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The penetration depth lj in superconducting junctions is identified within the Ginzburg-Landau theory as a
function of the interfacial pair breaking, of the magnetic field, and of the Josephson coupling strength. When
the interfacial pair breaking goes up, lj increases and an applicability of the local Josephson electrodynamics to
junctions with a strong Josephson coupling is extended. In the junctions with strongly anharmonic current-phase
relations, the magnetic field dependence of lj is shown to lead to a significant difference between the weak-
field penetration depth and the characteristic size of the Josephson vortex. For such junctions a nonmonotonic
dependence of lj and of the lower critical field on the Josephson coupling constant is found, and the specific
features of spatial profiles of the supercurrent and the magnetic field in the Josephson vortex are established.
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I. INTRODUCTION

The magnetic self-effects of the Josephson current in
wide superconductor-thin interlayer-superconductor junctions
result in the screening inside the junction interlayer of the
magnetic field applied at the junction edge, and in the
formation of Josephson vortices. Spatial variations of the
magnetic field and of the current density along the junction
interface are coupled with variations of the phase difference
and should be determined jointly.

The corresponding results for standard tunnel junctions
with a sufficiently weak Josephson coupling have been
obtained within the Ginzburg-Landau (GL) theory since the
early days of studying the Josephson effect [1–4]. The results
imply that the Josephson penetration depth λJ significantly
exceeds the London penetration depth λL, as is commonly
observed. The Meissner screening being significantly stronger
than the Josephson one is consistent with the definition of
“weak superconductivity,” although it is not generally an
integral feature of weak links.

The conventional definition of weak links and, in par-
ticular of tunnel junctions, requires the critical current jc

to be significantly less than the depairing current jdp deep
within the superconducting leads. On the other hand, the
condition λJ � λL is equivalent to j

1/2
c � ( jdp

κ
)1/2, where

κ is the GL parameter. For junctions involving strongly
type-II superconductors, the relation presented can prove to
be more restrictive for the critical current than the weak-link
requirement jc � jdp. Hence, the standard results only apply

to tunnel junctions satisfying the condition j
1/2
c � ( jdp

κ
)1/2. In

the opposite case j
1/2
c � ( jdp

κ
)1/2, jc � jdp, which ensures the

relation λJ � λL for weak links, the electrodynamics of tunnel
junctions acquires a nonlocal character [5,6]. In a strongly
nonlocal regime λJ � λL, the characteristic scale of an isolated

Josephson vortex along the junction plane is λ2
J

λL
, which is

substantially less than the Josephson penetration depth λJ [5].
Recently the nonlocality has been experimentally identified
in planar junctions with thin superconducting electrodes [7],
where the conditions for observing the nonlocal effects [8–13]
are modified, and monitored more easily as compared with the
junctions with thick leads.

A distinctive feature of superconducting junctions con-
sidered in this paper is the presence of an interfacial pair
breaking. An intense interfacial pair breaking can take place,
for example, in junctions involving unconventional supercon-
ductors and/or magnetic or normal metal interlayers. Since
in a small transition region weak links are quite sensitive
to local conditions, an interface-induced local weakening of
the superconducting condensate density can have a profound
influence on the whole of the Josephson effect. As the result,
the interplay of the Josephson coupling strength and interfacial
pair activity controls the behavior of the supercurrent.

A weak Josephson coupling leads to the sinusoidal (har-
monic) current-phase relation, whereas a strongly anharmonic
supercurrent emerges at the large values of the coupling
constant. In planar junctions with a strong Josephson coupling
and vanishing interfacial pair activity the critical current jc

becomes comparable with the depairing current jdp, and the
junctions do not represent weak links [14]. Conversely, the
critical current of the junctions with an intense interfacial pair
breaking is strongly suppressed, as compared to the case of
no pair breaking, and can only be substantially less than jdp,
irrespective of the Josephson coupling strength [15]. Thus the
interfacial pair breaking maintains the planar junctions with a
pronounced Josephson coupling as weak links jc � jdp with
strongly anharmonic current-phase relations.

This paper addresses effects of the interfacial pair breaking
and of the Josephson coupling strength on the magnetic
penetration depth lj and the Josephson vortex structure in wide
planar junctions involving strongly type-II superconductors.
For a fixed Josephson coupling, the quantity lj is shown to
go up with the interfacial pair breaking. This substantially
extends an applicability domain of the condition lj � λL and,
hence, of the local Josephson electrodynamics to the junctions
with a strong Josephson coupling in the presence of an intense
interfacial pair breaking.

