 /3 is the core volume and κ = κ0hcp/Tcp. As

T approaches the value

Tm(E) = Tm + E/κ, (11)

the correlation volume formally diverges; physically this
means that a single PNR has reached the size of the system.
Thus Tm is just a symbolic minimum temperature and, as
discussed below, the relevant parameter limiting the growth of
PNRs is the volume fraction occupied by a cluster of PNRs,
which diverges in the percolation limit.

In principle, one can have rc > r0 only when the condition
T < Tcp is satisfied. Obviously, for T � Tcp the PNR volume
is limited by the core radius r0 and no growth can occur.

The above estimate for the size of a PNR is based on
the strong condition that a local phase transition into a field-
induced ferroelectric phase should occur at a given distance
(i.e., radius) from the PNR center. Such a transformation is
only possible when the Landau coefficient b of the medium is
negative. In general, we can distinguish between two cases: (i)
b < 0 corresponding to relaxors, where the growth of PNRs
is possible, and (ii) b > 0 representing any other systems,
tentatively the DGs, where the medium remains uncorrelated
with the isolated dipoles at all temperatures and fields. A
negative value of the coefficient b in relaxors is likely due to
the strong electrostrictive coupling between the polarization
and lattice strains [39].

III. PERCOLATION OF POLAR
NANOREGIONS IN RELAXORS

As the temperature is lowered or the electric field increased,
the volume of the PNRs increases according to Eq. (10) and
a connected polar cluster is gradually formed. The volume
fraction η occupied by the PNRs is given by the sum over all
correlation volumes vc divided by the total volume V , namely,

η = g[v0P0]av

κ(T − Tm) − E
, (12)

where the average is defined as the sum over all PNRs per
unit volume, i.e., [v0P0]av = ∑N

i vi
0P

i
0/V . Obviously, the

minimum value of η is ηmin = [v0]av; this corresponds to a
limiting temperature

T ∗(E) = Tm + g[v0P0]av

κ[v0]av

+ E/κ. (13)

The second term can be estimated as ∼ gP̄0/κ with P̄0 =∑N
i P i

0/N representing the average core polarization. Thus,
for T > T ∗(E), the medium is effectively uncorrelated with
the PNRs.

In general, at a given value of E the correlation exists for
Tm(E) < T < T ∗(E), as illustrated in Fig. 3. In this correlation
region the volume will increase with decreasing temperature
and when η reaches a threshold value ηp, the PNRs will form
an “infinite” percolation cluster. This occurs at a percolation
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FIG. 3. (Color online) Schematic presentation of the correlation
region between lines (a) and (c), and T < Tcp, E < Ecp . Shaded area:
cluster growth region. The lines are as follows: (a) T ∗(E), Eq. (13);
(b) Tp(E), Eq. (14); (c) Tm(E), Eq. (11). CP: critical point.

temperature

Tp(E) = Tm + g[v0P0]av

κηp

+ E/κ. (14)

The value of ηp is close to ηp ∼ 0.3 for a number of theoretical
models [35]. It was shown by Viehland et al. [40] that
quasielastic neutron scattering data for PMN-10PT reveal a
temperature dependent correlation length, which was found
to increase on lowering the temperature and saturate near the
freezing temperature. Subsequently, an analogous result was
reported by Jeong et al. [41] for PMN, where the mean cluster
volume was observed to saturate at a value η ∼ 0.3 at low
temperatures, in agreement with the above estimate for ηp

from percolation theory.
As η approaches ηp the mean cluster volume increases

according to the power law [42]

v = v̄0

(1 − η/ηp)γ
, (15)

where v̄0 = ∑N
i vi

0/N is the average core volume. The
exponent γ depends on the dimensionality and structure of
the lattice [9] and has the value γ = 1 for mean field systems
[42], which we adopt here. Since [v0]av � 1 and ηp ∼ 0.3, we
conclude that Tm(E) < Tp(E) < T ∗(E) (see Fig. 3).

