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Ab initio calculation of anisotropic interfacial excess free energies
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We describe a simple method to determine, from ab initio calculations, the complete orientation dependence
of interfacial free energies in solid-state crystalline systems. We illustrate the method with an application
to precipitates in the Al-Ti alloy system. The method combines the cluster expansion formalism in its most
general form (to model the system’s energetics) with the inversion of the well known Wulff construction
(to recover interfacial energies from equilibrium precipitate shapes). Although the inverse Wulff construction
only provides the relative magnitude of the various interfacial free energies, absolute free energies can be
recovered from a calculation of a single, conveniently chosen, planar interface. The method is able to account
for essentially all sources of entropy (arising from phonons, bulk point defects, as well as interface roughness)
and is thus able to transparently handle both atomically smooth and rough interfaces. The approach expresses the
resulting orientation dependence of the interfacial properties using symmetry adapted bases for general orientation
dependent quantities. As a byproduct, this paper thus provides a simple and general method to generate such
basis functions, which prove useful in a variety of other applications, for instance to represent the anisotropy of
the so-called constituent strain elastic energy.
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I. INTRODUCTION

Interfacial free energies play an important role in the design
of engineering materials, as they represent a fundamental
determinant of microstructure [1,2]. However, the experimen-
tal measurement of interfacial free energies can represent a
difficult challenge [3–6] and computational approaches have
thus proven useful to provide complementary corroborating
estimates [1,7–13].

The two main challenges faced when determining inter-
facial properties via computational means are that (i) the
interface structure may take considerable time to equilibrate
and that (ii) at finite temperature, defects are present in
thermodynamic equilibrium, a situation which typically re-
quires sampling of numerous possible microscopic states. This
situation prompts for the use of computationally very efficient
energy models. In the case of coherent interfaces, the cluster
expansion formalism [14] has been proven a very effective
approach to the simulation of interfaces [9–13,15–20]. The
cluster expansion provides a very compact and systematically
improvable representation of the configurational dependence
of an alloy’s energy and the process of constructing such a
cluster expansion (with a given accuracy) from ab initio data
is well established [21].

*avdw@alum.mit.edu

While it is common to proceed by studying planar interfaces
one direction at a time in a supercell geometry, there are
compelling reasons to proceed by considering all interface
directions in a single large-scale simulation. This can be
useful to directly determine equilibrium precipitate shapes
(e.g., [13]). More generally, such a global approach proves
most useful for the determination of interface free energies (i)
if the thermodynamically stable directions are not known a
priori or (ii) if there may be a continuum of stable directions
when temperature is sufficiently high and the interfaces
roughen or (iii) if the determination of the complete orientation
dependence of the interfacial free energy is needed. The
latter is especially useful to provide input to continuum-type
simulations, such as phase field [22–24] or finite element [25]
modeling.

This paper describes a simple method to determine, from
ab initio calculations, the complete orientation dependence
of interface free energies in solid-state crystalline systems.
The method combines the cluster expansion formalism in its
most general form (to model the system’s energetics) with
the inversion of the well known Wulff construction [26–28]
to recover interfacial energies from equilibrium precipitate
shapes. Although the inverse Wulff construction only provides
the relative magnitude of the various interfacial free energies,
absolute free energies can be recovered from a calculation of
a single, conveniently chosen, planar interface (although not
necessarily flat at the atomic level). The method is able to
account for essentially all sources of entropy (arising from
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phonons, bulk point defects, as well as interface roughness)
and is thus able to transparently handle both atomically smooth
and rough interfaces. To address the issue that some interface
directions do not appear on the Wulff shape when the facetting
occurs, we show how the interfacial free energy surface can
be naturally extended into the “masked” regions of the Wulff
plot in a way that (i) preserves the predicted equilibrium shape
and (ii) has a natural geometric interpretation. The approach
finally expresses the resulting orientation dependence of
the interfacial properties using symmetry-adapted bases for
general orientation-dependent quantities. As a byproduct, this
paper thus provides a simple and general method to generate
such basis functions, which prove useful in a variety of other
applications, for instance to represent the so-called constituent
strain elastic energy of superlattice structures in the long-
wavelength limit [29,30]. The proposed method can be easily
implemented using generic linear algebra operations without
having to consider many different subcases that depend on the
point group symmetry considered. The method exploits a direct
correspondence between spherical harmonics and polynomial
functions of a unit vector expressed in tensor notation. The
methods proposed herein have been implemented within the
alloy theoretic automated toolkit (ATAT) [21,31–33].

As an example to demonstrate the method, we select
the Ti-Al alloy system because it exhibits a number of
interesting and challenging features. Al3Ti precipitates in
an Al-rich fcc host exhibiting a D023 structure which has
a relatively low symmetry (thus increasing the number of
distinct facets). We also find that such precipitates exhibit
a mixture of atomically smooth and rough facets at all but
the lowest temperatures. Moreover, previous work has shown
that vibrational contributions to the free energy in this alloy are
large [34–36] and must therefore be included in the assessment
of interfacial boundary energies.

II. METHODS

A. Coarse graining cluster expansion

The system considered here consists of coherent precipi-
tates within a host phase with a known lattice type (fcc). For
efficiency reasons, we select a form of energy model especially
adapted to this situation. The approach to the determination
of interface free energies is not tied to this specific energy
model, however. We rely on the cluster expansion formalism
[14,37–39], which represents the energy E of a crystalline
alloy with a computationally efficient Hamiltonian taking the
form of a polynomial in terms of occupation variables σi = ±1
indicating the type of atom residing on each lattice site i:

E =
∑

i �=j

Jij σiσj +
∑

i �=j �=k

Jijkσiσjσk + · · · . (1)

The unknown coefficients, J···, of this polynomial are called
effective cluster interactions (ECI) and are fit to a database of
ab initio structural energies (obtained from density functional
theory total energy calculations). It has been formally shown
that an infinite series of this form can represent any configura-
tion dependence of the energy [14]. Moreover, formal methods
have been developed to determine the number of terms and
the database size needed to achieve a given precision [21].

