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The ab initio phase diagram of dense hydrogen is very sensitive to errors in the treatment of electronic
correlation. Recently, it has been shown that the choice of the density functional has a large effect on the predicted
location of both the liquid-liquid phase transition and the solid insulator-to-metal transition in dense hydrogen.
To identify the most accurate functional for dense hydrogen applications, we systematically benchmark some of
the most commonly used functionals using quantum Monte Carlo. By considering several measures of functional
accuracy, we conclude that the van der Waals and hybrid functionals significantly outperform local density
approximation and Perdew-Burke-Ernzerhof. We support these conclusions by analyzing the impact of functional
choice on structural optimization in the molecular solid, and on the location of the liquid-liquid phase transition.
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I. INTRODUCTION

As a consequence of being the most abundant element in
the universe, hydrogen can be readily observed to exist over a
very large range of temperatures and pressures. Additionally,
for many applications, such as inertial confinement fusion
or modeling Jovian planets, the pressures and temperatures
of hydrogen can vary by orders of magnitude within a
given system. Understanding the behavior of such systems
necessitates an accurate phase diagram over a large range of
thermodynamic conditions, which by some estimates needs to
be accurate to at least 1% [1].

Attaining this level of accuracy is an ongoing challenge.
Despite hydrogen’s simplicity, significant nuclear quantum
effects (NQEs) and electronic correlation cooperate to give rise
to a rich phase diagram. There are known to be four insulating
molecular solid phases, an insulating molecular liquid phase,
and a conducting atomic liquid phase at high temperatures [2].
Most interestingly, theory predicts the existence of a low-
temperature metallic phase above 350 GPa, which could be
a superconductor with an unusually high Tc or even something
more exotic [3–6].

Although a rough qualitative agreement between experi-
ment and theory has been reached for most of the hydrogen
phase diagram, ab initio methods have struggled quantitatively
in the high-pressure regime of hydrogen. This is because
the relevant energy scales in high-pressure hydrogen are
comparable to the errors introduced by approximating NQEs
and electronic correlation. Recent simulations show that using
the quasiharmonic approximation (QHA) produces noticeable
quantitative differences from an exact treatment in quantities
such as pair correlation functions and enthalpies of solid
hydrogen structures [7]. Additionally, the approximation of
electronic correlation through the use of density functionals
has been shown to have a large effect on the predicted phase
diagram. For example, the location of the liquid-liquid phase
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transition (LLPT) in hydrogen could change by as much
as 160 GPa in path-integral molecular dynamics (PIMD)
simulations depending on whether Perdew-Burke-Ernzerhof
(PBE) or vdW-DF2 was used [8]. In the solid phase, it was
found that by using either optB88-vdB [9] or vdW-DF2 [10]
in PIMD, noticeably better agreement with experiment was
obtained for the band gap in the C2/c phase and the transition
pressure between phases II and III as compared to PBE [7,11].

Recent algorithmic and computational advances allow a
systematic treatment of NQEs, for example, with PIMD or
path integral + generalized Langevin equation (PI + GLE)
[12]. However, there have been, to date, few systematic studies
to identify the most accurate functional for high-pressure
hydrogen [13]. PBE has been advocated on error-cancellation
grounds, but several previous studies indicate that some
functionals are more accurate than the semilocal functionals.
As dispersion forces are significant in solid hydrogen, it is
expected that nonlocal functionals that include this effect will
calculate the total and relative energies more accurately, hence,
previous interest in vdW-DF2 and optB88-vdW. Additionally,
hybrid functionals such as Heyd-Scuseria-Ernzerhof (HSE)
are known to give better band gaps than semilocal functionals,
hence the interest in these functionals to describe the insulator-
to-metal transitions in high-pressure hydrogen [8]. Because of
technological limitations, there are little high-quality experi-
mental data available for pressures higher than 200 GPa, so
identifying accurate functionals must be done using theoretical
methods.

The purpose of this work is to systematically benchmark
several types of semilocal, nonlocal van der Waals (vdW),
and hybrid functionals against fixed-node projector quantum
Monte Carlo (QMC). QMC is an accurate many-body method
that has proven to be exceptionally accurate in the study
of hydrogen, making it suitable as a reference in regions
where experimental data are sparse. In Sec. II and in
the Supplemental Material [14], we provide details of the
methods used. In Sec. III, we quantitatively establish that
nonlocal density functionals have superior energetics but
poorer pressure estimation as compared with LDA and PBE,
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justifying the results of Refs. [7,11]. We then compare how
functional choice affects the predicted hydrogen structures by
looking at bond lengths, QMC enthalpies, the shape of the
intramolecular potential, and the location of the liquid-liquid
phase transition. In Sec. IV, we draw our conclusions. We have
also included Supplemental Material, covering computational
details, and providing detailed tables of density functional
performance [14].