The reorientation time for overturning a large magnetic
cluster, or in our case a percolation cluster of PNRs with
volume v, is given by the Néel formula [35,43]

τ = τ0 exp(vQan/kT ), (16)

where Qan is the anisotropy factor and τ0 the inverse
attempt frequency. Inserting v from Eq. (15) and using the
relations(14)–(16) we obtain after some rearranging the result:

τ = τ0 exp

{
w1

Qanv̄0

kT
+ w2

Qanv̄0

k[T − Tp(E)]

}
. (17)

Here we have introduced two weighting factors

w1 =
(

Em

Ep + Em

)
, w2 =

(
Ep

Ep + Em

)
, (18)

with Em ≡ E + κTm and Ep ≡ g[v0P0]av/ηp.
The exponent in Eq. (17) contains two terms as follows.

The first of these corresponds to a standard Arrhenius-type
relaxation process with a potential barrier U1 = w1Qanv̄0,
which exists even in zero field. The second process describes a
Vogel-Fulcher-type relaxation with a field-dependent VF tem-
perature T0(E) = Tp(E) and potential barrier U2 = w2Qanv̄0.

When the dipolar relaxation occurs in the presence of a bias
field E, the energy difference between the states parallel and
antiparallel to the field gives rise to an asymmetry parameter
A = pdipE, where pdip is the total dipole moment of the
system. Thus the dielectric relaxation time τd (E) acquires an
additional factor, i.e., τd (E) = τ/[2 cosh(A)] [44]; however,
the extra field dependence due to this factor is much weaker
than that of the singular VF term in the exponent of Eq. (17),
and can be ignored as T approaches Tp(E).

Note that at a fixed value of E the relaxation time for
the PNR cluster is given by Eq. (17), which is valid in the
temperature range Tp(E) < T < T ∗(E), i.e., in the cluster
growth region (see Fig. 3). When T � Tp(E), however,
Eq. (17) is not applicable and the corresponding relaxation
time for this relaxation channel is infinite. This simply means
that the percolating PNR cluster cannot rotate any more, but
some alternative relaxation processes may, of course, still
be active. On the other hand, for T > T ∗(E) the growth of
the correlation radius is not possible and some alternative
relaxation mechanism should be considered (see the following
section).

The electric-field dependence of the VF temperature T0 has
been studied experimentally in relaxor ferroelectric ceramics
9/65/35PLZT [45] and in PMN [111] single crystal [46].
In PLZT, at small field values a weak variation of the VF
temperature T0(E) with E was found, but for E > 4 kV/cm
a stronger increase with E was observed. The nonlinear E

dependence of TP (E) could be attributed to an extra field
dependence of the core polarization P0(E), which is related
to the nonlinear dielectric susceptibility χ3 [45]. Another
possibility is that in real systems the PNR polarization does not
align along the field unless the field exceeds a certain threshold
value Etr [9]. Thus it seems that, in PLZT, Etr ∼ 4 kV/cm,
but for E > Etr the relaxation time may increase faster than
linearly with E, in qualitative agreement with Eq. (14) (see
Fig. 4).

Earlier experiments in PMN-10PT ceramics [47] revealed
a field dependence of T0(E), which initially decreases with E

until a minimum at Emin ∼ 4 kV/cm is reached, and then starts
to increase faster than linearly, similar to the case of PLZT in
Fig. 4. Furthermore, the activation energy U was found to
increase slightly with the field until it reaches a maximum at
Emax ∼ 4 kV/cm, and then starts to decrease, in qualitative
agreement with Eq. (18) for w2, which yields an effective
activation energy Ueff = w2Qanv̄0.

Meanwhile, in single crystal PMN [111], T0(E) initially
decreases with E, reaches a minimum at Emin ∼ 5 kV/cm,
and finally recovers the original value T0(0) at E ∼ 7 kV/cm
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FIG. 4. (Color online) Experimental data for the electric-field
dependence of freezing temperature T0 in 9/65/35PLZT ceramics
(extracted from Ref. [45]). Inset: same for relaxor polymer P(VDF-
TrFE) [45].

