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Statistics of vortex loops emitted from quantum turbulence driven by an oscillating sphere
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We perform numerical simulation of quantum turbulence at zero temperature generated by an oscillating
sphere. In this simulation, we injected vortices on the sphere to generate turbulence. Although we prepare
injected vortex loops of identical length, they are extended by the oscillating sphere to form a tangle through
numerous reconnections. The resulting tangle around the sphere is anisotropic and affected by the oscillation.
The vortex tangle continues to emit vortex loops, which leave the sphere. The statistics of emitted loops differs
significantly from those of the original injected vortices. First, the sizes of the emitted loops are widely distributed,
ranging from smaller to much larger than the size of the initial injected loop. Second, the propagation direction
of the emitted loops exhibits anisotropy: Small loops move away almost isotropically, but large ones do so
anisotropically along the oscillation direction of the sphere. Thus, the oscillating object stirs the initial injected
vortices to reproduce a group of vortices with different statistics. Such physics is compared with the experiments
of vibrating objects.
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I. INTRODUCTION

Superfluid helium is a typical quantum fluid that is much
influenced by quantum effects. As a result, quantized vortices
appear in superfluid helium. A classical fluid allows vortices to
have arbitrary circulation; in contrast, the circulation around a
vortex core is quantized in superfluid helium. A tangle of such
quantized vortices yields quantum turbulence (QT), which is
turbulence of the superfluid component. QT is one of the
central issues in low-temperature physics [1].

To characterize QT, many types of statistical quantities
have been studied (e.g., the energy spectrum and the vortex
line length). The energy spectrum in fully developed QT
obeys the Kolmogorov − 5

3 law, which is the most important
statistical law in classical turbulence [1]. The vortex line length
shows how QT develops in a sample volume. These quantities
are obtained after performing a coarse-grained average over
some macroscopic scale, which does not distinguish any
individual vortex. Since QT consists of quantized vortices,
there must be statistics that can directly account for each
vortex. Such statistics were recently observed in experiments
using vibrating wires by the Osaka City University (OCU)
group [2,3].

Hashimoto et al. experimentally showed that turbulence
starts with remanent vortices attached to wire surfaces in
superfluid 4He at very low temperature [4]. They prepared two
kinds of vibrating wires: one holding remanent vortices works
as a generator of turbulence and another free from them works
as a detector. The turbulence around the generator emits vortex
loops, which propagate to the detector. Recently, a series of
experiments were performed at low temperatures by the OCU
group [2,3,5]. They repeatedly measured the period from the
onset of turbulence generation by a generator wire to the vortex
detection by a detector wire and found that the nondetection
probabilities are well fitted to an exponential distribution,
indicating a Poisson process. In this method, only the first
vortex loop reaching the detector was observed. Using this
distribution, they estimated the nondetection time and the mean

detection period. They estimated the size of the first vortices
from the nondetection time by assuming they were circular
vortex rings. By measuring the mean detection periods for two
different distances between the generators and the detector, the
anisotropic emission of the vortices was suggested. Oda et al.
observed the vortex emission at high temperature to find that
the emission parallel to the vibrating direction is much less
than that normal to the direction [5].

To understand the statistics of all vortices, we need
numerical simulations supposing the situation of the vibrating
object. There are a few numerical works in which QT made
by a vibrating object has been studied. Hänninen et al. showed
how the remanent vortices in superfluid 4He become unstable
around a sphere under a sinusoidal oscillating flow [6]. The
radius of the sphere was 100 μm and remanent vortices
joined the sphere and the vessel wall. The oscillating flow
causes the remanent vortices to excite Kelvin waves and emit
vortex loops. The vortex loops form a vortex tangle around
the sphere. Fujiyama et al. simulated the detector wire in
the experiments of the OCU group by using an oscillating
sphere [3,7]. They showed how turbulence develops around
an oscillating sphere without remanent vortices. The sphere is
hit by vortices injected toward the sphere assuming that the
vortices come flying from the generator. The motion of the
sphere causes these vortices to be stretched to form a tangle.
These numerical works address course-grained quantities such
as vortex line length but do not provide statistics of all vortices.