II. METHOD

Gauging the accuracy of density functionals has been
typically done based on experimental data, for example, the
G2 test set of molecular binding energies [15]. In contrast, our
method is fully ab initio, and tailored to dense hydrogen. We
used DFT-PIMD simulations to generate various “test sets” for
a variety of phases and thermodynamic conditions as described
in the following. After establishing reference energies and
pressures with QMC, we performed DFT calculations on our
test set using up to 10 different density functionals. Various
measures were used to quantify functional accuracy. Full
details are given in the Supplemental Material [14]. First, we
outline the quantum Monte Carlo methods and then the various
test sets and error estimates.

A. Quantum Monte Carlo calculations

Several different QMC techniques were used. The quantum
Monte Carlo package (QMCPACK) [16,17] was used in all
diffusion Monte Carlo (DMC) and variational Monte Carlo
(VMC) simulations. The Born-Oppenheimer path-integral
Monte Carlo (BOPIMC) code [18–21] was used in all reptation
quantum Monte Carlo (RQMC) simulations. For all solid and
liquid structures considered in this work, we first performed
a wave-function optimization using VMC. We used Slater-
Jastrow–type wave functions with backflow transformation
in all cases. The single-particle orbitals were obtained from
a PBE-DFT calculation using the QUANTUM ESPRESSO [22]
package. This was followed by DMC calculations, within
the fixed-node approximation. For a subset of the solid
configurations we use RQMC, combined with correlated
sampling, to calculate energy differences as we varied the bond
length of the molecules in the solid. The QMC calculations
were all electron, using the bare Coulomb interaction.

We used the virial estimator to calculate pressures directly
from QMC, which for the Coulomb interaction has the form
P = 1

3�
(2T + V ), where T (V ) is the kinetic (potential)

energy and � is the simulation (supercell) volume. In order
to minimize systematic errors in the calculation, we rewrite
the estimator as P = 1

3�
(E + T ), where E is the ground-state

energy, and use an extrapolated estimator for the kinetic en-
ergy [23] Textrap = 2TDMC − TVMC, which produces a pressure
that is correct to second order in the quality of the trial wave
function.

Controllable errors, such as time-step error, projection time,
and population bias, were reduced to be comparable to our
desired statistical error, giving an accuracy of approximately
0.01 mHa/proton for energy and 0.3 GPa for the pressure
estimates. Finite-size effects were handled through a combined
use of twist-averaged boundary conditions and post-processing

corrections, which are detailed in the Supplemental Mate-
rial [14]. The only source of uncontrollable errors comes
through the use of the fixed-node approximation, which we
expect to be very small for hydrogen.

B. Test sets

We define a test set S as a set of M proton configurations
RS = {R1, . . . ,RM} all at a given density, temperature, and
phase (liquid/solid). To broadly classify a functional’s accu-
racy, it is important that these test sets consist of uncorrelated
but physically reasonable configurations, representative of the
state of hydrogen at high pressures.

By “physically reasonable,” we mean that we would like to
sample configurations roughly in proportion to their likelihood
of appearance under some set of considered thermodynamic
conditions. This is because the most probable configurations
will most strongly affect most thermodynamic averages.
For example, if we wish to calculate expectation values
over the canonical ensemble, we would be more interested
in establishing the accuracies of configurations with large
Boltzmann weights (low energies) over those with extremely
small Boltzmann weights (very high energies). As we do not
actually know the potential energy surface, we will end up
approximating it with DFT for the purposes of sampling from
thermodynamic probability distributions. This will not yield
precise thermodynamic averages, but should be adequate for
roughly identifying probable configurations.

By “uncorrelated” we mean that the samples are drawn in a
statistically independent manner from a desired probability
distribution. Specifically, the configurations are generated
from a single molecular dynamics simulation. Configurations
are output to the test set at well-separated times along the
MD trajectory, long enough apart in time that they can be
considered to be independently drawn from the Boltzmann
distribution. We verified that successive samples were uncor-
related by looking at the autocorrelation function of the energy.

Given the above considerations, we use constant volume
PIMD simulations based on DFT to generate our test sets.
In particular, we use the PI + GLE algorithm of Ceriotti
et al. [12], which has been shown to significantly accelerate the
rate of convergence of PIMD calculations with respect to the
number of imaginary-time slices. By using PIMD to generate
our configurations, we ensure that we adequately sample both
nuclear quantum effects and thermal fluctuations, which are
critical for a proper description of hydrogen. Note that for
hydrogen at 1000 K, NQE are larger than thermal effects.
Care was taken to ensure that the selected configurations were
statistically independent and well equilibrated.

