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Shear shuffling governs plastic flow in nanocrystalline metals:
An analysis of thermal activation parameters
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From strain-rate- and temperature-dependent deformation studies on nanocrystalline PdAu alloys with grain
sizes �10 nm, the shear activation volume (6 b3), strain-rate sensitivity (0.03), as well as the Helmholtz (0.9 eV)
and Gibbs free energy of activation (�G = 0.2 eV) have been extracted. The close similarity to values found
for metallic glasses indicates that grain boundary mediated shear shuffling dominates plasticity at the low end
of the nanoscale. More fundamentally, we find that the energy barrier height exhibits universal scaling behavior
�G ∝ �τ 3/2, where �τ is a residual load, giving rise to a generalization of the Johnson-Samwer T 2/3 scaling
law of yielding in metallic glasses.
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I. INTRODUCTION

The good tensile ductility of conventional fcc polycrys-
talline metals relies on two essentials: presence and stress-
induced multiplication of dislocations, which act as flow defect
and propagate strain, in conjunction with the capability of
strain or work hardening, which is basically due to intraplane
dislocation interactions and self-organized dislocation-cell-
structure formation [1]. By contrast, in metallic glasses, dislo-
cations are configurationally unstable and are consequently not
available as carriers of strain. The missing long-range atomic
order in metallic glasses favors the emergence of incipiently
localized shear transformations (STs) upon loading [2]. The
concomitant shuffling or flipping of groups of atoms manifests
as a flow defect, thus playing the same role as dislocations do
in crystalline environments. With increasing applied load, STs
typically self-organize in the form of shear bands, regions
of high strain localization, which upon further increasing
stress propagate through the material to eventually lead to
catastrophic failure [3].

With regard to nanocrystalline (NC) metals [4], it is obvious
that none of these limiting cases applies. Clearly, the plasticity
of NC metals involves a much higher degree of complexity
for the following reasons: Since the volume fraction of grain
boundaries (GBs) scales with the reciprocal grain size, the
abundance of GBs at the nanometer scale supplies barriers for
intergranular slip transfer, and the nanometer-sized grains en-
tail a reduced capacity of dislocation generation and intraplane
dislocation interaction even at the upper limit of the nanometer
scale of ≈100 nm. As a consequence, higher strength, lower
activation volume, and higher strain-rate sensitivity have been
observed [5,6]. Upon decreasing the grain size to the lower
end of the nanoscale �10 nm, it is expected that intragranular
crystal plasticity is largely replaced by intergranular plasticity,
deformation processes that essentially emerge in the core
regions of GBs [7,8]. Computer simulations and experiments
unraveled a variety of modes of plastic deformation related
to GBs. So far the following processes have been identified:
GB slip and sliding [9–11], stress-driven GB migration
coupled to shear deformation and grain rotation [12–14],
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as well as shear shuffling (ST) mediated plasticity [15,16],
here operating in the confined space set up by the core
region of GBs. Moreover, GB ledges and triple junction
lines, locations where typically three GBs meet, act as stress
concentrators [17,18], thereby effectively reducing the barrier
for partial dislocation nucleation and emission. One of the
intriguing aspects here is that in NC metals plastic deformation
requires that those mechanisms operate together in the sense
that deformation but also accommodation processes must at
least partly coexist in order to make deformation happen in a
compatible manner, thus avoiding brittle fracture and enabling
substantial deformability.

Therefore, one of the central remaining issues is to identify
the relative importance of the variety of possible inter- and
intragrain deformation modes and assign and quantify in which
manner the relevant modes contribute with rising stress to
overall strain. It is the aim of this work to deduce principal
activation parameters for plasticity from experiment and to
analyze these parameters to enable discriminating between the
dominating mechanism(s) and the just possible mechanisms,
here for NC Pd90Au10 in the limiting case of D � 10 nm.