The main purpose of this paper is to study the statistics of
all vortices emitted from turbulence in relation to the OCU
experiments. The OCU group observed only the first vortex
loop reaching the detector wire [2,3,5], but we investigate
all emitted vortex loops in our simulations. We focus on
the statistics of all vortices, including the length and the
direction of the drift velocity. The direction of the drift
velocity may become anisotropic through two mechanisms: the
sphere oscillation and the configuration of remanent vortices.
By using the present method without anisotropy for setting
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remanent vortices, we can remove the latter mechanism and
study the effect of the oscillation. In previous works, some
specialized forms of remanent vortices were presumed [3,6,7],
and the results may depend on these choices. Here, we
add vortices isotropically on the sphere at some intervals;
the positions of injected vortices on the oscillating sphere
and their normal directions are random. We also investigate
coarse-grained quantities such as vortex line length and the
anisotropic parameters. We perform the full Biot-Savart vortex
filament simulations at zero temperature.

The contents of this paper are as follows. We clarify the
configuration and formulation of the model and introduce
the equations of motion in Sec. II. In Secs. III and IV, we
present the coarse-grained quantities. In Sec. III, we show the
vortex line length as a function of time, which illustrates the
development of turbulence. In Sec. IV, we show the anisotropy
of the configuration of vortices around the oscillating sphere.
In Sec. V, we present the statistics of emitted vortex loops, and
in Sec. VI, we discuss their dependence on the parameters of an
oscillating sphere. Section VII is devoted to our conclusions.

II. MODEL AND FORMULATION

Superfluid 4He at zero temperature can be treated mathe-
matically as an ideal incompressible fluid with no viscosity.
Quantum fluids have quantized circulation. In 4He, the
circulation around a quantized vortex is κ = h/m, where κ

is called the quantized circulation, h is Planck’s constant, and
m is the mass of a 4He atom. The core size of a quantized
vortex is given by the healing length of superfluid 4He, which
is approximately equal to the atomic size of 4He. Hence, we
can apply the vortex filament model to this system. According
to Helmholtz’s theorem, a vortex filament s(ξ,t) moves with
the superfluid:

ṡ = vs , (1)

where vs is the superfluid velocity at the point s(ξ,t) and ξ is the
arc length along the vortex line. In an infinite superfluid system,
the superfluid velocity vs is equal to the velocity vω generated
by vortex filaments, which is given by the Biot-Savart law

vω(r) = κ

4π

∫
L

(sl − r) × dsl

|sl − r|3 , (2)

where sl indicates the position on a vortex, and the integral is
performed over all the vortex lines [8,9].

In the presence of a boundary, the superfluid velocity
satisfies the boundary condition for an inviscid fluid. Then,
the superfluid velocity vs0 in an finite system with a boundary
is written as

vs0 = vω + vb, (3)

where vb is the additional superflow needed to satisfy the
boundary condition. The boundary condition is written as

vs0 · n = 0, (4)

where n is the vector normal to the boundary. Although many
possible geometries may be considered for the oscillating
objects, in this study, for simplicity, we use a sphere for which
the method for adding image vortices is understood [10]. To

satisfy the boundary condition, image vortices that comprise
the velocity field vb are added inside the spherical boundary.

In addition, in a reference frame moving with the oscillating
sphere, the superfluid velocity vs0 should satisfy

(vs0 − vp) · n = 0, (5)

where vp is the velocity of the oscillating sphere. To satisfy
the boundary condition, we add another term vu to Eq. (3):

vu = ∇�u, (6)

�u(r,t) = −1

2

(
a

|r|
)3

vp(t) · r, (7)

where a is the radius of the oscillating sphere, r is the position
vector whose origin is the center of the sphere, and vu is the
flow induced by the motion of the sphere [11]. Thus, vs0 is
obtained by adding the contribution of vortex filaments, image
vortices, and the potential field of Eq. (6):

vs0 = vω + vb + vu. (8)

A vortex filament is represented numerically by a string
of points. The numerical spatial resolution, which is the
distance between discrete points on a vortex, is 0.05 μm.
Theoretically, when a vortex encounters another vortex or
comes close to the oscillating sphere, reconnection can occur.
However, our numerical method with vortex filaments can not
represent the reconnection process itself. Hence, we reconnect
vortices when a vortex is very close to another or to the
oscillating sphere within the numerical spatial resolution. We
remove small vortices whose sizes are comparable to the
spatial resolution [12]. Removing them acts as dissipation
in this system, which is the usual practice followed in a
zero-temperature simulation. The dispersion relation of the
Kelvin wave is ω ∼ κk2. The maximum frequency coming
from our numerical resolution is about 109 Hz, which is much
larger than the frequency 3000 Hz of the sphere oscillation.
Thus, the numerical resolution (high-frequency) has little
effect on the large-scale (low-frequency) phenomena we are
interested in.