The ECI can typically be determined from a reasonably sized
database of ab initio calculations involving small-unit-cell
atomic arrangements. These ECI can then be used in large-
scale equilibrium lattice-gas Monte Carlo simulations of the
coherent interface, without necessitating repeated large-scale
ab initio calculations for each atomic configuration visited
in a thermodynamic equilibrium. These tasks were carried
out with the help of the alloy theoretic automated toolkit
(ATAT) [21,31–33].

The effect of lattice vibrations can be included within
this framework, via a coarse-graining technique [40]. The
idea is to replace, in Eq. (1), the energy E by the phonon
contribution to the free energy for a given configuration σ . The
resulting effective interactions J··· now become temperature
dependent, but the formalism otherwise remains the same.
As full lattice dynamics calculations can be computationally
expensive to repeat for numerous configurations σ , we rely
on the “bond stiffness vs bond length” approach [40,41]. In
this approach, the effective springs connecting nearby atoms
are calculated for a few structures only for a range of lattice
parameters. The data thus generated are used to determine the
relationship between the stiffness of an effective spring and
the distance between the corresponding pair of atoms. Once
this is known, the relaxed atomic position for all remaining
structures (obtained from the ab initio calculations) can be used
to predict spring constants without necessitating additional ab
initio lattice dynamics calculations.

The above cluster expansion deliberately does not include
long-range elastic effects, because we wish to determine the
chemical and local relaxations contribution of the interface,
and not the strain energy associated with deforming the host
and the precipitate due to their coherent coexistence. Had we
included so-called constituent strain effects [29,30] in Eq. (1),
we would have had to later subtract elastic energies via a
continuum elasticity-type analysis. One should however be
cautious not to interpret the equilibrium precipitate shape
found in our simulations as the actual equilibrium precipitate
shape (which is affected by elastic effects). However, the equi-
librium precipitate shape we obtain is the relevant shape for
the purpose of determining the interfacial excess free energy,
independently of long-range elastic effects. For simplicity of
the presentation we nevertheless use the phrase “equilibrium
precipitate shape” throughout, with the understanding that
elastic effects are omitted, as they should for a purely
interfacial analysis. It should be observed that, in the limit
of small precipitates, interfacial effects (scaling as r2 for
precipitates of length scale r) dominate over elastic effects
(scaling as r3), so our equilibrium precipitate shapes should
nevertheless be representative of actual precipitate shapes in
this r → 0 limit.

B. Ab initio calculations

All ab initio calculations were performed with the VASP

code [42,43] implementing the projector augmented wave
(PAW) method [44]. The Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional [45] was used. The kinetic
energy cutoff was set to 300 eV (corresponding to VASP’s
“high” precision setting). The k-point mesh was set via the
algorithm described in Ref. [21] to ensure a density of at least
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FIG. 1. Graphical representation of the inverse Wulff construc-
tion defined by Eq. (2).

8000 k points per (atom)−1 for all superstructures considered.
For the large-supercell phonon calculations, these settings
were reduced 240 eV (corresponding to VASP’s “medium”
precision setting) and 4000k points per (atom)−1, respectively.

C. Inverse Wulff construction

The Wulff construction [26,27] is a well known procedure
to calculate the equilibrium precipitate shape from the orien-
tation dependence of the interfacial excess free energy. This
procedure can be readily inverted (see, e.g., [28]) to yield
the interfacial excess free energy from the knowledge of the
equilibrium precipitate shape. Let γ (u) denote the interface
free energy with an orientation defined by some unit vector
u. Let P denote a set in three-dimensional space representing
the shape of a precipitate in equilibrium. The inverse Wulff
construction γ̃ (u) is illustrated in Fig. 1 and is given by

γ̃ (u) = max
x∈P

u · x. (2)

It follows directly from the Wulff construction that, for any
facet u part of the equilibrium precipitate shape,

γ (u) = cγ̃ (u) , (3)

where c is a multiplicative constant independent of direction
u. What is less clear is the interpretation of Eq. (2) for
directions u that do not correspond to equilibrium facets.
From the Wulff construction, one can only conclude that γ (u)
is the minimum fictitious interface free energy that facet u

could have without changing the Wulff shape. However, as
shown in Appendix B, γ (u) nevertheless has a clear physical
interpretation: It is the surface free energy of a macroscopically
flat surface with normal u but that is, at the microscopic level,
made of facets from the Wulff shape. These facets are big
enough so that the edge energies are negligible relative to
the surface energies, but small enough so that the interface
still appears macroscopically flat. Thus, the inverse Wulff
construction γ (u) automatically extrapolates the surface free
energies to the “unstable” directions in a physically plausible
fashion.

The determination of the precipitate shape P from the
Monte Carlo configuration snapshots typically requires the use
of a suitable order parameter to identify which points belong or
not to the precipitating phase. In the special case of precipitates
forming from a dilute solid solution on the parent lattice, one
can simply use the species that is dilute (call it “D”) in the solid
solution phase as a marker for the presence of the precipitating
phase. One can easily screen out the solutes in solution by

counting, for each D atom, the number of other D atoms in
their vicinity and eliminating any D atom with an insufficient
number of neighbors. The remaining D atom (in concentrated
environments) should nicely trace out the precipitate shape.

When using this approach, it must be verified that the
precipitate size used is sufficiently large to ensure (i) a
small Gibbs-Thomson effect [46,47] (i.e., changes in chemical
potential due to interface curvature) and (ii) a small ratio of
the lattice parameter over the precipitate size. Note that the
method is not sensitive to an overall direction-independent
bias in interfacial free energies that could be due to the
Gibbs-Thomson effect, because the inverse Wulff construction
is only used to provide the relative values of the different
interfacial free energies. Their overall direction-independent
scale factor is determined by a separate calculation on a
planar interface (described in the next section) that is therefore
not affected by the Gibbs-Thomson effect. However, the
Gibbs-Thomson effect could still affect the relative stability
of two interface orientations through changes in equilibrium
solute concentration, which in turn affect interface structures
and their relative excess free energies. This effect is typically
of a smaller magnitude than the isotropic component of Gibbs-
Thomson-induced bias, but must still be carefully investigated.
A second size issue arises from the fact that the lattice
parameter places a lower bound on the “resolution” of our
estimates of precipitate shape. Both the Gibbs-Thomson effect
and the “resolution” bound scale as 1/r , where r is of the order
of precipitate “radius”.