The activation parameters [1] that are most informative
for probing the mechanism(s) of thermally activated plasticity
include: first of all, the Gibbs free energy of activation �G∗,
which at low temperature T , where entropic effects play a
minor role, can be approximated by the enthalpy of activation
�H ∗. In transition state theory [20], the free-energy difference
between the initial state (i) and the saddle-point configuration
(s) is usually denoted by Q having the connotation of
an activation free energy and thus �G∗ ≡ Q. Secondly,
there is the shear activation volume �v∗

τ as well as the
phenomenological strain-rate sensitivity m, and thirdly, the
activation dilatation �v∗

P , which is particularly sensitive to the
dependence of yield stress on hydrostatic pressure. The full set
of activation parameters allows one to identify, discriminate,
and/or obtain information about the relative importance of
thermally activated deformation mechanisms. We concentrate
in this study on the shear activation volume �v∗

τ , strain-rate
sensitivity m, and the Gibbs free energy of activation �G∗.
All of them are extracted for NC Pd90Au10 in the limiting case
of D � 10 nm; results on the activation dilatation �v∗

P will be
communicated in a forthcoming report.
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II. SPECIMEN PREPARATION AND MECHANICAL
TESTING

NC Pd90Au10 specimens with average grain sizes D �
10 nm were prepared by inert gas condensation and subsequent
consolidation [4]. The microstructure of these so-prepared
samples is characterized by a log-normal grain size distri-
bution [21], a random texture [22], and a GB-misorientation
distribution that resembles the random MacKenzie distri-
bution [23]. It is dominated by high-angle GBs, which is
also reflected by the area-weighted average GB energy of
NC Pd γA ≈ 0.8 J/m2 obtained from calorimetry [24]. For
mechanical testing, miniaturized shear-compression speci-
mens (SCSs) [25] were cut from as-prepared disk-shaped
samples. Tests were carried out at room temperature and
at 77 K. Regarding sample preparation, mechanical testing,
and data reduction, all relevant details and graphs can be
found in [19,26]. To get rid of corrections for machine
stiffness, etc., we meanwhile improved the accuracy of the
displacement measurement by utilizing a high-resolution op-
tical setup consisting of a Zeiss SteReo Discovery V12 optical
microscope (ca. 100 × magnification) and a HighSpeedStar
3G CMOS camera capable of recording up to 1000 images
per second at 1 MP resolution. The recorded images were
processed by digital image correlation using the software
package LAVISION DAVIS 7.2 to deduce sample displacement.
Von Mises equivalent stress and strain values are computed by
the finite element method (FEM) using ABAQUS [26]. In Fig.
1(a), we display the so-obtained stress-strain curves reflecting a
slope of 105 GPa in the elastic regime that is in good agreement
with the high-frequency Young’s modulus of 110 GPa deduced
from ultrasound measurements [27].

III. SHEAR ACTIVATION VOLUME: CONCEPT AND
DETERMINATION

We first analyze how the measured or effective shear
activation volume �veff is related to experimentally accessible

quantities (applied stress and strain rate). We start with the
definition of the shear activation volume �v∗

τa
that is assumed

to be associated with a unique deformation mechanism [1] and
given as

�v∗
τa

= −∂�G∗(τa,τ̂ )

∂τa

∣∣∣∣
T ,P

, (1)

where �G∗ must be supplied by thermal fluctuations at
constant applied stress τa , pressure P , and temperature T to
reach a saddle-point configuration of the shear barrier and thus
cause an activated process to take place. The shear resistance
τ is a material property and is defined as τ = V −1 ∂F/∂γ ,
where γ denotes the shear strain, V is the volume of the
system, and F is the Helmholtz potential. In particular, τ̂ is the
athermal (rate-independent) threshold stress characterizing the
maximum level of shear resistance as T → 0. The following
identity holds for the Helmholtz free energy of activation:
�F ∗ = �G∗ + �W ∗, where �W ∗ = V τa �γc denotes the
external mechanical work supplied during activation, and �γc

is the activation strain related to localized inelastic shear
events with �γc = γs − γi . We note that �v∗

τa
is an apparent

activation volume that is given to first order by �v∗
τa

= ��γc,
where � is the true volume of a cluster of atoms that has been
involved in a local shear event. For applied stresses close to
τ̂ , where the reverse rate of deformation can be neglected, the
inelastic net strain rate γ̇p [1] is given by