In this simulation, our current system is in open space. We
assume that the surface of the oscillating sphere is smooth.
The radius of the oscillating sphere is 1.1 μm, the frequency
of the oscillation is 3 kHz, the amplitude of the oscillation is
5.31 μm, and the oscillation peak velocity is 100 mm/s. These
parameters correspond to the experimental conditions [2]. We
inject vortices, whose form is an arc of a circle with a radius
of 1.1 μm and a central angle of 3π/2, onto the oscillating
sphere (see Fig. 1). Then, the arc length of an injected vortex

FIG. 1. (Color online) Injection vortices. The black line shows
a vortex whose form is an arc of a circle with a radius of 1.1 μm
and a central angle of 3π/2 injected onto an oscillating sphere every
0.01 ms. The positions of injected vortices on the oscillating sphere
and their normal directions are random.
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is given by 1.1 × 2π × 3/4 [μm], represented by the length
lSV . The radius 1.1 μm of an injected vortex is determined
by the condition that the self-induced velocity of the vortex
becomes comparable to the velocity of the oscillating sphere.
How the attached vortex is affected by the sphere depends
strongly on the relation of their velocity. The self-induced
velocity of a vortex ring with the radius R is the order of κ/R.
When the velocity of the attached vortex is larger than the
sphere velocity (namely, the vortex is small), the vortex just
slips on the smooth surface of the sphere, not leading to serious
instability towards a vortex tangle. In contrast, a large vortex
with low velocity is detached easily from the sphere. Since the
detached large vortex can not move fast, the sphere collides
with it repeatedly to split it into smaller vortices towards a
vortex tangle. The critical size of the vortex ring is given by
the condition that its self-induced velocity is comparable to
the sphere velocity, which gives the critical radius of the order
of μm. Thus, we suppose that the radius of the injected vortex
ring is 1.1 μm.

Unless we keep injecting vortices, a turbulent state can
not be maintained. A vortex attached to the oscillating sphere
is detached by the sphere motion in about 1 ms; therefore,
we inject vortices every 0.01 ms, which is much shorter than
1 ms. To add these vortices isotropically, the positions and the
normal directions of injected vortices on the oscillating sphere
are random.

We should study the emission of vortex loops from a
statistically steady vortex tangle. However, our vortex tangle
is not uniform but localized around the oscillating sphere.
Hence, we should develop a criterion for how and where we
observe the vortex loops to collect data for statistics. Thus, we
suppose a computational spherical region covering roughly
the localized vortex tangle. The radius of the computational
spherical region is 30 μm and its center is set at the center of the
sphere oscillation. First, by monitoring the vortex line length
inside the computational spherical region, we investigate how
the vortex tangle develops and whether it becomes statistically
steady. Second, we investigate the vortex loops emitted from
the vortex tangle in statistically steady state. The emitted vortex
loops move away independently when they are far enough
away from the tangle around the oscillating sphere. Then,
we will detect them at 30 μm from the center; the statistics
observed at 30 μm is supposed to be the same as that observed
by the detector wire that is placed at a distance of the order of
1 mm away from the generator because each vortex is expected
to propagate independently out of the computational spherical
region.

III. TIME EVOLUTION OF THE GENERATED
TURBULENCE

We now calculate the time development of the vortex line
length (VL) inside the computational spherical region (see
Fig. 2). The VL increases as the vortices are injected and
stretched. When vortices exit from the computational spherical
region, the VL decreases.

Vortices attached to the oscillating sphere are stretched
by the sphere motion. When their edge points on the sphere
move toward a stagnation point and approach each other, they
reconnect. In this way, the vortex becomes detached from the
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FIG. 2. (Color online) Vortex line length as a function of time in
a computational spherical region.

oscillating sphere and moves away from the sphere. When
detached vortices reconnect with each other, vortices of various
sizes are generated. What happens to them after that depends
on their size. Small vortex loops move off immediately because
of their own high-drift velocity [9]:

vDF (t) = 1

�

∫
c

ṡ dξ, (9)

where � is the length of the vortex loop, ṡ is given by Eq. (1),
and the integral is performed over the vortex loop. In contrast,
large vortex loops remain around the sphere because of their
low-drift velocity. The remaining large vortex loops then form
a tangle around the sphere and we call this region the turbulent
region [see Figs. 3(a) and 3(b)].