D. Absolute interface free energies

In order to fix the arbitrary constant c in the inverse Wulff
construction in Eq. (3) we need to compute the absolute surface
free energy for one facet. We have the freedom to pick a facet
that simplifies the calculations. In this case, taking a facet that
does not roughen proves useful, because the fluctuations in
the interface structure are small, so that little Monte Carlo
averaging is needed to obtain converged values.

In general (whether the chosen interface roughens or not),
the interface free energy Fi can be calculated from the
interface excess energy Ei by thermodynamic integration [12]
of the relation ∂(Fi/T )/∂(1/T ) = Ei . To this effect, one can
perform a sequence of lattice-gas Monte Carlo simulations,
starting from a perfectly atomically flat interface at T = 0 K,
where it is known that F = E, and integrating up to the desired
temperature. Performing this procedure for various supercell
periodicities (perpendicular to the interface), one can infer the
contribution of the interface to the free energy. Alternatively,
one can also use a Gibbs dividing surface construction to
subtract an appropriate amount of the free energy of the
two bulk phases in contact from the total free energy of the
supercell containing the interface. A natural choice of dividing
surface is one that implies an excess solute concentration of
zero.

In some systems, one can find an equilibrium facet that
remains atomically flat up to the temperature of interest. This
may happen when that interface’s low free energy is driven by a
low interfacial energy rather than by a large interfacial entropy,
i.e., when the energy associated with step formation is high.
In this case, the thermodynamic integration process becomes
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redundant because there is no configurational contribution to
the interfacial entropy. Hence, one can equivalently directly
calculate the free energy of formation of a sharp interface
(including vibrational contributions) using the effective cluster
interactions at the appropriate temperature and a dividing
surface construction. In this simplified geometry and with a
perfect stoichiometry, the determination of the dividing surface
that makes the excess solute zero is also especially simple.
These simplifications turned out to be possible in the case of
the Al3Ti precipitates considered here as an example.

E. Parametrization of the orientation dependence

The interfacial excess free energy provided by Eq. (2)
is unfortunately not in a very convenient form. First, it is
given numerically in tabular form on a mesh of possible
directions. Second, it is contaminated by noise due to the
fact that facets are rarely perfect (and in fact, are not perfect
in general, due to the stabilizing effect of entropy) and due
to ambiguities in defining the interface, as some solute atoms
may be misclassified as part of the precipitate. The resulting
interfacial free energies are thus not guaranteed to satisfy the
symmetry constraints imposed by the crystallography of the
problem. These problems can be jointly addressed by fitting
the raw output of Eq. (2) to a small set of direction-dependent
harmonics that are adapted to the known symmetry of the
precipitate’s crystal structure. We now describe a simple
and general method to generate appropriate harmonics which
exploits a convenient characterization of spherical harmonics
as polynomials in the components of a unit vector.

Suitable treatments for special cases already exist in
the literature. Notable examples include the cubic harmon-
ics (e.g., [48,49]) and harmonics for hexagonal symmetry
(e.g., [50,51]). A very general treatment has already been
presented in the literature [52]. Although very complete, this
treatment does not lend itself to a simple implementation: The
point group and its orientation have to be not only identified
as a list of symmetry operations, but also be recognized as
one of the known point groups, so that one can look up the
specific rules applying to that point group. Based on the point
group category found (e.g., cubic or hexagonal), a superset
of harmonics is selected. Then, based on the specific point
group found, “index rules” are applied to eliminate those
harmonics that should vanish by symmetry. This treatment
is ideally suited for researchers wanting to manually construct
a basis based on the knowledge of the point group, as the
different cases are nicely classified by point group. However,
a computer program implementing the method would also
necessarily contain a large number of tests and subcases. It
would also have to rotate the symmetries into a standard
“setting” to use the tabulated index rules. Moreover, if one
wishes to handle other point groups that are not special cases
of cubic or hexagonal symmetries (e.g., icosahedral symmetry
or other noncrystallographic point groups, which could occur
for quasicrystals), a different superset of harmonics and index
rules must be constructed.

In contrast, we describe here an approach that works
directly with the symmetry operation in matrix form (which is
easy to determine) and requires no classification into categories
of point groups. The possibility of having point groups in

different orientations (or “settings”) is automatically handled,
with no extra coding effort. The algorithm only relies on basic
linear algebra operations and handles any point group, not
just those for which supersets of harmonics have already
been constructed. The proposed method is related to the
one proposed in Ref. [53] to generate tensor bases, although
additional steps, provided herein, were needed to formally
show that such tensors bases can be used to generate direction-
dependent harmonics and to avoid redundant harmonics via a
projection scheme.

While we outline the method below, a formal algorithm
is given in Appendix A 1. Polynomials are known to form a
complete basis for any continuous function over a bounded
region (e.g., the unit sphere). Hence, in particular, they form
a complete basis for any continuous function defined over
the surface of the unit sphere. Let u be a three-dimensional
unit vector [e.g., u = ( cos(θ ) sin(φ), sin(θ ) sin(φ), cos(φ))].
Any continuous function f of direction u can therefore be
represented as

f (u) =
∞∑

L=0

A(L)uL, (4)

where we use the shorthand notation

A(L)uL ≡
3∑

i1=1

· · ·
3∑

iL=1

A
(L)
i1···iL

L∏

j=1

uij (5)

(with A(0)u0 defined as constant) and where A
(L)
i1···iL is a

rank L tensor that is symmetric under permutation of the
indices (since permutations of the indices do not change the
polynomial we can, without loss of generality, limit ourselves
to such symmetric tensors). If the function f (u) is constrained
by symmetry, such constraints can then be implemented by
restricting the tensors A(L) to obey suitable invariance with
respect to all symmetry operations in a given point group [54].
As explained in more detail in Appendix A 1, this can be simply
accomplished by considering 3L noncolinear trial tensors, and
obtaining symmetrized tensors by averaging each trial tensor
with all its transformations by each point group symmetry
operation. The desired result is obtained after eliminating
colinear symmetrized tensors.