γ̇p = γ̇0 exp[−�G∗(τa,τ̂ )/kT ], (2)

and the preexponential factor γ̇0 represents a reference
strain rate. It essentially depends on the volume fraction
of fertile sites that trigger configurational transformations,
the unconstrained transformation shear strain, and a normal
mode frequency of atom clusters of size � taking part in
configurational changes along the activation path. Usually, γ̇0

is considered constant, an assumption we also made for the
sake of feasibility when deriving Eq. (3) in the next paragraph.
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FIG. 1. (a) Room temperature stress-strain curves of NC Pd90Au10 (D ≈ 10 nm) deformed under dominant shear at strain rates ε̇a between
3 × 10−4 s−1 and 3 × 10−1 s−1. The gray markers indicate the strains corresponding to the deviation from linear elasticity (εm) and the onset
of yielding (εy), respectively; the range between εm and εy is usually termed the microplastic regime (for more details, see [19]). (b) Effective
activation volume �veff and strain-rate sensitivity m of NC Pd90Au10 as a function of plastic strain εp . Error bars are shown for every 20th data
point.
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This assumption may fail, however, when the preexponential
term becomes stress-dependent. In such a scenario, we expect
(a) stress-dependent correction term(s) to γ̇0 that sensitively
depend(s) on the deformation mechanism(s) and atomistic and
microstructural details of the material. As a consequence, �v∗

τa

will also change its behavior.
With the continuum theory of plasticity, we find the kinetic

shear rate γ̇p related to the tensile strain rate ε̇p by γ̇p = √
3ε̇p,

and the analog regarding shear and tensile stress reads τa =
σa/

√
3 [1]. Solving Eq. (2) for �G∗ and substituting γ̇p by ε̇p,

we derive from Eq. (1)

�v∗
τa

=
√

3kT

(
∂ ln ε̇p

∂σa

)∣∣∣∣
T ,P,εp

, (3)

where ε̇p is related to the prescribed strain rate ε̇a by ε̇p/ε̇a =
(1 − 	/C), where 	 is the tangent modulus and C denotes
the effective Young’s modulus given by the slope of the linear
part of the applied stress-strain curve [19,28]. Clearly, the
applied stress σa is a function of the applied strain and strain
rate σa = σa(εa,ε̇a), and since the concept of shear activation
volume is related to inelastic deformation, it follows that �v∗

τa

has to be determined at a given plastic strain εp. We would
like to point out here that values of �v∗

τa
derived according

to Eq. (3) from experimental data have to be interpreted as
effective shear activation volume �v∗,eff

τa
since it is a priori

not known which mechanisms contribute in which manner to
overall deformation. In the following, we use the short notation
�v∗,eff

τa
≡ �veff . The phenomenological strain-rate sensitivity

m is defined as m = (∂ ln σa/∂ ln ε̇a)|T ,P,εa
and also has the

character of an effective quantity.

IV. SHEAR ACTIVATION VOLUME: RESULTS AND
DISCUSSION

The evolution of �veff as a function of plastic strain is
displayed in Fig. 1(b); we note that values for �veff are larger
by a factor of

√
3 than the ones given in [19], where tensile

stress has been used in the definition rather than shear stress.
The evolution of the strain-rate sensitivity m is also shown
in Fig. 1(b); we take m at fixed values εp to allow direct
comparison with �veff .

Fundamentally, the activation volume for crystalline metals
is bounded by ≈103 b3 (≈2 × 101 nm3) when forest disloca-
tion cutting dominates plasticity [29] and on the lower end
by ≈0.02–0.1 b3 [≈(2 × 10−3)–(4 × 10−4) nm3], which is
indicative of creep processes [30]. They are based on point-
defect migration and essentially constitute deformation modes
such as Nabarro-Herring [31] and Coble [32] diffusion creep,
usually manifesting the concomitant phenomenon of GB
sliding [33]. Based on the magnitude of �veff ≈ 6 b3 extracted
for NC Pd90Au10, it can be concluded that intragranular lattice
dislocation activity and creep processes can be ruled out as
contributing in an appreciable manner to strain propagation
by virtue of a discrepancy in magnitude of their respective
�v∗

τa
values. This view is also supported by the values

found for m, which are more than a magnitude smaller than
typical values for Coble creep (m ≈ 1.0) [32] and GB sliding
(m � 0.3) [33,34].