For the molecular solid, we considered the following
structures obtained in previous structure searching studies:
C2/c [24], Cmca-12 [24], Pbcn [24], and Cmca [25]. For
each of these structures, we first obtained zero-temperature
reference configurations from DFT, at pressures of P DF = 200
and 300 GPa, by performing constant pressure structural
relaxation using the vdW-DF2 functional. P DF is calculated
using the vdW-DF2 functional. The band gaps calculated
with this functional were in good agreement with experi-
mental measurements when nuclear quantum effects are taken
into account [26]. Starting from these configurations, PIMD
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simulations were performed at a temperature of T = 200 K,
also with the vdW-DF2 functional. All the simulations in the
solid, and hence the configurations in the resulting test sets,
were performed with 96 protons. PIMD + GLE simulations
in the solid were performed with a modified version of the
Vienna ab initio simulation package (VASP) [27–30]. We used
the projector augmented wave representation of VASP and a 3 ×
3 × 3 k-point grid in the simulations. For each combination of
pressure and structure, we generated configuration sets with
at least 20 configurations. While we refer to the configuration
sets by a structure and a pressure, these are really constant
density sets. In addition, the density corresponds to that of the
static lattice optimized at the given electronic pressure; thermal
and quantum effects are not included during the structure
optimization. Because the difference in density for different
structures optimized at a given pressure is small, P DF is simply
a convenient label unless otherwise indicated.

For liquid hydrogen, we considered configurations of 54
protons at three densities given by rs = 1.30, 1.45, 1.60,
where rs is the Wigner-Seitz radius, and a temperature of T =
1000 K. The three densities correspond to a fully dissociated
atomic liquid, a molecular liquid in the neighborhood of the
liquid-liquid phase transition, and a fully molecular liquid, re-
spectively. These test sets allow us to compare the performance
of DFT functionals in different environments in the liquid. The
PIMD + GLE simulations in this case were performed with a
modified version of QE and the vdW-DF2 functional. We used
a Troullier-Martins norm-conserving pseudopotential with a
cutoff of 0.5 bohrs and a 2 × 2 × 2 k-point grid. Test sets in the
liquid were generated with approximately 100 configurations
at each density.

Finally, we used an enlarged set of zero-temperature
configurations in order to study the influence of the choice of
functional on structural properties in the solid. Specifically,
we study the following structures from previous structure
searching studies: C2/c, Cmca-12, Pbcn [24], Cmca [25],
and mC24-C2/c [31]. Ground-state structures were relaxed
using the PBE, vdW-DF, and vdW-DF2 functionals at P DF =
200, 300, and 400 GPa.

For additional details on the configuration sets used in this
work, see the included Supplemental Material [14] section.

C. Density functional comparison

For each configuration in a test set in the solid, we
calculated its energy and pressure using the following 10
functionals: LDA, PBE [32,33], vdW-DF [34], vdW-DF2 [10],
vdW-optPBE, vdW-optB88 [9], vdW-optB86B [35], Becke-
Lee-Yang-Parr (BLYP) [36,37], vdW-TS [38], and HSE [39].
For the vdW-TS functional, we used PBE exchange. We used a
restricted set of functionals for the liquid test sets: LDA, PBE,
vdW-DF, vdW-DF2, and HSE.

For all M configurations in a given test set S, we compute
the density functional error of an observable A as δADF =
ADF − AQMC. From this, we used two general measures of
error. The first is the average error which we define as

〈δADF〉S = 1

M

∑
Ri∈S

δADF(Ri). (1)

We also use a more general error measurement, akin to a
mean-absolute error, which we define as

〈|δÃDF|〉S = 1

M

∑
Ri∈S

|δADF(Ri) − cDF|. (2)

Here, c is a density-functional-dependent offset, chosen by
minimizing 〈|δÃDF|〉S ′ over some set S ′ (which does not have
to equal S). In the Results section, we will devise two error
measures for energies that differ in their choice of reference
point, but the motivation and justification will be handled later.

III. RESULTS

A. Benchmarking

Our concern in this section will be to establish how well
various functionals capture different features of the Born-
Oppenheimer (BO) potential energy surface, i.e., how well a
functional calculates the electronic energy as a function of the
proton positions. We will facilitate this discussion by distin-
guishing between two concepts: “global energetics” and “local
energetics.” Additionally, we complement this discussion by
considering how well density functionals estimate pressures.

“Global energetics” will refer to how well a given functional
is capable of capturing energy differences between arbitrary
physically reasonable configurations at a fixed density. This
is relevant in deciding which structure from a list of different
structures has the lowest energy at a fixed density.

“Local energetics” will refer to how well a functional
captures energy differences between a structure and pertur-
bations around that structure, at a fixed density. In the case
of a solid where a well-defined local minimum exists in the
potential energy surface, we need to describe the shape of the
potential energy well as accurately as possible. This is relevant
for applications involving thermal and quantum fluctuations,
such as the calculation of phonons and vibrational spectra,
since what is relevant are energy differences between closely
related structures. Thus, the ability of a functional to accurately
capture these small energy differences will affect the quality
of those predictions.