An additional step is needed because expansion (4) is
a bit redundant, since the polynomial (u2

1 + u2
2 + u2

3) is
constant over the unit sphere. This would imply that nonzero
coefficients A(L) for L > 0 could give rise to a constant
f (u), which is undesirable. This can be avoided by projecting
each A(L) onto the space orthogonal to tensors giving rise to
polynomials that can be factored as

(
u2

1 + u2
2 + u2

3

)
A(L−2)uL−2 (6)

for some tensor A(L−2) of rank L − 2. [It is not necessary to
consider higher powers of (u2

1 + u2
2 + u2

3) in this factorization,
because A(L−2)uL−2 could include additional (u2

1 + u2
2 + u2

3)
factors as a special case.] A simple algorithm to accom-
plish the symmetrization and this projection is provided in
Appendix A 1.

The result of this procedure is an expression for the tensor
A(L) as a sum of KL symmetry-constrained and nonredundant
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components A(L,k):

A(L) =
KL∑

k=1

cL,kA
(L,k),

where the tensors A(L,k) are fixed and determined by sym-
metry while the coefficients cL,k are completely unrestricted.
Upon substitution into (4) we obtain a symmetry-constrained
expansion:

f (u) =
∞∑

L=0

KL∑

k=1

cL,kA
(L,k)uL. (7)

It is instructive to verify that expansion (7) coincides
(apart from an inconsequential linear transformation) with
spherical harmonics when no symmetry constraints are im-
posed. The easiest way to see this is to compare (7) with the
eigenfunction of the Schrödinger equation for a spherically
symmetric potential selected so that the eigenfunctions involve
polynomials. We can use any convenient radial potential
because we only focus on the angular part. Consider a
spherically symmetric harmonic potential, whose eigenstates
are polynomials times a spherically symmetric Gaussian. The
Gaussian is constant over the unit sphere, so we are left with
only a polynomial as the angular dependence. Moreover, it
is well known that the order of that polynomial is equal to
n1 + n2 + n3, the sum of three principal quantum numbers
of the harmonic oscillator along each dimension. This sum
is also (up to a constant scaling and shift) the energy of
the system. It follows that there is a direct correspondence
between all terms in Eq. (7) sharing the same value of L

and all eigenfunctions sharing the same energy. The different
terms sharing the same L thus correspond to eigenstates with
different angular momentum projections. We can verify that
the number of terms (in the case of a spherically symmetric
potential) matches the number of spherical harmonics for a
given value of L. Indeed, the number of distinct terms of
total power L in a polynomial in v variables is (L + 2

v − 1 ). In the

present case (L + 2
3 − 1 ) = (L + 2)(L + 1)/2. From that number,

we subtract the dimension of the subspace of polynomials that
factor as (u2

1 + u2
2 + u2

3) times a polynomial of order L − 2,

we obtain (L + 2
2 ) − (L

2 ) = (L + 2)(L + 1)/2 − L(L − 1)/2 =
2L + 1, exactly the number of spherical harmonics associated
with angular momentum L. Hence the dimension of the space
spanned by the spherical harmonics for a given L is the same
as the dimension of the space spanned by our polynomials.
Both spaces include polynomials of order L on the unit sphere
that are not collinear, and it follows that both bases must span
the same space. Hence both expansions, truncated to the same
L, span the same space.

The algorithm proposed above has been implemented
within the alloy theoretic automated toolkit (ATAT) [21,31–33]
as the “gencs” code, documented in the Supplemental
Material [55]. For convenience, the coefficients A(L) (up to
L = 6) for all crystallographic and selected noncrystallo-
graphic point groups can also be found in electronic form
in the Supplemental Material [55]. Figure 2 represents these
harmonics graphically for each of the crystallographic point
groups. Figure 3 shows the result of a similar exercise

for selected noncrystallographic point groups, which could
be useful, for instance, to handle the case of quasicrystals
precipitating out of a liquid.

III. RESULTS

A. Cluster expansion

Since our focus is in the equilibrium between an Al-rich
solid solution and Al3Ti precipitate, the range of composition
sampled during the cluster expansion construction process
was restricted to less than 30 atomic percent Ti. Agreement
between the ground state convex hulls from the raw DFT
energies and the energies obtained from the cluster expansion
(see Fig. 4) was enforced in the range of 0 to 25 atomic percent
Ti. Restricting the composition range in this fashion drastically
improves the convergence of the cluster expansion. The cluster
expansion construction process necessitated the calculation
of the formation of energy, using ab initio methods, of 21
structures ranging from 1 to 12 atoms per unit cell. The ground
state search was extended up to 12 atoms per unit cells. The
resulting cluster expansion exhibits a mean square error of
15 meV. In this system, only pair interactions were found to be
necessary, as determined from a cross-validation analysis [21].
These interactions are depicted in Fig. 5.

The temperature dependence of these interactions was
calculated via the transferable force constant approach (also
called the “bond stiffness vs bond length” approach) [40,41].
Three structures were used in the fit of the force constants
(pure Al, Al3Ti in the D023 structure and a metastable Al7Ti3
structure with 10 atoms per unit cell, chosen for its small size
and the presence of Ti-Ti bounds) and each was considered
at its equilibrium lattice parameters at 0 K as well as under
a linear strain of 2%. The resulting length dependence of the
force constants is illustrated in Fig. 6, along with the input
ab initio stiffness data. These ab initio phonon calculations
were performed using supercells ranging from 32 to 48
atoms, which is sufficient given the nearest-neighbor nature
of the transferable force constants. These transferable length-
dependent force constants were then used to calculate phonon
spectra for all 21 structures used in the cluster expansion
construction. A cross-validation analysis indicated that the
configuration dependence of the phonon free energy can be
captured using only the three nearest-neighbor pairs in the
cluster expansion. Although the temperature dependence of
the interactions (Fig. 5) may appear small, it nevertheless has a
significant impact on the temperature scale of thermodynamics
of the system. In precipitation calculations neglecting the
effect of phonons (not described here, for conciseness),
the precipitate exhibited flat facets up to around 1500 K, while
roughening occurs below 900 K when vibrational effects are
included.