In Fig. 2, for 0 � t < 0.95 ms, the VL increases because
the injection and the growth of the vortices dominate over the
loss of the vortices. The total length of vortices injected during
the period of 0.95 ms is approximately 0.49 mm. The VL at
0.95 ms is approximately equal to the value of the total length.
For 0.95 � t < 3.8 ms, turbulence gradually forms around
the sphere, while small vortices escape continuously from
the computational spherical region [see Fig. 3(a)]. Then, the
increase of the VL tapers off. For 3.8 � t < 5.0 ms, large vortex
loops start to escape from the computational spherical region,
reducing the VL. After 5.0 ms, in the statistically steady-state
case, the loss of vortices balances the injection and growth
of vortices so that the VL saturates, and the configuration of
vortices around the sphere is as depicted in Fig. 3(b).

(a)

10 µm
x

(b)

10 µm
x

FIG. 3. (Color online) Simulations of the time evolution of a
vortex tangle with an oscillating sphere at (a) t = 2 ms and (b)
t = 9 ms. The sphere oscillates along the x axis.
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IV. ANISOTROPIC PARAMETERS OF FULLY
DEVELOPED VORTEX TURBULENCE

This system is anisotropic along the direction of the
oscillation. Hence, the turbulence in the turbulent region is
anisotropic in spite of the isotropic injection of vortices. To
show the anisotropy of turbulence, we use the anisotropic
parameters [9]. The anisotropic parameters are calculated by
using the following equations:

I‖ = 1

L′

∫
(1 − (s′ · r‖)2)dξ, (10)

I⊥ = 1

L′

∫
(1 − (s′ · r⊥)2)dξ, (11)

where r‖ and r⊥ stand for unit vectors parallel and perpendicu-
lar, respectively, to the direction of the sphere oscillation; L′ is
the total vortex length in the turbulent region; and the integral
is performed over all the vortex lines in the region. We define
a region around the sphere oscillation as the turbulent region
including all vortices attached to the sphere. The turbulent
region is supposed to be a cylindrical region whose radius
is 3.3 μm (three times the radius of the sphere) and whose
height is 15.39 μm (1.5 times the total amplitude of the sphere
oscillation). The axis of the cylindrical region is set along the
oscillation direction of the sphere. The center of the region is
set at the center of the oscillation. If the tangle is isotropic,
we have I‖ = I⊥ = 2

3 . However, if vortices are lying in the
direction normal to r‖, the direction of the sphere oscillation,
we have I‖ = 1 and I⊥ = 1

2 .
The average values of the anisotropic parameters in the

statistically steady state are I‖ = 0.7106 and I⊥ = 0.6442.
This indicates that the turbulence in the turbulent region is
nearly isotropic but that there are more vortices normal to
the oscillation direction than would be the case in purely
isotropic turbulence. When we add vortices isotropically at
some intervals around a stationary sphere, isotropic turbulence
is generated. In this condition with the oscillating sphere, the
turbulence is somewhat anisotropic. In the previous studies
by Hänninen et al. [6] and Fujiyama et al. [3,7], the injected
vortices were anisotropic. The turbulence around the sphere
in these studies could be anisotropic because of the oscillating
sphere and the way vortices were injected.

V. STATISTICS OF ALL EMITTED VORTEX LOOPS

In this section, we discuss the statistics of all vortex loops
emitted from the statistically steady turbulence, focusing on
the length of vortex loops, their drift velocity compared with
that of a circular vortex ring whose length is identical to that of
the emitted vortex loop, and the anisotropy of the propagation
direction. The emitted vortices refer to vortices that can escape
from the turbulent region.

A. Length of emitted vortex loops

The lengths of emitted vortex loops are distributed between
∼1 and ∼30 μm, even though the length lSV of the injected
vortex determined by the velocity of the oscillating sphere is
5.18 μm. Such redistribution of the vortex length is generally
caused by the two kinds of vortex reconnections, namely, the
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FIG. 4. (Color online) The PDF of the length of emitted vortex
loops. The dashed black line shows the length lSV (5.18 μm).

split type and the combination type [12]. To investigate the
size of the vortex loops emitted from the turbulent region,
we calculate the length of each emitted vortex loop when it
reaches the boundary of the computational spherical region.
Figure 4 shows the probability density function (PDF) of the
length of such emitted vortex loops. The PDF has a peak
corresponding to the value of lSV . A vortex whose length is
shorter than the original length lSV is generated by the split type
of reconnections. The length of large vortices may depend on
the amplitude of the sphere oscillation. A vortex stretched by
the oscillating sphere has a size similar to the total amplitude
of the oscillating sphere, 10.62 μm. A vortex longer than lSV

is generated by some combination type of reconnections [12]
and stretching processes. Thus, vortex loops of various sizes
are created.