The previous two definitions refer to how well different
features of the BO energy surface are captured at a fixed
density. When determining phase stabilities, however, it is
often important to compare energies between structures at
different densities. By using basic thermodynamic identities,
we can relate the error in the pressure to how much the energy
error changes between similar structures at slightly different
densities:

∂

∂ρ
δeDF = ρ−2δP DF. (3)

We will focus on the errors in the pressure in this discussion,
appealing to the above relationship.

A difficulty occurs when we try to compare DFT energy
errors relative to QMC, δeDF = eDF − eQMC, because the DFT
energy can have a constant offset depending on both the
functional and the pseudopotential. Instead, we benchmark
errors in energy differences δ�eDF = �eDF − �eQMC, where
QMC and DFT energy differences are measured relative to
some reference energy. Reference energies can be chosen in
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FIG. 1. (Color online) (Top) 〈|δeD̃F(P )|〉global versus functional
for solid molecular test sets. Data for P = 200 and 300 GPa are
shown in the legend. (Bottom) 〈|δeD̃F(P )|〉global versus functional for
the liquid test sets. Data for rs = 1.30, 1.45, and 1.60 shown.

various ways (relative to dissociated hydrogen atoms, relative
to an arbitrary configuration, etc.), but we have preferred to
use the methods described in the following.

1. Global energetics

To establish which functional has the best global energetic
properties, we looked at the mean-absolute errors in the energy
per proton. For a particular DFT pressure P DF, we build a
test set S ′ by including all the configurations consistent with
that pressure, including ones with different structures. Then,
for each pressure and density functional independently, we
choose a reference point cDF(P DF) by minimizing 〈|δ̃eDF|〉S ′ .
In practice, this amounts to choosing the median of δeDF on
this aggregated test set S ′.

Using this choice for cDF(P DF), we calculated 〈|δ̃eDF|〉S
over each structure and averaged this over all structures to
obtain what we denote 〈|δeD̃F(P DF)|〉global.

In the top of Fig. 1, we plot 〈|δeD̃F(P )|〉global versus
functional for solid molecular hydrogen. We included results
for both the P = 200 and the 300 GPa structures, which are
marked with striped and dotted bars, respectively. Two things
immediately stand out. The first is that nearly all of the hybrid

FIG. 2. (Color online) 〈|δeD̃F(P )|〉local versus functional for solid
molecular test sets. Data for P = 200 and 300 GPa are shown in the
legend.

and improved van der Waals functionals, excluding vdW-TS,
noticeably outperform the LDA and PBE functionals. Second,
the vdW-DF functional seems to have the best global energetic
performance out of all functionals considered, followed by
BLYP and HSE.

In the bottom of Fig. 1, we show a plot of 〈|δeD̃F(ρ)|〉global

for the liquid configurations. We have included data for the
three densities rs = 1.30, 1.45, 1.60, which are identified in
the legend. Notice that as in the solids, vdW-DF is the best
performing functional, although the hybrid functional HSE is
a close runnerup.

Despite the vast differences in structures and densities,
we see a very consistent picture regarding how accurate
various functionals are in capturing global energetics. For the
solid test set, we find that PBE is accurate to approximately
0.3 mHa/proton in dense hydrogen, whereas vdW-DF and
HSE are good to 0.19 mHa/proton and 0.24 mHa/proton,
respectively. The errors are smaller in the liquid phase, but the
ordering of these functionals is the same for both cases with
vdW-DF noticeably more accurate.

2. Local energetics

To measure the local energetics, we again used a shifted
mean absolute error for the energy per proton, but with the
reference point chosen to be specific to a given structure. For
a test set S corresponding to a particular structure at pressure
P , we again let the energy shift cDF be chosen to minimize
〈|δeD̃F(P )|〉S on the same set S. Averaging 〈|δeD̃F(P )|〉S over
all structures gives us a pressure-dependent measure of the
local energetic errors, which we will denote 〈|δeD̃F(P )|〉local.
Notice that in this case, we are only concerned with relative
errors between close configurations in the potential energy
surface; systematic shifts between the various structures are
not considered.

In Fig. 2, we show 〈|δeD̃F(P )|〉local versus density functional
for solid molecular hydrogen. The results for P = 200 and
300 GPa are shown on the plot with dashed and dotted
bars, respectively. The vdW-DF functional was the most
accurate in capturing relative energy differences between
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similar configurations with BLYP a close second. After these
functionals, the optPBE and HSE functionals exhibited fair
performance. The worst performing DF was LDA, followed
by vdW-TS, and then jointly by vdW-DF2 and PBE. This
same trend was observed for the global energetic performance
in Fig. 1.

