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Phonon interference and thermal conductance reduction in atomic-scale metamaterials
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We introduce and model a three-dimensional (3D) atomic-scale phononic metamaterial producing two-path
phonon interference antiresonances to control the heat flux spectrum. We show that a crystal plane partially
embedded with defect-atom arrays can completely reflect phonons at the frequency prescribed by masses and
interaction forces. We emphasize the predominant role of the second phonon path and destructive interference in
the origin of the total phonon reflection and thermal conductance reduction in comparison with the Fano-resonance
concept. The random defect distribution in the plane and the anharmonicity of atom bonds do not deteriorate the
antiresonance. The width of the antiresonance dip can provide a measure of the coherence length of the phonon
wave packet. All our conclusions are confirmed both by analytical studies of the equivalent quasi-1D lattice
models and by numerical molecular dynamics simulations of realistic 3D lattices.
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Two-photon interference can result in a total cancellation
of the photon output because of the coalescence of the two
single photons, which was first observed by Hong et al. [1].
This interference effect occurs because two possible photon
paths interfere destructively, which produces the famous
Hong-Ou-Mandel (HOM) dip in the detection probability
of the output photons. The HOM dip has since then been
demonstrated in both the optical [2,3] and microwave [4]
regime. In particular, two-photon destructive interference was
recently demonstrated in a 3D optical metamaterial [5]. A
similar destructive interference effect which results in a total
reflection can be also realized in a phonon system. For the
sound waves, the two-path phonon interference antiresonance
was first described in Ref. [6], where the anomalous zero-
transmission and total absorption of long-wavelength acoustic
waves in a crystal with 2D (planar) defect were related
with the destructive interference between the two possible
phonon paths: through the nearest-neighbor bonds and through
the non-nearest-neighbor bonds which couple directly crystal
layers adjacent to the defect atomic plane.

Constant endeavor has been devoted to the precise control
of heat conduction. Recent efforts concentrated on reducing
the thermal conductivity κ via nanostructured materials with
superlattices [7,8] and embedded nanoparticles [9–11]. Most
works attributed the reduction of κ to the decreased phonon
lifetime and thus the mean-free path (MFP), which belong
to the particle description of heat conduction. However, the
role of destructive phonon interference in the reduction of κ is
much less understood in the wave picture of thermal transport.

In this Rapid Communication we introduce and model a
realistic 3D atomic-scale phononic metamaterial that allows
for manipulating the flow of thermal energy. Two-path phonon
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interference is generated by exploiting the phonon reflection
on internal interfaces embedded with defect-atom arrays. The
2D planar defects force phonons to propagate through two
paths: through unperturbed (matrix) and perturbed (defect)
interatomic bonds [6,12]. The resulting phonon interference
yields transmission antiresonance (zero-transmission dip) in
the spectrum of short-wavelength phonons that can be con-
trolled by the masses, force constants, and 2D concentration
of the defect atoms. Our results show that the patterning
of the defect-atom arrays can lead to a new departure in
thermal energy management [13], offering potential applica-
tions in thermal filters [14], thermal diodes [15], and thermal
cloaking [16–18].