There is a misuse of nomenclature in the pertinent literature
dealing with nanoplasticity through associating GB-mediated

deformation with GB sliding. Originally, the term GB sliding
was introduced to denote the rigid body translation of abutting
crystallites along a shared interface that produces offsets in
marker lines at the GBs. There are two different modes of GB
sliding: Rachinger sliding [35], which must be accommodated
by intragranular dislocation glide and climb, and Lifshitz
sliding [36], which is based on stress-directed diffusion of
vacancies and is self-accommodating. Since both types of GB
sliding occur under creep conditions, they are observed at
elevated temperatures, and not until a crossover temperature
of ≈0.5Tm has been reached [12]. Moreover, as it is nearly
impossible to experimentally identify and quantify GB sliding
in nanoscale microstructures or discriminate the so-called GB
sliding from the evolution of shear transformations (STs) and
successive avalanches of STs [37–40], we decided to refer
in the following to the more general concept of ST-mediated
plasticity [41], which bears a resemblance to events of self-
organized criticality [42], but may also lead to marker line
shifts at GBs without requiring creep conditions.

Quite generally, we may argue that the high stress levels
present in our experiment at room temperature suggest that
shear mechanisms should almost instantly overtake processes
of diffusional matter transport. As a result, likely mechanisms
that may be incorporated in �veff are related to partial
dislocation activity (PDA) involving nucleation and glide,
shear-stress driven GB migration (SDGBM) including grain
rotation and generation of shear strain, as well as ST-mediated
plasticity. In the following paragraph, we discuss how �veff
can be decomposed into contributions related to the above-
mentioned mechanisms.

Assuming additivity of strains resulting from the PDA,
SDGBM, and ST mechanisms, we can write for the effective
plastic strain rate, γ̇eff ,

γ̇eff = γ̇PDA + γ̇SDGBM + γ̇ST. (4)

Rewriting Eq. (3) as �veff = kT (∂ ln γ̇eff/∂τa), substituting
γ̇eff by Eq. (4), and using Eq. (2), it is straightforward to derive

�veff =
∑

i

(
γ̇i

γ̇eff

)
�v∗

i , (5)

where the summation runs over i = PDA, SDGBM, and ST.
The expression in the parentheses obeying

∑
i(γ̇i/γ̇eff) = 1

emerges as the shares of the different mechanisms to overall
deformation. In what follows, we argue that the share of
SDGBM to overall strain plays a minor role, and as a result
Eq. (5) can be simplified.

To identify and characterize SDGBM that may occur during
deformation, we applied focused ion beam (FIB) to prepare
thin lamella from the undeformed part of the specimen and
the gauge section having experienced 30% plastic strain. We
then took transmission electron microscopy (TEM) dark field
images that have been analyzed in terms of size histograms,
which are shown in Fig. 2. The shift of the median D0 from
10.5 to 15.5 nm clearly indicates that SDGBM took place
during deformation. Referring to a simple model shown in
Fig. 2(c), we estimate the share of SDGBM to overall strain.

The shear strain γSDGBM induced through the migration
of GBs in response to the applied shear stress τ is given by
γSDGBM = �x/3D. Using an average coupling factor of 〈β〉 ≈
0.3 [43] to describe the ratio of migration of both boundaries
parallel (v||) and perpendicular (v⊥) to the applied stress, we
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(a) (b) (c)

FIG. 2. (a) Grain-size distribution of undeformed NC Pd90Au10 derived from TEM dark field images. The solid line is a log-normal fit to
the histogram with width σ , median D0, and N denotes the number of counted grains. (b) Grain-size distribution after deformation to 30%
plastic strain. (c) Sketch of a three-grain column where the middle grain exhibits stress-driven GB migration in response to τ . For more details,
see the text.

find γSDGBM = β�D/3D ≈ 0.05, where �D is set equivalent
to the increase of the median �D0 = 5 nm. With ε = γ /

√
3,

SDGBM contributes 2.8% plastic strain or roughly 1/10th to
the overall deformation at 30% plastic strain.