It is interesting to note how the magnitudes of the global
energetic and local energetic errors compare. LDA and vdW-
DF2 have local errors that are approximately 70% the size of
their global errors, and thus experience only modest accuracy
gains when considering energy differences between closely
related structures. HSE and PBE perform moderately better,
having local errors that are approximately 50% and and
60% of their global errors. Lastly, the vdW-DF functional,
beyond having the lowest magnitude of global energetic errors,
experiences a local energy error that is approximately 25% of
the global errors.

In summary, we find that the van der Waals functionals
were most able to calculate relative energy differences around
local minima, with vdW-DF and BLYP having the smallest
local energetic errors. This might have been guessed from the
previous section, as these same functionals were, on average,
the best for capturing large-scale energy differences. Thus, for
structural relaxation, zero-point energy calculations, QMD,
and other applications where location and shape of the local
minimum are important, the vdW-DF functional is strongly
recommended.

3. Pressures

For a test set S corresponding to a structure at particular
density, we averaged 〈δP DF〉S over all structures at the same
pressure or density to estimate the error in the pressure. The top
of Fig. 3 shows 〈δP DF〉 for the solids. We see that in contrast
to the local and global energetics sections, the semilocal
functionals have some of the lowest pressure errors. HSE is the
best performing functional in this regard. Note that the van der
Waals functionals are among the worst performing functionals
for the average pressures, with vdW-DF coming in just behind
vdW-DF2 for highest pressure errors. These observations are
also seen in the bottom of Fig. 3, which shows 〈P DF〉 for the
liquid configurations.

We also looked at 〈|δP̃ DF|〉local for the solids and
〈|δP̃ DF|〉global for the liquids, defined as was done with the
energy errors in the local and global energetic sections. We find
that the magnitude of 〈|δP̃ DF|〉local across all configurations and
densities is statistically indistinguishable from the error bars
of our QMC pressure estimates, indicating that the errors in
the pressure are roughly independent of the configurations.
Thus, the pressure errors observed were mostly functional and
density-dependent constant offsets from P QMC. Such was not
the case for the energy.

To conclude, when it comes to capturing global and local
energy differences at a fixed density, including exact exchange
or van der Waals effects will generally improve the energetics
of density functionals for dense hydrogen. The vdW-DF
functional in particular gives noticeable improvements over
PBE in capturing global energetics, and does exceptionally
well for capturing local energetics. In spite of this, HSE and the
semilocal functionals outperform nearly all the van der Waals

FIG. 3. (Color online) (Top) 〈δP DF〉 versus DFT functional for
the molecular solids. (Bottom) 〈δP DF〉 versus DFT functional for the
liquid configurations.

functionals when it comes to correctly estimating pressures.
Given how systematic the pressure errors are, one can correct
the pressure of energetically favorable DFs such as vdW-DF
by estimating an overall correction from either LDA or QMC.
Fortunately, these errors are far more consistent than the energy
errors, and so there should be some way of improving upon
these functionals for future hydrogen applications.

B. Effects of functional choice

In this section, we see how the energetic considerations of
the benchmarking section relate to current problems of interest
in the phase diagram of high-pressure hydrogen. Specifically,
we look at how accurately different functionals predict H2

bond lengths relative to QMC optimized structures. We also
look at QMC cold curves for ground-state structures optimized
with different functionals, and at the relation between the
location of the LLPT and the mean absolute error of a selection
of DFT functionals.

1. Bond lengths

The magnitude and pressure dependence of the bond length
of the hydrogen molecule in the solid depends significantly on
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FIG. 4. (Color online) Molecular bond-length dependence of the
QMC energy for the C2/c structure at 200 GPa. The energy is
measured with respect to the optimal bond length according to
DFT. Arrows denote the equilibrium bond length predicted by
DFT.

the DFT exchange-correlation functional. The LDA and PBE
functionals predict bond lengths that are larger than those of the
isolated molecule, while HSE, vdW-DF, and vdW-DF2 predict
bond lengths that are smaller. In order to measure the ability of
each functional to predict the correct magnitude and pressure
dependence of the bond length of the molecule in the solid
phase, we calculated the dependence of the energy on bond
length for several of the proposed solid phases of hydrogen
using QMC and compared with DFT predictions. To do this,
we optimized a set of candidate structures (C2/c, Cmca,
Cmca12, Pbcn, and mC24-C2/c) with the PBE, vdW-DF,
and vdW-DF2 density functionals at three different pressures:
200, 300, and 400 GPa. For each combination of structure,
density functional, and pressure, we calculated the dependence
of the energy as a function of the molecular bond length
using a QMC correlated sampling technique. In particular,
we calculated the change in energy produced by scaling all
the molecular bond lengths in the solid by a given fraction.
Figure 4 shows an example of this procedure for the C2/c

structure. In this figure, the energy difference is with respect
to the optimal molecular bond length according to the density
functional used in the structural optimization. As described
above, PBE shows a significant overestimation of the bond
length, while vdW-DF2 underestimates it with a comparable
magnitude. The vdW-DF functional, on the other hand, agrees
well with the QMC predictions producing a structure with
a negligible energy error due to the relaxation of the bond
length. This relaxation energy can be significant in structures
predicted by the other functionals and, since it is not guaranteed
to be consistent between structures, it can significantly bias
structural predictions. While the optimal bond lengths accord-
ing to QMC are very similar for this structure, they depend
slightly on the other structural parameters; we only relax
the bond lengths in this calculation, leaving both molecular
orientations and simulation cell fixed. As we discuss in the
following, this produces an additional variation in the energy