An atomic presentation of the 3D phononic metamaterial
with a face-centered cubic (FCC) lattice including a 2D array
of heavy defect atoms is depicted in Fig. 1(a). The defect-atom
arrays are distributed periodically or randomly in the defect
crystal plane with different filling fractions fd . When the
defects do not fill entirely the defect plane, phonons have
two paths to cross such an atom array as shown in Fig. 1(a),
whereas the phonon path through the host atoms is blocked
when the defect layer is constituted by a uniform impurity-
atom array, 100%-packed with impurity atoms. Two types of
atomic metamaterials were studied using realistic interatomic
potentials: a FCC lattice of Argon (Ar) where the defects are
heavy isotopes and a diamond lattice of Si with Germanium
(Ge) atoms as the defects. The interactions between Ar
atoms are described by the Lennard-Jones potential [19]. The
covalent Si:Si/Ge:Ge/Si:Ge interactions are modeled by the
Stillinger-Weber (SW) potential [20]. To probe the phonon
transmission, the molecular dynamics (MD) based phonon
wave packet (WP) method [21] was used to provide the
per-phonon-mode energy transmission coefficient. The spatial
width l (coherence length) of the WP is taken much larger than
the wavelength λc of the WP central frequency, corresponding
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FIG. 1. (Color online) (a) A phononic metamaterial with a FCC
lattice containing a defect plane in which an impurity-atom array is
embedded. The red and blue curve refer to the phonon path through the
impurity atom bonds and through the host atom bonds, respectively.
The presence of the two possible phonon paths can result in the
“two-path phonon interference” antiresonance. The brown atoms are
defect atoms and the green ones are the atoms of the host lattice.
(b) The defect atoms have a periodic distribution with fd = 50%.
Randomly distributed defect atoms with (c) fd = 37.5% and (d) 25%
in the defect plane.

to the plane-wave approximation. All the MD simulations were
performed with the LAMMPS code package [22].

The transmission coefficient α(ω) of the WP with l = 20λc,
retrieved from MD simulations of an Ar metamaterial, is
presented in Fig. 2. The incident phonons undergo a total
reflection on the defect layer at the antiresonance frequency
ωR . Phonon transmission spectra display an interference
antiresonance profile since the two phonon paths interfere
destructively at ωR , analogous to the two-photon interference
which results in the HOM dip [1,5]. A total transmission at ωT

FIG. 2. (Color online) Spectra of phonon energy transmission
coefficient predicted by equivalent quasi-1D model (solid and dashed
lines) and by MD simulations (symbols) of a 3D Ar metamaterial
with planar defect containing heavy impurities, with mass m = 3m0.
Dashed-dotted line is the convolution of α(ω) in Eq. (1) with a
Gaussian WP with l = 2λc. Red, blue, and yellow symbols represent
transmission of WP with l = 20λc through the two paths, one path
with a single and two successive layers of defect atoms, respectively;
green symbols represent transmission of WP with l = 2λc through
two paths. Inset: Three possible quasi-1D lattice models describing
phonon propagation through the lattice region containing the local
defect. Black sticks between the atoms represent atom bonds. In
the case of the Ar lattice, the coefficients in Eq. (1) are ωR = 1.0,
ωT = 1.4, ωmax = 2.0, and C = 0.25.

follows the interference antiresonance, which is reminiscent
of the Fano resonance [23]. For a uniform defect-atom
array, the zero-transmission antiresonance profile will be
totally suppressed and replaced by a monotonous decay of
transmission with frequency. In the latter case, only the phonon
path through the defect atoms is accessible.

We emphasize that the second phonon path is indispensable
to the emergence of the zero-transmission dip, which cannot
be sufficiently described by the Fano resonance. We clarify
this by studying the phonon transmission through two
successive uniform defect arrays, where a local resonant
minimum is observed instead of a zero-transmission dip
in Fig. 2. This transmission minimum and the following
maximum satisfy together the Fano-resonance condition [23]
of a discrete state resonating with its continuum background,
but no zero-transmission dip occurs because of the absence
of the second phonon path [6,12,24]. This resonance can
be considered as phonon analogy of the Fabry-Pérot resonance
in optics, which requires only a single phonon path. Therefore
this clearly corroborates the two-path destructive interference
nature of the zero-transmission dip in α(ω).