For the sake of simplicity, we neglect the SDGBM contribu-
tion in Eq. (5). With the value �veff ≈ 6 b3 determined for NC
Pd90Au10, the theoretical value for �v∗

PDA|10 nm ≈ 10 b3 [17],
and �v∗

ST ≈ 5 b3 derived from experiment [44,45], we find
( γ̇ST

γ̇eff
) ≈ 4 ( γ̇PDA

γ̇eff
), thus suggesting that ST-mediated plasticity

dominantly contributes to overall strain. At first glance, this
result seems to be in contradiction to the usual assumption that
PDA-based deformation controls the overall deformation be-
havior of NC metals even below 20 nm grain size. This conflict
can be reconciled by noting a recent work on texture formation
that is capable of accumulating and storing information of
subtle changes in microstructure due to dislocation-based
plasticity. Studying texture formation in NC Pd90Au10 induced
by high-pressure torsion, Skrotzki et al. [46] find that for
grain sizes below 20 nm and applied strains up to γ ≈ 1, any
texture formation is missing. Moreover, they observed that
twinning and stacking fault formation is basically absent, and
it is argued that due to the extremely low remnant dislocation
density in individual nanograins, cross-slip and recovery by
edge dislocation climb is unlikely. At strains γ > 1, texture
formation starts evolving and originates mainly from slip of
1/6〈112〉 partial dislocations that are nucleated from GBs and
glide on {111} planes. Since our experiments entail strains
γ � 0.4, it appears safe to follow our assertion of negligible
strain contribution of dislocation activity to overall strain. In
the following, we are going to scrutinize our conjecture of
dominating ST-mediated plasticity by determining activation
energies, �Geff and �Feff , and comparing them with available
data for metallic glasses.

V. ACTIVATION ENERGY: CONCEPT AND
DETERMINATION

Before discussing experimental details, we first look into
how �Geff relates to the activation energies of the involved

mechanisms. Since the form of Eq. (2) applies to the effective
activation energy �Geff as well as to the specific activation
energies �G∗

i of possible mechanisms, it follows from
combining Eqs. (2) and (4) that

�Geff = −kT ln

[ ∑
i

(
γ̇0i

γ̇0,eff

)
exp

(−�G∗
i

kT

)]
. (6)

In contrast to �veff , which entails a weighted linear super-
position of the possible mechanisms [Eq. (5)], the effective
activation energy �Geff is given as the logarithm of the sum
of exponential terms. Even for small differences in the �G∗

i

terms of conceivable mechanisms, it is evident that at room
temperature the smallest value of �G∗

i ≈ �Geff . We anticipate
that the value �Geff derived from experiment should agree
with some characteristic value �G∗

i obtained for ST-based
plasticity in metallic glasses.

A supposition made here is that ST-mediated plasticity
can take place in an unconstrained manner so that coupling
to, e.g., accommodation modes having significantly higher
�G∗

i values is missing. In fact, the argument that the minimal
�G∗

i approximates the measured �Geff presumes undisturbed
superposition of deformation modes making up for the overall
strain. From a mechanistic point of view, it is implied that
the contiguous network of GBs, the core regions of which
are characterized by atomic mismatch associated with excess
volume [47,48], offers a plethora of fertile sites, particularly at
the low end of the nanoscale. They are predestined to trigger
local shear events, most notably since the shear stiffness in
those core regions is reduced by about 30% compared to the
abutting crystal lattices [27], and so the overall deformation
may evolve without requiring any significant deformation
share originating from generation of intracrystalline strain
increments.