B. Drift velocity of emitted vortex loops

As found in Fig. 3, the emitted vortex loops are generally
noncircular. Hence, the emitted vortex loop has a lower drift
velocity than that of a circular vortex ring whose length is
identical to that of the emitted vortex loop. Although the drift
velocity of a vortex is time dependent, we obtain the drift
velocity averaged for 6 ms after the vortex loop reaches the
boundary of the computational spherical region.

Figure 5 shows the PDF of the drift velocity ve of all emitted
vortex loops normalized by that of a circular vortex ring [13]
with the same vortex length:

vring(l) = κ

2l
ln

4l

e1/2πa0
, (12)

where l is the length of the vortex ring and a0 is the core size
of a quantized vortex.

A vortex loop with a Kelvin wave is known to have a lower
drift velocity than a circular vortex ring [14,15]. A circular
vortex has the highest drift velocity among all vortex loops
with the same length. Hence, the value of ve/vring is less than
unity.

The sphere oscillation may excite Kelvin waves with a
wavelength resonant with the frequency of the oscillation.
However, in this condition, the wavelength is about 13 μm.
Because this wavelength is generally much greater than the
total length of vortices, the excitation of Kelvin waves by the
oscillation would be not so important.
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FIG. 5. (Color online) The PDF of the drift velocity ve of emitted
vortex loops in this simulation normalized by the drift velocity vring

of a circular vortex ring. The blue shaded parts show the rate of small
vortices whose length are shorter than lSV . The number of data for
small vortices is about a third of the whole.

In the experiment using vibrating wire performed by the
OCU group, the radius of emitted vortex loops was estimated
by assuming the vortex loops to be circular vortex rings. In our
simulation, ve/vring is distributed between ∼0.68 and ∼1 (see
Fig. 5). The PDF of the drift velocity depends on the length
of the emitted vortex loops. The shaded parts in Fig. 5 show
the contribution of small vortices whose lengths are less than
lSV . The number of data for small vortices is about a third
of the whole. The ratio of ve/vring of the small vortex loops
is distributed between ∼0.88 and ∼1 (see the shaded part in
Fig. 5). The PDF of ve/vring of the small vortex loops has a
narrower distribution than that of large ones, indicating that
the small emitted vortices are closer to a circular shape than
the large emitted vortices. The Kelvin waves excited on a small
vortex have a large wave number and a high energy. The small
vortices consequently excite fewer Kelvin waves than the large
vortices.

C. Anisotropy of propagation direction

This system exhibits anisotropy caused by the oscillating
sphere. The propagation of the emitted vortex loops is
anisotropic along the direction of the sphere oscillation in the
statistically steady state. We calculate the direction of the drift

FIG. 6. (Color online) (a) The coordinate system. (b) The az-
imuthal angle φ of the direction of the drift velocity of a vortex
loop. The red arrow shows the drift velocity vector. The dashed red
arrow shows the projection of the vector on the x-y plane.
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FIG. 7. (Color online) The PDF of the directions of drift velocity
of emitted vortex loops with the polar angle π/4 � θ � 3π/4 as a
function of the azimuthal angle φ.

velocity [Eq. (8)] of each vortex loop averaged for 6 ms after
the vortex reaches the boundary of the computational spherical
region.

To express the propagation directions of each vortex loop,
we choose the following system of coordinates: The origin is
set at the center of the oscillation, the x axis is taken along the
direction of oscillation, and the y and z axes are set as shown in
Fig. 6(a). The direction of the drift velocity can be represented
by an azimuthal angle φ and a polar angle θ [see Fig. 6(b)].
This system is symmetric about the x axis, and we consider the
range of π/4 � θ � 3π/4. We express the PDF as a function
of the azimuthal angle φ.

Figure 7 shows the PDF of all vortices in the simulation. The
distributions of Fig. 7 show that more vortex loops propagate
along the oscillation direction. Since the PDF can depend on
the size of vortices, we divide the PDF into contributions from
large vortex loops and from small ones. A similar but more
intense characteristic distribution is seen in Fig. 8, which shows
the PDF of large vortex loops whose length is greater than lSV .
In contrast, as shown in Fig. 9, the PDF of small vortex loops
whose length is less than lSV indicates a less characteristic
distribution than depicted in Fig. 7.