FIG. 5. (Color online) Error in the molecular bond length � of
selected DFT functionals, relative to QMC optimized values. The
results are averaged over all pressures considered in this work since
the pressure dependence of the error is small.

of the structures, making them dependent on the functional
used to optimize them, even after the bond lengths have been
relaxed.

Figure 5 shows the difference between the optimal QMC
and DFT molecular bond length for each structure and density
functional, averaged over all the pressures considered. In gen-
eral, the discrepancy between QMC and DFT on the magnitude
of the bond length is fairly insensitive to pressure in the range
considered. Table I shows a summary of the difference in QMC
energy between the optimal DFT and QMC bond lengths for
all the structures, pressures, and DFT functionals considered
in this work. Figure 6 shows these same data in a scatter
plot, organized by P DF and DF. The spread of values in the
case of PBE is quite large, while the corresponding spread
for vdW-DF is very small. Inaccuracies in the bond length
can lead to important limitations in the predictive capabilities
of DFT in this regime of the phase diagram, mainly due to
the immediate proximity of this regime to a dissociation and a
metal-insulator transition at higher pressures. Notice that more
accurate electronic-structure calculations typically require the
use of structures from more approximate methods, such as
DFT. Incorrect predictions of structural properties will lead
to biases in the predictions of more accurate methods. On the
other hand, the ordering of structures can also be significantly
biased if structural parameters are not accurate, in this case the
existence of molecules with large bond lengths present in many
of the proposed structures for hydrogen near metallization is
put into question by these calculations since they have all
been predicted using PBE, which severely overestimates bond
lengths.

2. Ground-state structures

Although other groups have used QMC energies to calculate
the cold curves of proposed solid hydrogen structures [40],
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TABLE I. QMC energy difference (in mHa/proton) between the
structures at the optimal DFT and QMC bond lengths. Error bars are
shown in parentheses. The mean energy difference, averaged over all
structures and all pressures, is shown in square brackets next to each
functional name.

Structure 200 (GPa) 300 (GPa) 400 (GPa)

PBE [0.19]
C2/c 0.180(6) 0.186(9) 0.171(9)
Cmca 0.30(1) 0.15(2) 0.15(1)
Cmca − 12 0.185(8) 0.24(2) 0.16(2)
Pbcn 0.37(1) 0.28(2) 0.23(2)
mC24 − C2/c 0.069(4) 0.079(5) 0.102(6)

vdW-DF [0.01]
C2/c 0.018(3) 0.007(3) 0.015(3)
Cmca 0.011(4) 0.007(4) 0.017(4)
Cmca − 12 0.016(3) 0.012(7) 0.023(4)
Pbcn 0.016(3) 0.016(3) 0.015(4)
mC24 − C2/c −0.005(3) 0.001(5) 0.008(3)

vdW-DF2 [0.22]
C2/c 0.197(6) 0.239(8) 0.247(7)
Cmca 0.25(1) 0.21(1) 0.22(1)
Cmca − 12 0.236(6) 0.260(7) 0.24(1)
Pbcn 0.22(1) 0.216(8) 0.22(1)
mC24 − C2/c 0.222(2) 0.18(1) 0.22(2)

FIG. 6. (Color online) Scatter plot of e∗DF − e∗QMC for structures
optimized with different functionals and at different P DF. The
asterisks denote that we are measuring the QMC energy difference
between a DF optimized structure and a bond-length optimized
structure. The numbers on the x axis correspond to the P DF in GPa at
which all ground-state structures were relaxed. The names under each
triplet of numbers denote the DF used in the structural optimization.

FIG. 7. (Color online) Relative enthalpies of C2/c structures
relaxed with either PBE, vdW-DF, or vdW-DF2.

here we use QMC energies and pressures to compare
the relative enthalpies of proposed ground-state structures
optimized with different functionals. In Fig. 7, we show
the QMC enthalpies (relative to the enthalpies of the PBE
optimized structures) of C2/c structures relaxed with the PBE,
vdW-DF, and vdW-DF2 functionals at PDFT = 200, 300, and
400 GPa, respectively. Structures relaxed with the vdW-DF
and vdW-DF2 functionals have lower enthalpies than those
generated with PBE, as we might have guessed from the
relative energetics and from the previous discussion of bond
lengths. Notice that the QMC pressures for all structures differ
from their DFT values. The magnitude of the deviance follows
the ordering we discussed above.