B. Monte Carlo simulations

Canonical Monte Carlo simulations were performed with
the “emc2” code [56] included in ATAT which implements a
standard Metropolis algorithm. Two types of simulations were
used: (i) planar interface simulations, to obtain one absolute
excess free energy and (ii) precipitate shape equilibration
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FIG. 2. (Color online) Symmetry-adapted spherical harmonics for each crystallographic point group (up to L = 6). Group 1 (with 48
harmonics) is omitted. The inset shows the location of the Cartesian axes on the unit sphere (where directions of highest symmetry are aligned,
whenever possible) and the color scheme used to represent the function. The unique axis (when appropriate) is chosen to be z.

simulations, to obtain the relative excess free energies for all
interface directions.

The planar interface simulations were performed in 12 ×
12 × n supercells of the cubic conventional cell of fcc,
with n = 18,24,30. The supercell consisted of 1/2 Al3Ti
and 1/2 pure Al, resulting in two {001} interfaces. During
the thermodynamic integration runs, we observed that the
{001} interfaces remained atomically flat up to 900 K, thus
suggesting that configurational contributions to the interfacial
excess free energy are negligible and that thermodynamic
integration is unnecessary. It was verified that this finding
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53m

FIG. 3. (Color online) Symmetry-adapted spherical harmonics
for selected noncrystallographic point groups (up to L = 6), rep-
resented using the same conventions as in Fig. 2.
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was not merely an artifact of insufficient equilibration, by
deliberately starting the simulation with an excess solute
dissolved in the host phase and observing that these solutes
rapidly attach to the surface, one layer at a time, and remain in
place for the duration of the simulation. Given this behavior,
we report here the excess free energy of a perfectly flat
{001} interface obtained directly from the cluster expansion
(which agrees, within numerical integration noise, with the
full thermodynamic integration results). The interfacial excess
free energy of the {001} interfaces at 900 K is 240 mJ/m2,
using a dividing surface that makes the interfacial excess
solute (Ti) vanish. Areas are calculated assuming the lattice
parameter of pure Al, corresponding to the limit of small
coherent precipitates in a dilute solid solution. This is the
relevant limit since the concentration of Ti solutes in the host
phase (fcc Al) was found to be less than 10−4.

To verify convergence of the result with respect to precip-
itate size, we performed simulations for a range of precip-
itate sizes. The simulation cells considered were n × n × n

supercells of the cubic conventional cell of fcc with n =
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FIG. 6. Stiffness vs length relationship obtained from a fit to three
structures and used to efficiently calculate the phonon spectra for a
large number of structures. Stiffness data for bond stretching and
bending are marked by “+” and “×”, respectively. The resulting
linear fits are used in subsequent phonon calculations.

[100]

[001]

[100]

[010]

Precipitate size:   12    44     112     225     (×103 atoms)

(a) (b)

FIG. 7. (Color online) Convergence of the orientation depen-
dence of the interfacial free energy γ̃ (u) as a function of precipitate
size along two planar cross sections. γ̃ (u) is normalized so that
γ̃ ((0,0,1)) = 1, as indicated by the black circle. These plots show
the unprocessed data, prior to a fit to harmonics (hence deviations
from symmetry can be seen).

24,36,48,60. In each case, the precipitate was a parallelepiped
occupying 2/3 of the simulation supercell along each direction
(to ensure that the precipitate does not interact with its periodic
images). These correspond to simulations involving from
∼55 000 to 864 000 atoms with precipitates containing from
∼12 000 to ∼225 000 atoms. In each case, the precipitate was
first equilibrated for at least 10 000 Monte Carlo passes at the
higher temperature of 1800 K (to speed up the process) before
being equilibrated at the final temperature of interest 900 K
for at least 16 000 passes. The inverse Wulff constructions
were performed on 10 snapshots separated by 1000 Monte
Carlo passes and averaged to yield the data reported here.
In a medium-sized supercell (36 × 36 × 36), it was verified
that the simulation equilibrated to similar shapes even when
starting from different initial solute shape: (i) an octahedron
made of {111} facets and with longest axis of length 32 and
(ii) a 24 × 24 × 12 parallelepiped. The resulting equilibrium
shape did not detectably change upon further equilibration for
another 50 000 Monte Carlo passes at 900 K.

Figure 7 shows the convergence of the orientation depen-
dence of the interfacial free energies obtained directly from
the precipitate shape prior to a fit with harmonics. At small
precipitate sizes, one can both see a systematic bias (due to the

[001]

[010]
[100]

(a) (c)(b)

FIG. 8. (Color online) (a) Equilibrated Al3Ti D023 precipitate
(at 900 K) consisting of approximately 225 000 atoms (only Ti
atoms are shown). Atoms identified as solute are marked in red.
Note the combination of atomically flat {001} facets and roughened
interfaces in other directions. (b) Inverse Wulff construction from
the precipitate shape that provides the relative interfacial excess
free energy as a function of direction (units are dimensionless). (c)
Symmetry-constrained harmonic expansion fitted to the data in (b).
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TABLE I. Harmonic expansion [Eqs. (7) and (5)] of the calculated interfacial excess free energies. Harmonics are expressed in terms of
the components (x,y,z) of a unit vector u. The number of significant digits reported reflects the standard errors of the statistical regression
(1–5 mJ/m2). Finite-size effects introduce an additional error of at most 5%.