This change of distributions occurs at the length lSV related
to the sphere velocity. There are generally two mechanisms
causing the anisotropy (see Sec. I). In this simulation, we
removed the mechanism attributed to the remanent vortices.
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FIG. 8. (Color online) The PDF of the directions of drift velocity
of emitted vortex loops whose lengths are longer than lSV (5.18 μm)
with the polar angle π/4 � θ � 3π/4 as a function of the azimuthal
angle φ.
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FIG. 9. (Color online) The PDF of the directions of drift velocity
of emitted vortex loops whose lengths are shorter than lSV (5.18 μm)
with the polar angle π/4 � θ � 3π/4 as a function of the azimuthal
angle φ.

Hence, the anisotropy is caused by the sphere oscillation.
Small vortex loops are generated through some reconnections.
Such reconnections can occur at any time in a turbulent
region independent of the sphere oscillation. As a result, the
oscillating sphere has little effect on the generation of small
vortex loops, with their propagation being close to isotropic.
In contrast, large vortex loops are generated through some
combination type of reconnections and stretching processes.
These reconnections occur in the turbulent region where the
tangle is anisotropic as seen in Sec. IV and the stretching is
caused by the sphere oscillation. As a result, the oscillating
sphere directly affects the propagation of large vortex loops,
making it anisotropic. The same characteristic change occurs
in the PDF as a function of the polar angle θ . Oda et al.
observed the vortex emission at high temperature to find that
the emission parallel to the vibrating direction is much less
than that normal to the direction [5], which is opposite to the
conclusion of our simulation. Currently, we do know the reason
of the discrepancy. It may be attributable to the boundary
condition of superfluid, which is briefly discussed in Sec. VII.

VI. STATISTICS FOR OTHER PARAMETERS

In this section, we discuss the dependence of the statistics
on parameters of the oscillating sphere. The parameters are
the amplitude, the frequency, and the radius. Because the
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FIG. 10. (Color online) The PDF of the length of emitted vortex
loops in the simulation with an oscillating sphere whose radius is
1.5 μm. The dashed black line shows the length lSV (5.18 μm).
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FIG. 11. (Color online) The PDF of the directions of drift veloc-
ity of emitted vortex loops with the polar angle π/4 � θ � 3π/4 as a
function of the azimuthal angle in the simulation with an oscillating
sphere whose radius is 1.5 μm.

velocity is obtained as the product of the amplitude and the
frequency, we need not consider it. The dependence on the
amplitude is seen in the maximum size of the emitted vortices
(see Sec. V A). The dependence on the frequency affects
the wavelength of the Kelvin waves excited on the vortices.
However, the effects of small changes of the frequency are
negligible (see Sec. V B). Thus, we discuss the dependence on
the radius of an oscillating sphere.

We also perform the same simulations with an oscillating
sphere with a radius of 1.5 μm. Even if we change the radius,
we could find little difference in the statistics.

The VL shows the same variation as shown in Sec. III.
The statistically steady state starts at 5.2 ms. The average
value of the anisotropic parameters in the turbulent region are
I‖ = 0.7076 and I⊥ = 0.6460 in the statistically steady state.
We also investigate the statistics of all emitted vortex loops
in the statistically steady state. Figure 10 shows the PDF of
the length of such emitted vortex loops. The PDF has a peak
corresponding to the length lSV . There is little difference in
the simulations with different radii of the oscillating sphere;
therefore, the distribution seems to be determined by the length
lSV rather than the radius. Figure 11 shows the PDF of the
propagation direction as a function of the azimuthal angle φ,
which exhibits the same characteristic distribution as in Fig. 7.
The PDF also depends on the length of the emitted vortex
loops. The same characteristic distribution is seen in the PDF
of large vortices whose length is greater than the length lSV

in the simulation. In contrast, the PDF of small vortex loops
whose length is shorter than the length lSV has no characteristic
distribution.

In this simulation, changing the amplitude of the oscillation
can affect the length of emitted vortex loops. Based on our
study, the statistics in this simulation are insensitive to variation
in the other parameters such as the sphere radius and the
frequency.

VII. CONCLUSIONS

We numerically studied quantum turbulence created by an
oscillating sphere. Seed vortices were continuously injected
onto the surface of the sphere and stretched by the sphere
motion to form a localized vortex tangle, which emits vortex

174520-6



STATISTICS OF VORTEX LOOPS EMITTED FROM . . . PHYSICAL REVIEW B 89, 174520 (2014)

loops. We investigated the statistics of the emitted loops,
and by considering QT to consist of quantized vortices, we
investigated the statistics of all vortices. The supposed situation
is realized in the OCU experiments using vibrating wires in
which a generator wire created a vortex tangle from remanent
vortices, and the vortices emitted from the tangle are monitored
by a detector wire.