For determination of �Geff , we refer to Eq. (2) to find
�Geff(τ̂ ,τa) = kT [ln(γ̇0,eff/γ̇eff)]. Experimentally, we have
direct access to σa = σa(T ,ε̇p,eff ≡ ε̇eff) and using continuum
plasticity also to τa = τa(T ,γ̇eff). Extracting values for �Geff ,
therefore, requires us to express how �Geff depends explicitly
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FIG. 3. Gibbs activation enthalpies of NC Pd90Au10 plotted as
a function of applied stress σa . The shown data represent the
dependency of �G on applied strain rate at room temperature [Fig.
1(a)] and 77 K [19]. The full line is a fit of Eq. (7) to the data
(continuum theory of plasticity [1]: τ = σ/

√
3).

on τ̂ ,τa . At stresses in the vicinity of τ̂ (this case), theory
predicts [49,50] that the thermal fluctuation energy for acti-
vation of a local shear event has the form of a power law
�Geff = C(τ̂ − τa)n , where C is a constant and the exponent
may assume values of n = 3/2 or 2. When τa → τ̂ , it follows
that �Geff(τ̂ ,τa) → 0, which describes the transition from
thermally activated to athermal deformation. In this case, the
initial state and the saddle-point configuration of the shear
barrier merge, thus implying that �veff → 0 with τa → τ̂ . In
other words, �Geff(τ̂ ,τa) must approach zero value at τa = τ̂

with zero slope and necessarily n > 1. It is straightforward to
express the power law in the form

�Geff = �F0 [1 − (τa/τ̂ )]n, (7)

where �F0 is the Helmholtz potential energy barrier at zero
stress, which is a material property [51,52] for a given de-
formation mechanism. Using continuum plasticity, we derive
σa = σ̂ [1 − (�Geff/�F0)1/n] with �Geff = kT ln(ε̇0,eff /ε̇eff).
The value of ε̇0,eff is a priori unknown, however the latter
equation stipulates that a continuous and unique curve must
exist for data points when σa is plotted versus �Geff . The
central task is to find an optimum value(s) for ε̇0,eff that fulfills
this requirement within the lowest scatter of data points [53].
In Fig. 3, we display the so-obtained data points for �Geff(σa)
over a broad range of experimentally accessible stress values.

VI. ACTIVATION ENERGY: RESULTS AND DISCUSSION

To extract values for the yet unknown parameters σ̂ , �F0,
and n, we performed a least-squares fit to the full set of data
points using Eq. (7). Assuming a fixed exponent n = 3/2, we
find for the free parameters �F0 = 1.04 eV and σ̂ = 2.1 GPa.
The fit based on these values is shown as a full line in Fig. 3.
Treating �F0, σ̂ , as well as n as free parameters, we find that
the exponent n depends sensitively on small variations δσ̂ of
the order of 0.05 GPa. However, we can independently estimate
σ̂ by arguing that the strain-rate-dependent onset stress of
inelastic deformation should approximate σ̂ when 1/ε̇a → 0.
Thus using the experimentally extracted value ε̇0,eff = 108 s−1
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FIG. 4. Average effective activation energies 〈�Geff〉, 〈�Weff〉,
and 〈�Feff〉 as a function of plastic strain. 〈�Geff〉 (black dots) is
taken to be the arithmetic mean of the energies �Geff (ε̇a), where the
open triangles are associated with the applied minimal and maximal
strain rates.

at the onset of inelastic deformation as an upper bound for ε̇a ,
we find σ̂ = 2.05 GPa by linear extrapolation. A least-squares
fit to the data points in Fig. 3 based on Eq. (7) now with
�F0 and n as free parameters and fixed σ̂ = 2.05 GPa yields
�F0 = 1.0 eV and n = 1.4. The good agreement between
both approaches makes us feel confident that the extracted
parameter values are meaningful. We come back to a physical
interpretation of the n = 3/2 power-law behavior [Eq. (7)] in a
later paragraph, but now we concentrate on activation energies.

Since �Geff depends on ε̇eff and σa is related to εp,eff ≡ εp

via the stress-strain curve, we display how �Geff varies with
εp and ε̇eff in Fig. 4. To compare with literature data, we also
compute �Feff = �Geff + �Weff , where the mechanical work
done by the external agency is defined as �W = V τa�γ .
It is plausible to substitute V �γ by the local quantities
of the flow defect ��γc = �veff , thus obtaining �Feff =
�Geff + (σa/

√
3) �veff(εp), which is, together with �Weff ,

also shown in Fig. 4. In the regime of microplasticity, it
is clearly reflected how increasing mechanical work reduces
�Geff to then reach a nearly plateau behavior for macroscopic
plastic flow, which is characterized by �Geff ≈ 0.15 eV and
�Feff ≈ 0.9 eV. It emerges that �Feff|εp=0 = 0.78 eV is
smaller than �F0, extracted from the fit in Fig. 3, indicating
the expected Helmholtz potential difference between the initial
stress-free state and the still stable but stressed state at εp = 0.
We now compare this data set with data obtained for inelastic
deformation of metallic glasses.