To further understand the phonon antiresonances caused
by the interference between two phonon channels, we use an
equivalent model of a monatomic quasi-1D lattice of coupled
harmonic oscillators [12], depicted in the inset in Fig. 2. In
model (a), phonons propagate through two paths: through the
host atom bonds, and through those of the impurity atoms,
whereas in models (b) and (c), only the second channel remains
open. The model (a) gives the energy transmission coefficient
for plane wave:

α(ω) =
(
ω2 − ω2

R

)2(
ω2

max − ω2
)

(
ω2 − ω2

R

)2(
ω2

max − ω2
) + Cω2

(
ω2 − ω2

T

)2 , (1)

where ωR,T are the frequencies of the reflection and transmis-
sion resonances, and ωmax is the maximal phonon frequency
for a given polarization, ωR < ωT < ωmax. C is a real positive
coefficient given by the atomic masses, force constants, and
fd ; C = 0 for fd = 0. The ωR frequency exists only in the
presence of an additional channel which is open for wave
propagation through the bypath around the defect atom; see
inset (a) in Fig. 2. As follows from Eq. (1) and Fig. 2, α(ωR) =
α(ωmax) = 0 and α(ωT ) = α(0) = 1. In the transmission of a
narrow WP with l = 2λc, given by the convolution of α(ω)
for plane wave from Eq. (1) with a Gaussian WP in frequency
domain with l = 2λc, the interference effect is weakened by a
large number of frequency components when the plane-wave
approximation (l � λc) is broken and the transmission at ωR is
not zero any more, i.e., α(ωR) > 0, which is the case also in [1].
As depicted in Fig. 2, an excellent agreement in transmission
coefficients is demonstrated between the equivalent quasi-1D
model provided by Eq. (1) and the MD simulations of the 3D
atomic-scale phononic metamaterial with the use of realistic
interatomic potential.

In a lattice with atomic impurities, the substituent atoms
scatter phonons due to differences in mass and/or bond
stiffness. Since no bond defect was introduced, the loci of
the resonances are only determined by the mass of the isotope
atoms. As the defect atoms get heavier, the two-path phonon
interference antiresonance becomes more pronounced in terms
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(a) (b)

FIG. 3. (Color online) (a) Spectra of phonon transmission coeffi-
cient α of longitudinal acoustic mode in the phononic metamaterial,
which consists of 2D array of periodically alternating isotopes with
different mass ratio (MR) m/m0 with fd = 50% in a 3D Ar lattice.
Black squares refer to fd = 100% in the defect plane in comparison
with the fd = 50% case. Dashed lines are a guide to the eye.
(b) Isotopic shift of the two-path phonon interference resonance
versus the mass ratio m/m0. Symbols present the resonances from
MD simulations of a 3D lattice and solid line shows the analytical
prediction of the equivalent quasi-1D lattice model given by Eq. (2).

of phonon attenuation depth and width, and demonstrates a
redshift in the phonon transmission spectrum thus impeding
the long-wavelength phonons, as shown in Fig. 3(a). The
equivalent quasi-1D lattice model gives the following expres-
sion for the frequency of the transmission dip:

ωR = ωmax/
√

m/m0 + 1, (2)

where m and m0 refer to the atomic mass of the defect and host
atom, m > m0. The transmission resonance at ω = ωT is much
less sensitive to the defect mass since it is largely determined
by the mass of the host atom. As depicted in Fig. 3(b), the
spectral positions of the interference resonances ωR are again
in an excellent agreement with the analytical prediction of the
equivalent quasi-1D lattice model given by Eq. (2).

In Fig. 3(a), the transmission spectra for longitudinal
phonons across the uniform defect-atom array is plotted to
be compared with that of the 50%-filled defect-atom array.
At the two-path interference antiresonance frequency ωR , an
array of 50% defect atoms has a transmittance two orders of
magnitude smaller than that of a uniform defect-atom array.
The difference between the very strong phonon reflection on
a 50%-filled defect array and the high phonon transmission
across a uniform defect array can result in a counterintuitive
effect: an array of segregated impurity atoms can scatter more
thermal phonons than an array with a uniform distribution
of heavy isotopes. This anomalous phonon transmission phe-
nomenon in molecular systems can find its acoustic counterpart
in macroscopic structures [12,25,26]. In Ref. [25], perforated
plates were proved to shield ultrasonic acoustic waves in water
much more effectively than uniform plates. Liu et al. [26]
managed to break the mass-density law for sonic transmission
by embedding high-density spheres coated with a soft material
in a single layer of a stiff matrix.