At the top of Fig. 8, we show the relative enthalpies for
structures obtained through PBE and vdW-DF optimization.
As in the previous figure, relative deviations from data for
C2/c structures optimized with PBE functional are shown.
We see that structures optimized using the PBE and vdW-DF
functionals exhibit similar qualitative features; the ordering of
the ground-state structures is consistent between functionals,
as are the pressure trends in the relative enthalpy curves.
However, the vdW-DF structures are all lower in enthalpy than
their PBE counterparts, and there are noticeable quantitative
differences. For instance, the relative enthalpy differences
between Cmca and mC24 − C2/c are much larger in PBE
around 200 and 400 GPa than in the vdW-DF functional.

At the bottom of Fig. 8, we compare the relative enthalpy
differences between structures optimized with the vdW-DF
and vdW-DF2 functionals. Note that even though the relative
enthalpies for vdW-DF2 are all lower than for PBE, they
always remain a little higher than for structures optimized
using the vdW-DF functional. Both functionals illustrate the
same qualitative trends, although note that the quantitative
agreement is much greater than between vdW-DF and PBE.
For instance, the relative enthalpy difference between Cmca

and mC24 − C2/c is much smaller with vdW-DF2 than PBE.
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FIG. 8. (Color online) (Top) Relative enthalpies of candidate
ground-state structures relaxed with either PBE or vdW-DF. Struc-
tures relaxed with the vdW-DF functional are shown with bold solid
lines, and those with the PBE functional with light dashed lines.
The color of the line denotes the structure. (Bottom) Comparing
vdW-DF and vdW-DF2 functionals. The P DF = 200 GPa Cmca and
mC24 − C2/c structures optimized with the vdW-DF2 functional
had significantly lower QMC pressures than the vdW-DF and PBE
structures, and so these points are not shown but were used in
the fit.

3. Intramolecular potential

While an accurate bond length is necessary for a precise
prediction of the relative electronic enthalpy between different
structures, the shape of the intramolecular potential is equally
important for the accurate description of both thermal and
quantum ionic components of the enthalpy. From the cal-
culations of the bond-length dependence of the energy, we

TABLE II. Comparison of the curvature of the intramolecular
potential of hydrogen between selected DFT functionals and RQMC.
The table shows the percentage of difference between RQMC and
DFT, calculated as PE(%) = (αDFT − αRQMC)/αRQMC ∗ 100, where
α is the second derivative of the total energy as a function of
the molecular bond length in the solid at the equilibrium distance.
The relative mean absolute error, averaged over all structures and
all pressures, is shown in parentheses next to each functional
name.

Pressure
(GPa) C2/c Cmca Cmca − 12 Pbcn mC24 − C2/c

PBE (24.7)
200 −26(3) −28(5) −24(5) −21(4) −34(5)
300 −21(3) 43(16) −29(23) −23(4) −20(9)
400 −25(5) −12(7) 19(12) 3(9) −42(6)

vdW-DF (7.3)
200 −3(2) −17(2) −10(2) −9(1) −5(3)
300 −8(1) −6(3) −8(4) −9(2) −5(5)
400 9(5) 5(9) 0(7) −4(6) 11(7)

vdW-DF2 (19.2)
200 19(5) 20(6) 34(2) 27(3) 37(6)
300 10(3) 6(7) 15(7) 16(4) 22(8)
400 12(4) 10(7) 15(6) 25(6) 37(16)

can measure the ability of each DFT functional to reproduce
the intramolecular potential of the hydrogen molecule in
various structures. For this purpose, similar to the RQMC
calculations presented above, we calculated the bond length
dependence of the electronic energy with PBE, vdW-DF, and
vdW-DF2, on the same structures presented in Sec. III B 1.
From the resulting energies, we obtain the curvature α of
the potential at the corresponding equilibrium bond length by
fitting a quadratic function. This curvature is directly related
to the vibrational frequency of the molecule, which is the
leading contribution to the zero-point energy due to its high
frequency. Inaccuracies in the curvature of the potential will
lead to systematic errors in the zero-point energies calculated
with DFT.

Table II and Fig. 9 show a comparison of the curvatures of
the intramolecular potential between various DFT functionals
and RQMC calculations. It is clear that PBE systematically
underestimates the magnitude of the curvature, by an average
of ∼20% over the studied pressure range. vdW-DF2, on the
other hand, systematically overestimates the curvature, but by
a smaller amount. In both cases, the variation with structure
is large. As can be expected, the vdW-DF functional shows
a good overall agreement with QMC, producing an average
discrepancy of ∼5% over the entire configuration set. This is
consistent with the results of Sec. III A 2 that shows that vdW-
DF gives a more accurate estimate of the local potential energy
surface of the solid and of the relative energies of different
molecular configurations, relative to PBE and vdW-DF2. As a
consequence, both thermal and zero-point components of the
energies should be computed with this functional for a more
predictive calculation.
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FIG. 9. (Color online) Above are two measures of the relative
errors in the curvature α for different structures and functionals. The
angle brackets denote averaging over all pressures. (Top) Relative
mean absolute error of the curvature for each functional and structure.
(Bottom) Relative mean error of the curvature.