Coefficient Value Harmonics
cL,k (mJ/m2) A(L,k)uL

c0,1 282 1
c2,1 18 0.408x2 + 0.408y2 − 0.816z2

c4,1 − 59 0.396x4 − 1.730x2y2 + 0.396y4 − 0.649x2z2 − 0.649y2z2 + 0.216z4

c4,2 2 1.279x2y2 − 1.279x2z2 − 1.279y2z2 + 0.426z4

c6,1 14 0.154x6 − 0.421x4y2 − 0.421x2y4 + 0.154y6 − 1.894x4z2

+5.050x2y2z2 − 1.894y4z2 + 1.052x2z4 + 1.052y2z4 − 0.140z6

c6,2 6 0.557x4y2 + 0.557x2y4 − 0.557x4z2 − 6.680x2y2z2 − 0.557y4z2

+1.670x2z4 + 1.670y2z4 − 0.223z6

c8,1 − 73 0.113x8 − 2.011x6y2 + 4.640x4y4 − 2.011x2y6 + 0.113y8 − 1.141x6z2

+2.320x4y2z2 + 2.320x2y4z2 − 1.141y6z2 + 2.465x4z4 − 4.640x2y2z4

+2.465y4z4 − 0.677x2z6 − 0.677y2z6 + 0.0483z8

c8,2 − 9 1.470x6y2 − 3.956x4y4 + 1.470x2y6 − 1.470x6z2 + 1.686x4y2z2

+1.686x2y4z2 − 1.470y6z2 + 3.394x4z4 − 3.371x2y2z4 + 3.394y4z4

−1.133x2z6 − 1.133y2z6 + 0.0809z8

c8,3 − 27 1.224x4y4 − 7.345x4y2z2 − 7.345x2y4z2 + 1.224x4z4 + 14.689x2y2z4+
+1.224y4z4 − 1.469x2z6 − 1.469y2z6 + 0.105z8

Gibbs-Thomson effect) and a significant random noise (due
to the resolution limit implied by the lattice parameter). The
differences between the results obtained with the two largest
precipitate sizes never differ by more than 5%, which can be
taken as an upper bound on the magnitude of the errors.

C. Interfacial excess free energies

The resulting equilibrium precipitate shape was fed to the
inverse Wulff construction [Eq. (2)], after the few solute atoms
present in the Al matrix were eliminated by removing any Ti
atoms with no more than 2 Ti neighbors within a 5.1 Å radius.
As illustrated in Fig. 8, the Wulff plot obtained in this fashion is
slightly noisy, but a least squares fit to symmetry-constrained
harmonics yields a well behaved Wulff plot γ̃ (u) obeying
the underlying symmetry of the D023 phase (4/mmm). Cross
sections of the inverse Wulff construction are shown in Fig. 9
along with their corresponding harmonic fits.

When faceting occurs, the Wulff plot γ (u) contains non-
smooth cusps in the direction of the facets which may be

[100]

[001]

[100]

[010]

(a) (b)

FIG. 9. (Color online) Panels (a) and (b) overlap the raw data
(blue crosses) from the inverse Wulff construction (from Figure 7 for
the largest precipitate size) and the least squares fit of a harmonic
expansion (red continuous curve), along two planar cross-sections.

difficult to represent with only a few smooth harmonics.
However, it is easy to generate as many data points (i.e.,
directions u) as needed and as many harmonics as needed
to alleviate this potential problem. In the present setting,
including harmonics up to L = 8 and sampling the unit sphere
on a grid of 40 different latitudes and 80 different longitudes
was found to be sufficient for this purpose. It was found helpful
to increase the weight of points near the cusp during the fit
to ensure it is better reproduced. In the present system, a
direction at an angle φ from the [001] axis was given a weight
of ω + (1 − ω) sin φ with ω = 0.2. (A uniform weight would
have been of the form sin φ, but the additional ω term increases
the weight near the cusp at φ = 0.)

The resulting calculated interfacial excess free energies are
reported in Table I, as a linear combination of these symmetry-
constrained harmonics. The statistical noise (arising from
the random fluctuations visible in Fig. 9) introduces errors
in the calculated free energies that are less than 1% and
are thus negligible relative the precipitate size convergence
errors (at most 5%). Excess free energies along selected di-
rections, calculated from these harmonics, are also reported in
Table II.

TABLE II. Calculated interfacial excess free energies along
selected directions (within an accuracy of 5%, due to finite-size
effects).

Direction Interfacial free energy (mJ/m2)

{0 0 1} 245
{1 0 0} 259
{1 1 0} 268
{1 0 1} 206
{1 1 1} 227
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IV. CONCLUSION

Apart from a scaling constant, the complete orientation
dependence of interface free energies can be inferred from
equilibrium precipitate shapes via the inverse Wulff construc-
tion. The scaling constant can be recovered from a calculation
of the excess free energy of a single, conveniently chosen,
planar interface, from a thermodynamic integration procedure
starting from a sharp interface at absolute zero.

The present work goes beyond these simple realizations in
many key aspects. We employ the cluster expansion formalism
in its most general coarse-graining form to efficiently model
the system’s energetics in a way that includes the effect of
lattice vibrations without necessitating explicit modeling of
the atomic dynamics throughout the simulation. This approach
provides sufficient efficiency to reach the simulation system
sizes and the equilibration times needed to obtain properly
equilibrated precipitates of a size sufficient to enable the
reliable determination of their shapes. The method is able
to account for essentially all sources of entropy (arising from
phonons, bulk point defects, as well as interface roughness) and
is thus able to transparently handle both atomically smooth and
rough interfaces. This feature is illustrated by an application
to precipitates in the Al-Ti alloy system.

We also address the conceptual issue that some interface
directions do not appear on the Wulff shape when faceting
occurs. We show how the interfacial free energy surface can
be naturally extended into the “masked” regions of the Wulff
plot in a way that (i) preserves the predicted equilibrium shape
and (ii) has a natural geometric interpretation.

We provide symmetry-adapted harmonic bases (both in the
form of a simple algorithm and as explicit expressions for
all crystallographic point groups) to represent the resulting
orientation-dependent interfacial free energies. The same
bases could prove more generally useful in a variety of other
applications, for instance to represent the anisotropy of the
so-called constituent strain elastic energy.
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APPENDIX A: HARMONIC GENERATION METHOD

1. Definitions

Let us first define a few convenient symbols.
(i) Let S denote a 3 × 3 matrix representing a point

symmetry operation in Cartesian coordinates and let the
corresponding function S(A(L)) applied to a tensor A(L) of
rank L be defined as

[S(A(L))]j1,...,jL
=

3∑

i1=1

· · ·
3∑

iL=1

A
(L)
i1,...,iL

L∏

k=1

Sikjk

and let S denote a set of such matrices that defines the point
group of interest.