We calculate the interfacial thermal conductance G by
following the Landauer-like formalism [27]:

G =
∫ ∑

ν

�ω(k,ν)vg,z(k,ν)α(ω)
∂

∂T
nBE(ω,T )

dk
(2π )3

, (3)

(a)

(b)

FIG. 4. (Color online) (a) The temperature-dependent interfacial
thermal conductance in a 3D Ar lattice across a defect plane 50%-
filled with periodic array of impurities (rectangles), a uniform defect
plane with (pentagons) and without (circles) the second phonon path
induced by non-nearest-neighbor bonds, in comparison with that of
an atomic plane without defects (hexagons). (b) α(ω) for a uniform
defect plane with (pentagons) and without (circles) the second phonon
path.

where vg,z is the phonon group velocity in the cross-
plane direction, and nBE(ω,T ) = [exp(�ω/kBT ) − 1]−1 is the
Bose-Einstein distribution of phonons at temperature T . The
integral is carried out over the whole Brillouin zone and
the sum is over the phonon branches. By embedding defect
atoms in a monolayer, we manage to reduce the thermal
conductance by 30% in respect to the case of no defects,
as shown in Fig. 4(a). This destructive-interference-induced
effect can be used to explain the remarkable decrease of the
thermal conductivity κ of SiGe alloy with very small amount
of Ge, with respect to pristine Si [28]. G can be further reduced
by considering the second-nearest-neighbor bonds C2 between
the host atoms on the two sides of the uniform defect layer in
addition to the nearest-neighbor bonds C1 linking the host and
adjacent defect atoms; see also Refs. [6,12]. This reduction
comes from the suppression of phonon transmission at short
wavelengths, shown in Fig. 4(b), which is due to the opening
of the second phonon path through the non-nearest-neighbor
bonds C2 interfering destructively with the first path through
the nearest-neighbor bonds C1. The emergence of the second
phonon path substantially reduces G, by 16%, despite the
weakness of the corresponding bonds: C2 = 0.08C1 in the
Ar lattice [19]. This demonstrates another advantage of the
application of the two-path destructive phonon interference for
the thermal conductivity reduction: counter-intuitively, more
heat flux is blocked by the opening of the additional phonon
paths.

In Fig. 5, we report the two-path phonon antiresonance in Si
crystal as the metamaterial incorporating 2D planar impurity
array of Ge atoms. The Ge and Si atoms have a mass ratio of
2.57 and thus the Ge-atom array introduces both heavy mass
and bond defects due to a weaker coupling between Ge:Si than
the Si:Si interaction [20].

The nonlinear effects on the two-path phonon interference
antiresonance was investigated by increasing the amplitude A

of the incident phonon WP, as shown in Fig. 5(b). As A

increases, the reflection becomes less pronounced with more
heat flux passing through, which provides direct evidence
of inelastic phonon scattering at the defect plane. The
antiresonances demonstrate a redshift in frequency due to the
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FIG. 5. (Color online) (a) Two-path phonon interference antires-
onance for both longitudinal and transverse phonons across a
segregated Ge-defect layer (red squares and blue circles) plotted
along with the nonresonant transmission across the uniform Ge-defect
layer (open squares and circles) in a Si phononic metamaterial.
(b) Evolution of the reflection resonance versus the increasing wave
amplitude. (c) α(ω) for a defect layer containing randomly dispersed
Ge atoms with fd = 37.5% and 25%, compared with that of a defect
layer containing 50% of periodically alternating Ge atoms. The
measured α(ω) were averaged over different random distributions.
(d) Resonance dip broadening in the limit of small filling fraction
fd = 5% for WP with a short coherence length (l = λc and l = 2λc,
yellow and orange circles), in comparison with that of almost
plane-wave WP (l = 20λc, green circles).

higher-order (cubic) terms in the interatomic potential. We also
note in this connection that our computation of a quasi-1D
atomic chain containing an impurity atom characterized by
nonparabolic (nonlinear) interaction potential with neighbor-
ing host atoms agree with our MD results. The interference
antiresonance remains pronounced even when the interaction
nonlinearity becomes fairly strong. Therefore the two-path
phonon interference antiresonance in the proposed phononic
metamaterial makes it possible to control thermal energy
transport in the case of huge lattice distortions, for instance
at very high temperatures.