[46]. It should be noted, however, that the critical field in PMN
[111] is of the order Ecp ∼ 3.5 kV/cm [48]; thus Emin > Ecp

and again Eq. (14) cannot be applied. Therefore, to explain
the unusual field dependence of T0(E) another mechanism of
relaxation should be considered. On the other hand, in PMN
[110] the critical field is much larger, ∼ 8 kV/cm, but the field
dependence of Tp(E) has not yet been determined. Clearly,
more experiments on different relaxor systems are needed in
order to test the predictions of the above theory.

In contrast to inorganic relaxors, the VF temperature T0(E)
in the organic relaxor copolymer P(VDF-TrFE) [45] was found
to be a decreasing function of E (see the inset of Fig. 4). This
was attributed to the sign of χ3, which implies a positive sign
of the bulk Landau coefficient b. However, as already stated
above, for b > 0 the percolation mechanism is not applicable.
Thus Eqs. (14) and (17) cannot be used to interpret the field
dependence of the VF temperature T0(E) in P(VDF-TrFE).

Monte Carlo simulations on the first-principles model of
BZT in a field [9] indicate that the strength of the percolation
cluster P∞ is nearly constant for fields below a threshold
value Etr , but starts to increase sharply for E > Etr . This
suggests that the behavior of Tp(E) in PLZT ceramics might
be analogous to that of P∞ in percolation theory.

IV. RELAXATION MECHANISM IN DIPOLAR GLASSES

As already stated in the Introduction, in DGs the polariza-
tion of the dielectric medium in which the individual dipole
moments are embedded is uncorrelated with the dipoles. Thus,
in contrast to relaxors, a ferroelectric phase cannot be induced
by applying an external electric field. In the framework of the
model discussed in Sec. II, this means that the fourth-order
Landau coefficient is positive, b > 0, and no field-induced
critical point exists.

It has been found experimentally in several DG systems that
the dielectric relaxation time also obeys the VF law (1) [1,2];
however, it is clear that the relaxation mechanism introduced
in Sec. II for the case of relaxors is inapplicable to DGs. A

possible alternative mechanism is based on the so-called co-
operative rearrangement of dipolar clusters [49]. The essential
idea is that the dipole moments can undergo a collective
rotation within the dielectric medium, which is analogous
to the collective motion of molecules in a supercooled
glass-forming liquid. The relaxation mechanism can then
be formulated in the framework of the Adams-Gibbs (AG)
molecular-kinetic theory [50]. The crucial quantity is the so-
called configurational or excess entropy Sex = Spara − Sferro,
i.e., the difference between the entropies of the paraelectric
and ferroelectric phase [49,51]. The relaxation time depends
on Sex according to the exponential relation [52]

τ = τ0 exp(A/T Sex), (19)

where A is a thermodynamic potential barrier.
The details of this mechanism have already been described

in several papers [49,51]; therefore, we only review here the
main ideas. The essential point is that as the temperature is
lowered, Sex tends to vanish at the Kauzmann temperature
TK [53]. Thus, for T < TK , Spara would become negative
(the “Kauzmann paradox”); however, the impending entropy
crisis is averted by the appearance of a frozen DG phase.
By assuming a hyperbolic temperature dependence of the
excess specific heat Cex = B/T [52] the excess entropy is
trivially obtained by integration, i.e., Sex = B(T − TK )/TKT .
Inserting this into Eq. (19) immediately leads to the VF
relaxation time (1) with U = ATK/B and T0 = TK .

An extension of the Adam-Gibbs theory to the case
including external electric fields acting on the dipole moments
has not yet been attempted. Thus, at this moment, we do not
have the means to compare the field-dependent relaxation time
for relaxors (17) with the corresponding expression for DGs.