(ii) Let P denote a permutation vector (i.e., an L-
dimensional vector containing all the numbers {1, . . . ,L}, not
necessarily in increasing order) and let the function P (·) be

defined as

[P (A(L))]j1,...,jL
= A

(L)
iP (1),...,iP (L)

and let P (L) denote the set of all such permutations for a
given L.

(iii) Let # denote the number of elements in a set.
(iv) Let C(L,1), . . . ,C(L,M) be a set of rank L tensors defin-

ing linearly independent linear constraints on the generated
tensor basis, i.e., the A(L,k) generated must be orthogonal to
all C(L,m), according to the inner product

A(L,k) · C(L,m) ≡
3∑

i1=1

· · ·
3∑

iL=1

A
(L,k)
i1,...,iL

C
(L,m)
i1,...,iL

. (A1)

(If M = 0, no constraints are imposed.)
(v) Let vec(A(L)) denote a vectorization of the tensor A(L)

(i.e., a 3L -dimensional column vector containing all elements
of the tensor A(L)) and let unvec(·) denote the reverse operation.

2. Algorithm

Our algorithm for generating a basis for tensors of rank L

obeying symmetric constraints (defined by a point group S),
indices permutation invariance constraints (defined by the set
P (L)) and some linear constraints [defined by a basis of sym-
metric (under index permutations) tensors C(L,1), . . . ,C(L,M)]
is then as follows:

(1) If M > 0, define B to be the nonzero and non-linearly-
dependent columns of the matrix:

B = [vec(C(L,1)), . . . ,vec(C(L,M))].

(2) Set k = 0.
(3) Consider a set of distinct trial tensors Ã(L,t) for t =

1, . . . ,3L, each consisting of a single element set to 1, with all
remaining elements set to 0, and set

A(L,t) = 1

#P
∑

P∈P
P (Ã(L,t)).

[For added efficiency, one can limit the trial tensors to those
whose nonzero element Ãi1,...,iL obeys i1 � i2 � · · · � iL.
Also, it is clear that the sum over permutations P is just
equivalent to setting to 1 all elements of the tensor A(L,t)

equivalent to the nonzero element of Ã(L,t) under index
permutations.]

(a) For each trial tensor A(L,t), set

Q = unvec((I − B(BT B)−1BT )vec(A(L,t)))

(or simply Q = A(L,t) if M = 0).
(b) Calculate

Q̄ = 1

#S
∑

S∈S
S(Q).

(c) If Q̄ is nonzero (within machine numerical pre-
cision) and (for k > 0) not linearly dependent with the
[Ā(L,1), . . . Ā(L,k)], then increment k and set Ā(L,k) = Q̄.
(4) Finally, set KL = k and orthogonalize (and normalize)

the element of [Ā(L,1), . . . Ā(L,KL)] using the Gram-Schmidt
procedure.
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The harmonics of order up to Lmax are then generated by
calling the above routine for L = 1, . . . ,Lmax, setting M = 0
if L � 2 and otherwise setting the constraints C(L,k) to be

C(L,k) =
∑

P∈P
P (C̃)

with

C̃i1,...,iL = δi1,i2Ã
(L−2,k)
i3,...,iL

,

where the Ã(L−2,k) are also generated with the above routine,
called with rank L − 2, the same point group S, the permuta-
tion set P (L−2), and M = 0 (no constraints C(L−2,k)).

Although it is not explicit in the notation above, it is clear
that efficiency improvements (in storage and computational
requirements) are possible by exploiting, at each step, the
symmetry of all tensors considered under permutation of their
indices. However, for the basis sizes we considered in this
paper, we found such optimization to be unnecessary. It is also
interesting to note that, since all operations (except for the last
normalization step) yield tensors with rational elements, one
can use an exact rational representation for the coefficients to
obtain an analytic (rather than numerical) expression for the
harmonics. We did not find this to be necessary, however, and,
in fact, harmonics are often reported in numerical form [48,49].

3. Proof of the validity of the symmetrization technique

It is instructive to see why the method used for symmetriza-
tion in the algorithm of Appendix A 1 actually works. For an
arbitrary trial tensor A(L,t) we can verify that the symmetrized
tensor

Q̃ = 1

#S
∑

S∈S
S(A(L,t))

obeys T (Q̃) = Q̃ for any operation T ∈ S. Indeed, calculate

T (Q̃) = 1

#S
∑

S∈S
T (S(A(L,t))) = 1

#S
∑

S̃∈S
S̃(A(L,t)) = Q̃,

where the second equality holds because T (S(·)) is just another
operation in S̃(·) ∈ S and two distinct S(·) cannot be mapped
onto the same symmetry operation by applying T (·), since each
element of a group admits an inverse. Since the symmetrization
procedure is a linear projection, choosing the trial tensors A(L,t)

so that they form an orthogonal basis is sufficient to generate
a basis for the space of symmetrized tensors.

A similar argument holds for invariance under permutations
P of the indices. Finally, note that applying a point group
operation S(·) to a tensor A(L) that is invariant to indices
permutations yields a tensor with the same property:

[P (S(A(L)))]j1,...,jL
= [S(A(L))]j (P1),...,j (PL)

=
3∑

i1=1

· · ·
3∑

iL=1

A
(L)
i1,...,iL

L∏

k=1

SikjP (k)

=
3∑

i1=1

· · ·
3∑

iL=1

A
(L)
iP (1),...,iP (L)

L∏

k=1

SiP (k),jP (k)

=
3∑

i1=1

· · ·
3∑

iL=1

A
(L)
iP (1),...,iP (L)

L∏

k=1

Sik,jk

=
3∑

i1=1

· · ·
3∑

iL=1

A
(L)
i1,...,iL

L∏

k=1

Sik,jk

= [S(A(L))]j1,...,jL
,

where we have used the fact that reordering the sums or
the product has no effect and the invariance of A(L) under
permutation. This shows that symmetrizing the tensor after
making it invariant to indices permutations does not undo the
permutation invariance.