In contrast to light [29], even a single defect atom in a
lattice plane produces interference antiresonance for phonons
because of the presence of the two phonon paths. Therefore,
phonon reflection should be apparent even for defect-atom
arrays in the absence of periodicity because of the localized
nature of the resonance. This is supported by further inves-
tigating the phonon transmission through the arrays of Ge
atoms, distributed in a plane in Si phononic metamaterials
with different fd and randomness. Strong transmission dip,
similar to that in periodic arrays, remains pronounced in both

cases, as shown in Fig. 5(c). This was shown experimentally to
be equally valid in macroscopic acoustic metamaterials [26].

Chen et al. reduced κ below the alloy limit by distributing
random Ge segregates in Si superlattices [11]. Their ab initio
calculations showed that the phonon MFP was substantially
reduced in the low frequencies [11]. We note that the Ge
segregates can be regarded as randomly dispersed heavy
resonators which scatter low-frequency thermal phonons by
the interference antiresonances, redshifted according to the
isotopic-shift law; cf. Eq. (2). With this destructive inter-
ference, we can also explain the extremely low κ found in
the In0.53Ga0.47As alloy randomly embedded with heavy ErAs
nanoparticles [8].

The decreased 2D defect filling fraction fd narrows the
antiresonance width because of weakening of the relative
strength of the “defect-bond” phonon path through the crystal
plane; see Fig. 1 and Eq. (1). In general, the width 	ω of
the antiresonance dip for our two-path phonon interference is
determined by both the fd and the finite coherence length l

of the phonon WP. As follows from Fig. 2, for the large
fd = 50%, 	ω is not sensitive to l. In the limit of small fd and
for l � λc, 	ω is narrow and decreases with fd , as shown in
Figs. 5(c) and 5(d). In this limit, for the WP with short l, l ∼ λc,
	ω will be determined mainly by l [1]. From Fig. 5(d), the
full width at half minimum of the dip for WP with l = 2λc is
	ω = 0.19 THz. Then from the inequality 	ω	t � 1/2, we
get the WP width in the time domain 	t = 2.6 ps and the WP
spatial width (coherence length) l = vg	t = 3.1 nm, where
vg = 1.2 km/s is the longitudinal phonon group velocity in
Si at ω = ωR . This length coincides with the WP coherence
length of ≈3.2 nm, which was used in the MD simulation
shown in Fig. 5(d). The width 	ω of the antiresonance dip for
the WP with a shorter coherence length l = λc is larger than
that of the WP with l = 2λc; see Fig. 5(d). Therefore the width
of the two-path phonon interference dip in the transmission
spectrum can provide a measure of the coherence length of
the phonon WP, similar to the width of the HOM dip in the
two-photon interference [1].

In conclusion, we provide comprehensive modeling of
atomic-scale phononic metamaterial for the control of heat
transport by exploiting two-path phonon interference an-
tiresonances. Thermal phonons crossing the defect plane
with the two paths of different nature undergo destructive
interference, which results in the reduction of thermal con-
ductance. Interference antiresonances are not deteriorated by
the aperiodicity in the defect arrays and by the anharmonicity
of atom bonds. The width of antiresonance dip provides
a measure of the coherence length of the phonon wave
packet. Such patterned atomic planes can be considered as
high-finesse atomic-scale phononic mirrors. And, finally, we
would emphasize that strong optical reflections observed in
3D stereometamaterials [30] can also be interpreted as photon
interference antiresonances in an optically transparent plane,
embedded with plasmonic nanostructures.
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