V. CONCLUSIONS

Following the physical picture originally proposed by
Samara [1,2], we have formulated a mechanism of growth
and percolation of polar nanoregions (PNRs) in relaxor
ferroelectrics in the presence of an external electric field E,
which leads to a temperature and field dependent dielectric
relaxation time near the freezing transition. Here we have
applied a thermodynamic criterion for the correlation radius
of a PNR based on the Landau free energy of the medium in
which the PNRs are embedded. If the fourth-order anharmonic
Landau coefficient is negative, b < 0, the polarization of the
medium at a distance r from the PNR center undergoes
a transition into a field-induced ferroelectric state and thus
becomes correlated with the PNR.

The line of phase transitions in the E,T plane terminates at
a field-induced critical point, beyond which the correlations do
not exist. The volume fraction of the PNRs η increases as the
temperature is lowered or the field is increased until it reaches
the percolation limit ηp, where an infinite cluster of PNRs
is formed. The reorientation time τ of the inifinite cluster
obeys the Néel formula [43] for overturning large magnetic
clusters in rock magnets, which leads to a Vogel-Fulcher (VF)
type expression for τ with a field-dependent VF freezing
temperature T0(E,T ). In the percolation limit, T0(E,T ) is
predicted to increase quasi-linearly with E.
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We also discussed the freezing in dipolar glasses (DGs),
in which the elementary dipolar entities are believed to be
isolated electric dipoles rather than PNRs and a field-induced
ferroelectric state does not exist. In the above context, the
polarizable medium in DGs can be described by a Landau free
energy function with a positive value of the anharmonic coef-
ficient, i.e., b > 0. This may provide a simple thermodynamic
criterion for discriminating between relaxors (b < 0) and DGs
(b > 0).

The freezing mechanism in DGs has been described earlier
using the analogy with the Adam-Gibbs theory of glass
forming liquids [50] by introducing the concept of cooperative
rearrangement of dipolar clusters [49]. This approach again
leads to the VF-type expression for the relaxation time τ with

a VF temperature T0; however, it should be stressed that at
present this result is only applicable in the zero-field case.
Thus an extension of the Adam-Gibbs theory to nonzero fields
acting on the dipoles is clearly needed.
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[45] V. Bobnar, A. Eršte, X.-Z. Chen, C.-L. Jia, and Q.-D. Shen,

Phys. Rev. B 83, 132105 (2011).
[46] N. Novak, R. Pirc, and Z. Kutnjak, Ferroelectrics 426, 31 (2012).