4. Liquid-liquid phase transition (LLPT)

The location of the LLPT in hydrogen has been recently
shown to depend significantly on both NQEs and on the
treatment of electronic exchange and correlation [8]. While
the inclusion of NQEs typically reduces the transition pressure
by ∼60–80 GPa, different DFT functionals produce variations
by as much as ∼200 GPa. In this section, we use the QMC
calculations presented in Sec. III A 1 to show that there is a
correlation between the location of the LLPT estimated by
a given functional and the difference in the average energy
between the QMC energy and a DF energy.

The predicted transition pressure will be affected by
differences of errors in the two branches of the free energy

FIG. 10. (Color online) 〈δeDF〉at-〈δeDF〉mol for a selection of DFT
functionals as a function of estimated P LLPT for 54 protons at T =
1000 K. The different marker styles indicate different functionals.
Dashed lines are linear fits to the positive and negative data points.

F (T ,V ) isotherm at the transition point. To estimate the
principal effect of DF errors, we look at the difference in
DF internal energy errors between two different densities
corresponding to the atomic liquid and molecular liquid. We
begin, as in the global and energetic sections of this paper,
by defining a test set S ′ to be the aggregate of all liquid
test configurations at rs = 1.30,1.45,1.60. Choosing cDF to
be the median of this aggregated set, we calculate 〈δeD̃F( rs)〉
for rs = 1.30 and 1.60. Then, (〈δeDF〉at − 〈δeDF〉mol) measures
the mean energy shift between the atomic and molecular
states.

We then estimate the transition pressure using several func-
tionals; the procedure for calculating the transition pressure
is given in the Supplemental Material [14]. In Sec. III A 3,
we found that there is a systematic and sometimes sizable
error in DF pressure estimates, which causes an additional
bias of the transition pressures. We correct for this error by
fitting the pressure errors to δP DF(rs) = a0 + a1P

QMC(rs) +
a2[P QMC(rs)]2 for each functional, where the coefficients ai

are assumed to be independent of density. We then solve this
equation for P QMC as a function of P DF, which gives us a
corrected transition pressure.

In Fig. 10, we plot 〈δeDF〉at-〈δeDF〉mol versus the corrected
transition pressure for all considered functionals. We see
that the errors change sign as we go from PBE, LDA, and
HSE to the van der Waals functionals. If we knew the
functional relationship between the energy errors and the tran-
sition pressure, the point where that function crosses the x

axis should coincide with the correct transition pressure for
a 54-atom system at 1000 K. Although our data are too
sparse to characterize this function, we can attempt to bound
the transition. By performing linear fits on the positive and
negative data points independently, we show in Fig. 10 that
the transition probably lies between approximately 150 and
240 GPa. This is about a 40% reduction in the transition
pressure uncertainty due to electronic correlation pointed out
in previous work [8].

We have made preliminary estimates of the transition
pressure using the coupled electron-ion Monte Carlo [18], a
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method which treats the electrons with QMC. Using quantum
protons, we estimate the transition pressure for a 54-atom
system at T = 1000 K to be around 221 GPa; details will
be published in a future work. It is reassuring to see that
this estimate lies within the transition pressure error bounds
obtained in this section.

IV. SUMMARY AND CONCLUSIONS

In this paper, we presented a detailed benchmark of DFT
exchange-correlation functionals in high-pressure hydrogen
using accurate QMC calculations. Particular care was taken to
control systematic errors in the QMC calculations, including
size effects, time step, twist averaging, projection times, and
population control. We find that the performance of most
DFT functionals depends on the property being studied. While
LDA and HSE consistently produce the best pressures in both
solid and liquid phases, vdW-DF is clearly superior in terms
of local energy differences in the potential energy surface.
HSE and vdW-DF perform equally well in terms of energetics
in liquid hydrogen close to metallization, but with errors in
opposite directions. In general, PBE does a rather poor job at
describing the relative energies of configurations and describes
quite poorly the properties of the molecular bond. This leads
to a large underestimate of the metallization transition and of

both thermal and zero-point energy contributions. Predictions
made with this functional are much less accurate. While no
functional considered was capable of accurately describing
relative energy differences over a large region of the phase
diagram, vdW-DF was found to produce excellent results
within a given phase, particularly for the reproduction of the
intramolecular potential and equilibrium bond length. This
functional should be used to estimate zero-point energy, which
is dominated by energy differences close to an equilibrium
configuration.
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