APPENDIX B: INTERPRETATION OF NONEQUILIBRIUM
EXCESS FREE ENERGIES

Let u be a unit vector and let γ (u) denote the surface (free)
energy for an interface with normal u. Consider an interface
that appears macroscopically flat with normal u0 and unit
area A0 = 1 but that is microscopically made of K different
facets of orientations u1, . . . ,uK with corresponding areas
A1, . . . ,Ak . We assume that these facets are big enough that the
edge energies are negligible relative to the surface energies, but
small enough that the interface still appears macroscopically
flat. Our goal is to express the γ (u0) in terms of u0,u1, . . . ,uK

and γ (u1), . . . ,γ (uK ).
The first step is to solve for the A1, . . . ,AK . To this effect,

consider a uniform fictitious “field” f traversing the surface u0

and observe that this flux must be equal to the flux traversing
the facetted surface made of orientations u1, . . . ,uK :

A0u0 · f =
K∑

k=1

Akuk · f.

Since this must hold for any constant flux f and since A0 = 1
by convention, we have the vector identity u0 = ∑K

k=1 Akuk

which can be written in matrix form as Ua = u0 where U =
[u1, . . . ,uk] and a = [A1, . . . ,Ak]T . If K = 3, U is a 3 × 3
matrix that is necessarily invertible (for otherwise some facets
would be redundant). If K = 2, the problem can be reduced to
a two-dimensional problem by a change of coordinates and U

is a 2 × 2 matrix that is invertible. The K = 1 case is trivial.
We can then generally solve for the Ak via a = U−1u0. The
effective surface energy is then

γ (u0) =
K∑

k=1

γ (uk)Ak = gT a = gT U−1u0, (B1)

where g = [γ (u1), . . . ,γ (uK )]T .
We can obtain the same answer via a simple geometric

construction. Let x be the point of intersection of the facets of
the Wulff shape associated with u1, . . . ,uK . This point x can
be found by solving the system of equations uk · x = γ (uk)
for k = 1, . . . ,K . which can be written in matrix form as
UT x = g, using the earlier notation. Hence, x = (UT )−1g.
Now consider a plane with normal u0 intersecting x. Its
distance from the origin is given by

xT u0 = ((UT )−1g)T u0 = gT U−1u0
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which is exactly the same as γ (u0) given by (B1). This implies
that the inverse Wulff construction automatically extrapolates
the surface free energies to the “unstable” directions to

reproduce the energy of a microscopically facetted surface
made of equilibrium facets that are large enough to make edge
energies negligible.

[1] Y. Mishin and J. L. M. Asta, Acta Mater. 58, 1117 (2010).
[2] Materials Interfaces: Atomic Level Structure and Properties,

edited by D. Wolf and S. Yip, Vol. 1 (Chapman & Hall, London,
1992).

[3] I. M. Lifshitz and V. Slyozov, J. Phys. Chem. Solids 19, 35
(1962).

[4] H. A. Calderon, P. W. Voorhees, J. L. Murray, and G. Kostorz,
Acta Metall. Mater. 42, 991 (1994).

[5] A. J. Ardell, Interface Sci. 3, 119 (1995).
[6] A. J. Ardell, J. Mater. Sci. 46, 4832 (2011).
[7] Y. Mishin, Acta Mater. 52, 1451 (2004).
[8] Z. Mao, C. Booth-Morrison, E. Plotnikov, and D. N. Seidman,

J. Mater. Sci. 47, 7653 (2012).
[9] A. J. Ardell and V. Ozolins, Nat. Mater. 4, 309 (2005).

[10] M. Asta and J. J. Hoyt, Acta Mater. 48, 1089 (2000).
[11] M. Asta, Acta Mater. 44, 4131 (1996).
[12] C. Woodward, A. van de Walle, M. Asta, and D. Trinkle [Acta

Mater. (to be published)] (2014).
[13] S. Muller, C. Wolverton, L. W. Wang, and A. Zunger,

Europhys. Lett. 55, 33 (2001).
[14] J. M. Sanchez, F. Ducastelle, and D. Gratias, Physica A 128,

334 (1984).
[15] A. van de Walle and M. Asta, Metall. Mater. Trans. A 33, 735

(2002).
[16] M. Asta, S. M. Foiles, and A. A. Quong, Phys. Rev. B 57, 11265

(1998).
[17] N. A. Zarkevich and D. D. Johnson, Phys. Rev. B 67, 064104

(2003).
[18] M. Asta, V. Ozolins, and C. Woodward, J Miner. Met. Mater.

Soc. 53, 16 (2001).
[19] M. Sluiter and Y. Kawazoe, Phys. Rev. B 54, 10381 (1996).
[20] A. van de Walle and D. E. Ellis, Phys. Rev. Lett. 98, 266101

(2007).
[21] A. van de Walle and G. Ceder, J. Phase Equilib. 23, 348

(2002).
[22] N. Moelans, B. Blanpain, and P. Wollants, Calphad 32, 268

(2008).
[23] V. Vaithyanathan, C. Wolverton, and L. Q. Chen, Phys. Rev.

Lett. 88, 125503 (2002).
[24] V. Vaithyanathan, C. Wolverton, and L. Chen, Acta Mater. 52,

2973 (2004).
[25] F. Roters, P. Eisenlohr, L. Hantcherli, D. Tjahjanto, T. Bieler,

and D. Raabe, Acta Mater. 58, 1152 (2010).
[26] G. Wulff, Z. Krystallogr. Miner. 34, 449 (1901).
[27] M. von Laue, Z. Kristallogr. 105, 124 (1943).
[28] S. Khare, S. Kodambaka, D. Johnson, I. Petrov, and J. Greene,

Surf. Sci. 522, 75 (2003).
[29] D. B. Laks, L. G. Ferreira, S. Froyen, and A. Zunger, Phys. Rev.

B 46, 12587 (1992).
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