184110-6

http://dx.doi.org/10.1088/0953-8984/15/9/202
http://dx.doi.org/10.1088/0953-8984/15/9/202
http://dx.doi.org/10.1088/0953-8984/15/9/202
http://dx.doi.org/10.1088/0953-8984/15/9/202
http://dx.doi.org/10.1143/JJAP.44.7046
http://dx.doi.org/10.1143/JJAP.44.7046
http://dx.doi.org/10.1143/JJAP.44.7046
http://dx.doi.org/10.1143/JJAP.44.7046
http://dx.doi.org/10.1557/mrs2008.42
http://dx.doi.org/10.1557/mrs2008.42
http://dx.doi.org/10.1557/mrs2008.42
http://dx.doi.org/10.1557/mrs2008.42
http://dx.doi.org/10.1126/science.1123811
http://dx.doi.org/10.1126/science.1123811
http://dx.doi.org/10.1126/science.1123811
http://dx.doi.org/10.1126/science.1123811
http://dx.doi.org/10.1063/1.4799283
http://dx.doi.org/10.1063/1.4799283
http://dx.doi.org/10.1063/1.4799283
http://dx.doi.org/10.1063/1.4799283
http://dx.doi.org/10.1111/j.1551-2916.2008.02442.x
http://dx.doi.org/10.1111/j.1551-2916.2008.02442.x
http://dx.doi.org/10.1111/j.1551-2916.2008.02442.x
http://dx.doi.org/10.1111/j.1551-2916.2008.02442.x
http://dx.doi.org/10.1103/PhysRevLett.108.257601
http://dx.doi.org/10.1103/PhysRevLett.108.257601
http://dx.doi.org/10.1103/PhysRevLett.108.257601
http://dx.doi.org/10.1103/PhysRevLett.108.257601
http://dx.doi.org/10.1103/PhysRevLett.110.207601
http://dx.doi.org/10.1103/PhysRevLett.110.207601
http://dx.doi.org/10.1103/PhysRevLett.110.207601
http://dx.doi.org/10.1103/PhysRevLett.110.207601
http://dx.doi.org/10.1103/PhysRevLett.111.247602
http://dx.doi.org/10.1103/PhysRevLett.111.247602
http://dx.doi.org/10.1103/PhysRevLett.111.247602
http://dx.doi.org/10.1103/PhysRevLett.111.247602
http://dx.doi.org/10.1103/PhysRevLett.111.227601
http://dx.doi.org/10.1103/PhysRevLett.111.227601
http://dx.doi.org/10.1103/PhysRevLett.111.227601
http://dx.doi.org/10.1103/PhysRevLett.111.227601
http://dx.doi.org/10.1063/1.4811089
http://dx.doi.org/10.1063/1.4811089
http://dx.doi.org/10.1063/1.4811089
http://dx.doi.org/10.1063/1.4811089
http://dx.doi.org/10.1080/00150193.2011.644168
http://dx.doi.org/10.1080/00150193.2011.644168
http://dx.doi.org/10.1080/00150193.2011.644168
http://dx.doi.org/10.1080/00150193.2011.644168
http://dx.doi.org/10.1103/PhysRevB.86.014106
http://dx.doi.org/10.1103/PhysRevB.86.014106
http://dx.doi.org/10.1103/PhysRevB.86.014106
http://dx.doi.org/10.1103/PhysRevB.86.014106
http://arxiv.org/abs/arXiv:1312.3131
http://dx.doi.org/10.1103/PhysRevB.78.064101
http://dx.doi.org/10.1103/PhysRevB.78.064101
http://dx.doi.org/10.1103/PhysRevB.78.064101
http://dx.doi.org/10.1103/PhysRevB.78.064101
http://dx.doi.org/10.1080/00150198708016945
http://dx.doi.org/10.1080/00150198708016945
http://dx.doi.org/10.1080/00150198708016945
http://dx.doi.org/10.1080/00150198708016945
http://dx.doi.org/10.1103/PhysRevLett.83.424
http://dx.doi.org/10.1103/PhysRevLett.83.424
http://dx.doi.org/10.1103/PhysRevLett.83.424
http://dx.doi.org/10.1103/PhysRevLett.83.424
http://dx.doi.org/10.1103/PhysRevLett.63.2248
http://dx.doi.org/10.1103/PhysRevLett.63.2248
http://dx.doi.org/10.1103/PhysRevLett.63.2248
http://dx.doi.org/10.1103/PhysRevLett.63.2248
http://dx.doi.org/10.1007/s10853-005-5914-8
http://dx.doi.org/10.1007/s10853-005-5914-8
http://dx.doi.org/10.1007/s10853-005-5914-8
http://dx.doi.org/10.1007/s10853-005-5914-8
http://dx.doi.org/10.1103/PhysRevB.36.8607
http://dx.doi.org/10.1103/PhysRevB.36.8607
http://dx.doi.org/10.1103/PhysRevB.36.8607
http://dx.doi.org/10.1103/PhysRevB.36.8607
http://dx.doi.org/10.1103/PhysRevB.60.13470
http://dx.doi.org/10.1103/PhysRevB.60.13470
http://dx.doi.org/10.1103/PhysRevB.60.13470
http://dx.doi.org/10.1103/PhysRevB.60.13470
http://dx.doi.org/10.1103/PhysRevB.83.184301
http://dx.doi.org/10.1103/PhysRevB.83.184301