Studying yielding and plastic flow of a Zr-based metallic
glass [54], it has been argued that the activation of STs is
the rate-limiting step of thermally activated shear-band prop-
agation at a macroscopic scale. Hence temperature-dependent
shear displacement jump velocity measurements have been
performed to deduce an activation energy of �G∗ = 0.32 eV.

The investigation of room-temperature anelastic relaxation
behavior has been exploited to characterize the properties of
STs in Al-rich metallic glasses [45]. An activation energy
distribution of 0.85 < �F ∗

m < 1.26 eV has been extracted,
where the index m relates to the number of atoms involved in
a cluster undergoing a ST. It has been estimated that the size
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of these ST events, �, entails between 15 and 20 atoms. This
result is based on the reasonable assumption �γ ∗

c ≈ 0.2 [1,45].
Dividing our experimentally determined �veff by 0.2, we find
a remarkably similar � ≈ 32 atoms in NC Pd90Au10.

Atomic-scale simulations have been used to study the
plastic event distributions in the plastic flow state of a Lennard-
Jones CuZr metallic glass [55]. By exploring the potential
energy landscape, the activation energy spectrum has been
derived from unloading at different shear stress levels. In the
limit of high stresses, the most probable activated states are
characterized by an activation energy (not further specified)
of 0.35 eV, and the spectrum of energies between 0.05 and
0.35 eV is populated with a frequency that is reduced by a
third compared to the most probable state.

Molecular-dynamics (MD) simulations based on a highly
realistic embedded atom method (EAM) potential for a CuTi
model glass were carried out to study the highly localized as
well as spatial and temporal heterogeneous flow occurring in
STs to find a minimal activation energy of �G∗ ≈ 0.35 eV
for viscous flow of successive shear events involving ≈ 140
atoms [56].

Overall, there is a reasonable agreement between activation
energies reported in the pertinent literature and the values
found in this study, particularly for the onset of macroyielding
that occurs at εp ≈ 3%. For the Al-rich glass, there is even
a surprisingly good accordance between both the activated
cluster size and the Helmholtz activation energy. The overall
slightly smaller values of activation energies of NC Pd90Au10
may reflect the fact that transient dilatancy going along
with STs is easier to accomplish in GBs due to preexisting
enhanced free volume stored in the GB core regions (GB
excess volume) [47,48].

On the basis of this evidence, it is suggested that ST-
mediated deformation dominates the plastic flow of NC
Pd90Au10 with an average grain size of ≈ 10 nm. We note
that the shear modulus of GBs in NC metals is reduced by
about 30% compared to the respective bulk value [27], and
therefore local shear shuffling is predestined to take place in
the contiguous network of GBs. Since we have estimated the
size of an ST to � ≈ 32 atoms in Pd90Au10, it is implied, based
on the structural (or polyhedral) unit model of GBs [57], that
two or three structural units are involved in the rearrangements
of a ST. Those structural units carry different amounts of excess
volume depending on the degree of local misfit and therefore
may act as fertile sites that trigger the ST. Moreover, the various
structural units formed in relaxed GBs resemble the polyhedral
building blocks of the liquid structure [58–60].

In contrast to metallic glasses, the topology and con-
nectivity of the areal defects (GBs) in NC metals seem to
avoid macroscopic shear band formation, which would give
rise to stick-slip dynamics, which is clearly not observed.
Mechanistically, the self-organized arrangement of STs to
form a shear band seems to be effectively impeded in
NC metals through possible local bifurcation instabilities at
triple junctions, which in turn inhibit strain localization and
catastrophic failure.