The emitted vortex loops show some characteristic proper-
ties, although some influence of the injected vortices remains.
The distribution of the length of vortex loops has a peak at
the length related to the sphere velocity and covers a wide
range of values because of reconnection and stretching. The
drift velocity of the emitted vortex loop is lower than that
of a circular vortex ring of the same length. The propagation
direction of the emitted vortex loops is anisotropic along the
oscillation direction of the sphere; more vortices propagate
along the oscillation direction than along the direction normal
to it. Simulations for sphere radii of 1.1 and 1.5 μm reveal little
difference in the statistics. Hence, the effective parameters
responsible for the statistics can be the amplitude and the
velocity of the sphere oscillation.

Our final goal would be to ascertain information on the
localized vortex tangle from the statistics of the emitted
vortices. Of course, it is impossible to reproduce the thorough
information of the tangle, but some information can be
surmised. The anisotropic propagation of the emitted vortices
suggests that the configuration of the tangle around the sphere
is anisotropic as well. The anisotropic parameters actually
demonstrate that the vortex tangle around the sphere is slightly
anisotropic along the oscillation direction. The statistics of
the emitted vortex length should come from those of vortices
inside the localized tangle, but we do not know their proper
correspondence. In experiments of quantum turbulence using
vibrating objects, it will be worth investigating such statistical
laws of all vortices described in this paper.

This research leaves a significant problem. The lifetime
of turbulence is observed to be very long as a function
of the driving force, even the order of 103 s [16,17]. We
investigate in our model how long the local tangle survives
around the oscillating sphere after turning off the injection of
vortices. We made statistically steady tangles with different
densities by using three different injection intervals, e.g.,
0.01, 0.005, and 0.001 ms. Turning off the injection made
every tangle decay in about 0.5 ms, which disagrees with
the observations. The decay is mostly caused by the easy
detachment of vortices from the sphere. Our model supposes
that the sphere surface is smooth, while the real surface is
more or less rough. The rough surface likes to pin or distort
the edge of quantized vortices attached to the surface, and can
prevent them from leaving the sphere. The discrepancy of the
lifetime between the simulation and the observation should
propose the next significant problem, namely, the boundary
condition of superfluid. The surface roughness may affect
also the statistics of emitted vortex loops, namely, the size
distribution and the chief propagation direction. However, we
do not have any definite answer for the issues presently. First,
we do not know how rough the surface of the vibrating wires
is. In order to observe the effect of the surface roughness,
we should make the experiments by changing systematically
the surface roughness. Second, we have to know theoretically
the boundary conditions of superfluid or quantized vortices.
Since this is another significant problem, we would attack it
as the next step.

ACKNOWLEDGMENTS

We thank T. Hata and Y. Nago for helpful discussions.
M.T. was supported by JSPS KAKENHI Grant No. 26400366
and MEXT KAKENHI Fluctuation & Structure Grant No.
26103526. H.Y. was supported by JSPS KAKENHI Grant No.
23340108.

[1] W. P. Halperin and M. Tsubota, Progress in Low Temperature
Physics (North-Holland, Amsterdam, 2009), Vol. 16.

[2] H. Kubo, H. Yano, Y. Nago, A. Nishijima, K. Obara, O. Ishikawa,
and T. Hata, J. Low Temp. Phys. 171, 466 (2012).

[3] R. Goto, S. Fujiyama, H. Yano, Y. Nago, N. Hashimoto,
K. Obara, O. Ishikawa, M. Tsubota, and T. Hata, Phys. Rev.
Lett. 100, 045301 (2008).

[4] N. Hashimoto, R. Goto, H. Yano, K. Obara, O. Ishikawa, and
T. Hata, Phys. Rev. B 76, 020504 (2007).

[5] S. Oda, Y. Wakasa, H. Kubo, K. Obara, H. Yano, O. Ishikawa,
and T. Hata, J. Low Temp. Phys. 175, 317 (2014).

[6] R. Hanninen, M. Tsubota, and W. F. Vinen, Phys. Rev. B 75,
064502 (2007).

[7] S. Fujiyama and M. Tsubota, Phys. Rev. B 79, 094513
(2009).

[8] K. W. Schwarz, Phys. Rev. B 31, 5782 (1985).
[9] K. W. Schwarz, Phys. Rev. B 38, 2398 (1988).

[10] P. G. Saffman, Vortex Dynamics (Cambridge University Press,
Cambridge, England, 1992).