http://dx.doi.org/10.1103/PhysRevB.83.184301
http://dx.doi.org/10.1103/PhysRevB.83.184301
http://dx.doi.org/10.1002/pssc.200982529
http://dx.doi.org/10.1002/pssc.200982529
http://dx.doi.org/10.1002/pssc.200982529
http://dx.doi.org/10.1002/pssc.200982529
http://dx.doi.org/10.1088/0953-8984/24/27/273202
http://dx.doi.org/10.1088/0953-8984/24/27/273202
http://dx.doi.org/10.1088/0953-8984/24/27/273202
http://dx.doi.org/10.1088/0953-8984/24/27/273202
http://dx.doi.org/10.1103/PhysRevB.81.064106
http://dx.doi.org/10.1103/PhysRevB.81.064106
http://dx.doi.org/10.1103/PhysRevB.81.064106
http://dx.doi.org/10.1103/PhysRevB.81.064106
http://dx.doi.org/10.1088/0953-8984/16/25/L02
http://dx.doi.org/10.1088/0953-8984/16/25/L02
http://dx.doi.org/10.1088/0953-8984/16/25/L02
http://dx.doi.org/10.1088/0953-8984/16/25/L02
http://dx.doi.org/10.1038/ncomms4683
http://dx.doi.org/10.1038/ncomms4683
http://dx.doi.org/10.1038/ncomms4683
http://dx.doi.org/10.1038/ncomms4683
http://dx.doi.org/10.1063/1.346425
http://dx.doi.org/10.1063/1.346425
http://dx.doi.org/10.1063/1.346425
http://dx.doi.org/10.1063/1.346425
http://dx.doi.org/10.1103/PhysRevB.57.11204
http://dx.doi.org/10.1103/PhysRevB.57.11204
http://dx.doi.org/10.1103/PhysRevB.57.11204
http://dx.doi.org/10.1103/PhysRevB.57.11204
http://dx.doi.org/10.1080/01418639408240192
http://dx.doi.org/10.1080/01418639408240192
http://dx.doi.org/10.1080/01418639408240192
http://dx.doi.org/10.1080/01418639408240192
http://dx.doi.org/10.1103/PhysRevLett.47.1400
http://dx.doi.org/10.1103/PhysRevLett.47.1400
http://dx.doi.org/10.1103/PhysRevLett.47.1400
http://dx.doi.org/10.1103/PhysRevLett.47.1400
http://dx.doi.org/10.1103/PhysRevB.76.020101
http://dx.doi.org/10.1103/PhysRevB.76.020101
http://dx.doi.org/10.1103/PhysRevB.76.020101
http://dx.doi.org/10.1103/PhysRevB.76.020101
http://dx.doi.org/10.1103/PhysRev.82.729
http://dx.doi.org/10.1103/PhysRev.82.729
http://dx.doi.org/10.1103/PhysRev.82.729
http://dx.doi.org/10.1103/PhysRev.82.729
http://dx.doi.org/10.1103/PhysRevB.76.104102
http://dx.doi.org/10.1103/PhysRevB.76.104102
http://dx.doi.org/10.1103/PhysRevB.76.104102
http://dx.doi.org/10.1103/PhysRevB.76.104102
http://dx.doi.org/10.1038/nature04854
http://dx.doi.org/10.1038/nature04854
http://dx.doi.org/10.1038/nature04854
http://dx.doi.org/10.1038/nature04854
http://dx.doi.org/10.1063/1.3650906
http://dx.doi.org/10.1063/1.3650906
http://dx.doi.org/10.1063/1.3650906
http://dx.doi.org/10.1063/1.3650906
http://dx.doi.org/10.1103/PhysRevB.43.8316
http://dx.doi.org/10.1103/PhysRevB.43.8316
http://dx.doi.org/10.1103/PhysRevB.43.8316
http://dx.doi.org/10.1103/PhysRevB.43.8316
http://dx.doi.org/10.1103/PhysRevLett.94.147602
http://dx.doi.org/10.1103/PhysRevLett.94.147602
http://dx.doi.org/10.1103/PhysRevLett.94.147602
http://dx.doi.org/10.1103/PhysRevLett.94.147602
http://dx.doi.org/10.1103/PhysRevE.54.5992
http://dx.doi.org/10.1103/PhysRevE.54.5992
http://dx.doi.org/10.1103/PhysRevE.54.5992
http://dx.doi.org/10.1103/PhysRevE.54.5992
http://dx.doi.org/10.1103/PhysRevE.54.6003
http://dx.doi.org/10.1103/PhysRevE.54.6003
http://dx.doi.org/10.1103/PhysRevE.54.6003
http://dx.doi.org/10.1063/1.3590147
http://dx.doi.org/10.1063/1.3590147
http://dx.doi.org/10.1063/1.3590147
http://dx.doi.org/10.1063/1.3590147
http://dx.doi.org/10.1103/PhysRevB.83.132105
http://dx.doi.org/10.1103/PhysRevB.83.132105
http://dx.doi.org/10.1103/PhysRevB.83.132105
http://dx.doi.org/10.1103/PhysRevB.83.132105
http://dx.doi.org/10.1080/00150193.2012.671094
http://dx.doi.org/10.1080/00150193.2012.671094
http://dx.doi.org/10.1080/00150193.2012.671094
http://dx.doi.org/10.1080/00150193.2012.671094