VII. UNIVERSAL SCALING

Finally, we come back to the experimentally extracted stress
exponent n = 3/2 of the stress dependence of activation en-
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a( p = 0.01)
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FIG. 5. (1 − σa/σ̂ )3/2 as a function of ε̇p. To allow for easy
reconstruction of the actual ε̇p values, a log10 scale is used here,
rather than the natural logarithm demanded in Eq. (8).

ergy. It is given by the power law �Geff = �F0 [1 − (τa/τ̂ )]3/2

[Eq. (7)]. This barrier height scaling has been shown to be
universal for many driven systems, including flowing liquids,
mechanically deformed glasses, and stretched proteins [40].
Inserting Eq. (7) into Eq. (2) and setting T0 = �F0/kB , we
find

τa/τ̂ = 1 − [ln(γ̇0/γ̇p)]2/3 [T/T0]2/3, (8)

a temperature dependence of stress that agrees with the
universal T 2/3 temperature dependence of plastic yielding in
metallic glasses proposed by Johnson and Samwer [61,62].
Verification of this temperature dependence for NC Pd90Au10

is a subject of ongoing work. Nevertheless, it becomes evident
that the [ln(γ̇0/γ̇p)]2/3 term is not a negligibly small correction
term as estimated for metallic glasses at T < Tg , where
Tg is the glass-transition temperature [61]. Assuming fixed
temperature (RT) and inverting the power law [Eq. (8)], it is
predicted that (1 − σa/σ̂ )3/2 scales as ln ε̇p. In Fig. 5, we show
that our experimental data obey the predicted scaling behavior
even in the entire microplastic regime. Assuming that each ST
is governed by the crossing of a saddle-node bifurcation where
the energy barrier assumes the universal scaling form, �G ∝
(1 − τa/τ̂ )3/2, Chattoraj et al. [63] found similar results in
two-dimensional Lenard-Jones glasses. Overall, it seems self-
evident to presume that our finding manifests a generalization
of the Johnson-Samwer expression τy/G = a − b(T/Tg)2/3,
where a,b are constants [61]. Finally we remark that the
observed scaling behavior, covering the entire microplastic
regime, suggests that the material response is characteristic
of nonlinear viscous behavior, also seen in metallic glasses at
temperatures T > 0.6Tg [64,65]. The connotation of strain or
work hardening taking place in NC metals in the microplastic
regime seems, therefore, to be misleading.

VIII. CONCLUSION

In summary, we conclude that shear transformations [2]
dominate the plastic deformation of NC Pd90Au10 at the low
end of the nanoscale (�10 nm). Intragranular plasticity based
on dislocation glide seems to play a minor role. Likewise,
stress-driven grain boundary migration contributes a share
of approximately 10% shear strain to overall strain. Since
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shear transformations are considered to be the generic flow
defect in metallic glasses, it seems reasonable to suppose
that the atomic site mismatch (disorder) and the concomitant
excess volume in the core regions of grain boundaries provoke
the occurrence of shear transformations. We do not stipulate
that grain boundaries are structurally—in terms of atomic
short- and midrange order—equivalent to metallic glasses. Our
conclusion is based on a detailed analysis of thermal activation
parameters (activation volume, strain-rate sensitivity, and
activation energy) suggesting that grain boundaries can mimic
shear deformation behavior as observed in metallic glasses
without exhibiting stick-slip behavior and catastrophic failure
through running away shear bands. By analyzing the stress
dependence of activation energy, we find that the energy barrier
scales as stress to the power 3/2. It is straightforward to show
that this scaling behavior translates into the universal T 2/3

temperature dependence of plastic yielding in metallic glasses
proposed by Johnson and Samwer [61], and it has been verified
for a whole variety of different metallic glasses. Moreover, our
analysis reveals that plastic yielding in NC metals with grain

sizes of ≈10 nm or smaller depends markedly on the imposed
strain rate ε̇ where stresses σ in the entire microplastic regime
scale as σ ∼ (ln ε̇)2/3. From this scaling behavior, we infer that
the customary assumption that work or strain hardening takes
place in the microplastic regime is not likely to be true. The
observed scaling behavior suggests that nonlinear viscous be-
havior underlies the pronounced increase of stress beyond the
regime of linear elasticity up to the yield stress. A similar be-
havior is observed for metallic glasses when the testing temper-
ature approaches the glass-transition temperature from below.
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