[11] K. W. Schwarz, Phys. Rev. A 10, 2306 (1974).
[12] M. Tsubota, T. Araki, and S. K. Nemirovskii, Phys. Rev. B 62,

11751 (2000).
[13] R. J. Donnelly, Quantized Vortices in Helium II (Cambridge

University Press, Cambridge, England, 1991).
[14] C. F. Barenghi, R. Hanninen, and M. Tsubota, Phys. Rev. E 74,

046303 (2006).
[15] E. B. Sonin, Europhys. Lett. 97, 46002 (2012).
[16] W. Schoepe, Phys. Rev. Lett. 92, 095301 (2004).
[17] H. Yano, Y. Nago, R. Goto, K. Obara, O. Ishikawa, and T. Hata,

Phys. Rev. B 81, 220507(R) (2010).

174520-7

http://dx.doi.org/10.1007/s10909-012-0723-3
http://dx.doi.org/10.1007/s10909-012-0723-3
http://dx.doi.org/10.1007/s10909-012-0723-3
http://dx.doi.org/10.1007/s10909-012-0723-3
http://dx.doi.org/10.1103/PhysRevLett.100.045301
http://dx.doi.org/10.1103/PhysRevLett.100.045301
http://dx.doi.org/10.1103/PhysRevLett.100.045301
http://dx.doi.org/10.1103/PhysRevLett.100.045301
http://dx.doi.org/10.1103/PhysRevB.76.020504
http://dx.doi.org/10.1103/PhysRevB.76.020504
http://dx.doi.org/10.1103/PhysRevB.76.020504
http://dx.doi.org/10.1103/PhysRevB.76.020504
http://dx.doi.org/10.1007/s10909-013-0934-2
http://dx.doi.org/10.1007/s10909-013-0934-2
http://dx.doi.org/10.1007/s10909-013-0934-2
http://dx.doi.org/10.1007/s10909-013-0934-2
http://dx.doi.org/10.1103/PhysRevB.75.064502
http://dx.doi.org/10.1103/PhysRevB.75.064502
http://dx.doi.org/10.1103/PhysRevB.75.064502
http://dx.doi.org/10.1103/PhysRevB.75.064502
http://dx.doi.org/10.1103/PhysRevB.79.094513
http://dx.doi.org/10.1103/PhysRevB.79.094513
http://dx.doi.org/10.1103/PhysRevB.79.094513
http://dx.doi.org/10.1103/PhysRevB.79.094513
http://dx.doi.org/10.1103/PhysRevB.31.5782
http://dx.doi.org/10.1103/PhysRevB.31.5782
http://dx.doi.org/10.1103/PhysRevB.31.5782
http://dx.doi.org/10.1103/PhysRevB.31.5782
http://dx.doi.org/10.1103/PhysRevB.38.2398
http://dx.doi.org/10.1103/PhysRevB.38.2398
http://dx.doi.org/10.1103/PhysRevB.38.2398
http://dx.doi.org/10.1103/PhysRevB.38.2398
http://dx.doi.org/10.1103/PhysRevA.10.2306
http://dx.doi.org/10.1103/PhysRevA.10.2306
http://dx.doi.org/10.1103/PhysRevA.10.2306
http://dx.doi.org/10.1103/PhysRevA.10.2306
http://dx.doi.org/10.1103/PhysRevB.62.11751
http://dx.doi.org/10.1103/PhysRevB.62.11751
http://dx.doi.org/10.1103/PhysRevB.62.11751
http://dx.doi.org/10.1103/PhysRevB.62.11751
http://dx.doi.org/10.1103/PhysRevE.74.046303
http://dx.doi.org/10.1103/PhysRevE.74.046303
http://dx.doi.org/10.1103/PhysRevE.74.046303
http://dx.doi.org/10.1103/PhysRevE.74.046303
http://dx.doi.org/10.1209/0295-5075/97/46002
http://dx.doi.org/10.1209/0295-5075/97/46002
http://dx.doi.org/10.1209/0295-5075/97/46002
http://dx.doi.org/10.1209/0295-5075/97/46002
http://dx.doi.org/10.1103/PhysRevLett.92.095301
http://dx.doi.org/10.1103/PhysRevLett.92.095301
http://dx.doi.org/10.1103/PhysRevLett.92.095301
http://dx.doi.org/10.1103/PhysRevLett.92.095301
http://dx.doi.org/10.1103/PhysRevB.81.220507
http://dx.doi.org/10.1103/PhysRevB.81.220507
http://dx.doi.org/10.1103/PhysRevB.81.220507
http://dx.doi.org/10.1103/PhysRevB.81.220507