ELECTRIC-FIELD DEPENDENT FREEZING IN RELAXOR . . . PHYSICAL REVIEW B 89, 184110 (2014)

[47] D. Viehland, S. J. Jang, and L. E. Cross, J. Appl. Phys. 69, 414
(1991).

[48] Z. Kutnjak, B. Vodopivec, and R. Blinc, Phys. Rev. B 77, 054102
(2008).

[49] P. B. Ishai, C. E. M. de Oliveira, Y. Ryabov, Y. Feldman, and
A. J. Agranat, Phys. Rev. B 70, 132104 (2004).

[50] G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139
(1965).

[51] R. Pirc and R. Blinc, Ferroelectrics 379, 30 (2009).
[52] C. A. Angell, J. Res. Natl. Inst. Stand. Technol. 102, 171

(1997).
[53] W. Kauzmann, Chem. Rev. 43, 219 (1948).

184110-7

http://dx.doi.org/10.1063/1.347732
http://dx.doi.org/10.1063/1.347732
http://dx.doi.org/10.1063/1.347732
http://dx.doi.org/10.1063/1.347732
http://dx.doi.org/10.1103/PhysRevB.77.054102
http://dx.doi.org/10.1103/PhysRevB.77.054102
http://dx.doi.org/10.1103/PhysRevB.77.054102
http://dx.doi.org/10.1103/PhysRevB.77.054102
http://dx.doi.org/10.1103/PhysRevB.70.132104
http://dx.doi.org/10.1103/PhysRevB.70.132104
http://dx.doi.org/10.1103/PhysRevB.70.132104
http://dx.doi.org/10.1103/PhysRevB.70.132104
http://dx.doi.org/10.1063/1.1696442
http://dx.doi.org/10.1063/1.1696442
http://dx.doi.org/10.1063/1.1696442
http://dx.doi.org/10.1063/1.1696442
http://dx.doi.org/10.1080/00150190902847968
http://dx.doi.org/10.1080/00150190902847968
http://dx.doi.org/10.1080/00150190902847968
http://dx.doi.org/10.1080/00150190902847968
http://dx.doi.org/10.6028/jres.102.013
http://dx.doi.org/10.6028/jres.102.013
http://dx.doi.org/10.6028/jres.102.013
http://dx.doi.org/10.6028/jres.102.013
http://dx.doi.org/10.1021/cr60135a002
http://dx.doi.org/10.1021/cr60135a002
http://dx.doi.org/10.1021/cr60135a002
http://dx.doi.org/10.1021/cr60135a002