The magnetic field dependence of the penetration depth
is studied below both for harmonic and anharmonic super-
conducting junctions. In the junctions with the harmonic
supercurrent described by local Josephson electrodynamics,
the Josephson penetration depth λJ is the only characteristic
scale of the problem. Along with the critical current, it depends
substantially on the strength of the interfacial pair breaking.
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Under a weak applied field, λJ exactly coincides with the
penetration depth, while the latter is shown to depend on the
magnetic flux � through the junction and to approach the value
ljv = lj(

�0
2 ) = π

2 λJ at half of the flux quantum.
While in harmonic junctions a characteristic size of the

Josephson vortex ljv (a half of its effective width) is of the
same order as λJ, in junctions with strongly anharmonic
current-phase relations the magnetic field dependence lj(�)
is demonstrated to become pronounced and to result in a
significant difference between ljv and a weak-field penetration
depth lj0. As a specific feature of the strongly anharmonic
current-phase relation, a nonmonotonic dependence of the
Josephson vortex size ljv and of the lower critical field on
the Josephson coupling strength, for a fixed and intense inter-
facial pair breaking, is identified within the local Josephson
electrodynamics. Finally, the spatial structure of an isolated
Josephson vortex in the junctions with an intense interfacial
pair breaking is studied. In particular, narrow peaks in the
current-phase relation of strongly anharmonic junctions are
shown to transform into narrow peaks in a spatial profile of
the supercurrent density in the vortex.

The paper is organized as follows. The magnetic field
dependence of the penetration depth in harmonic junctions
is described in Sec. II. In Sec. III the penetration depth in
anharmonic junctions is obtained as a function of the magnetic
field, of the Josephson coupling constant, and of the strength
of the interfacial pair breaking. Section IV addresses spatial
profiles of the phase difference, of the magnetic field, and
of the supercurrent density in an isolated Josephson vortex in
anharmonic junctions. The lower critical field in such junctions
is found in Sec. V. Section VI contains discussions and Sec. VII
concludes the paper.

II. lj IN HARMONIC JUNCTIONS

Let the static magnetic field H = H ez be applied along
the z axis to a symmetric planar junction involving thick
leads made of strongly type-II superconductors (see Fig. 1).
A homogeneous plane rectangular interlayer at x = 0 is
supposed to be of zero length within the GL approach. The
spatially constant widths Ly,Lz of the junction are considered
to significantly exceed the penetration depths: Ly,Lz � lj,λL.
Under such conditions the magnetic field is independent of the
z coordinate inside the interlayer and in the superconductors.

L y

x
y

z

H

S S
l r

0

Lz

FIG. 1. Schematic diagram of the junction.

The applied field is assumed to be substantially less than
the critical fields of the leads, and to produce a negligibly
small influence on the Josephson current as a function of the
phase difference j (χ ). At the same time the self-field effects,
generated by the current flowing through wide junctions,
interconnect the magnetic field H [χ (y)], the supercurrent
density j [χ (y)], and the spatially dependent phase difference
χ (y), and can have a profound influence on their spatial
distributions.

Within the local Josephson electrodynamics, which pre-
supposes the condition lj � λL, the spatially dependent static
phase difference χ (y) in the junctions with a harmonic
current-phase relation j (χ ) = jc sin χ satisfies a well-known
one-dimensional sine-Gordon equation [1–4]

d2χ (y)

dy2
= 1

λ2
J

sin χ (y). (1)

Here λJ is the Josephson penetration depth λJ =
(c�0/16π2λLjc)1/2 and �0 = π�c/|e| is the superconductor
flux quantum.

The self-consistent results of the GL theory for the
Josephson current j (χ ) in planar junctions [15–17] is being
used below. The order parameters in the two superconducting
leads is written as f1(2)(x)eiχ1(2)(x), where the moduli f1(2)(x)
are normalized to their values in the bulk in the absence
of the supercurrent. In symmetric junctions f = f (|x|), i.e.,
f2(x) = f1(−x), and the boundary conditions for f are(

df

dx

)
±

= ±
(
gδ + 2g� sin2 χ

2

)
f0, (2)

where f0 is an interface value of f (x), x = x/ξ (T ), ξ (T ) is
the temperature dependent superconductor coherence length,
and χ is the phase difference χ = χ− − χ+.

The coefficient g� in (2) is the effective dimensionless
Josephson coupling constant, and gδ is the effective dimen-
sionless interface parameter. The parameters gδ and g� are
the main characteristics of the interface in the GL theory.
They are assumed to be positive and, therefore, resulting in an
interfacial pair breaking in accordance with (2). In the absence
of the current, i.e., at χ = 0, the suppression of the order
parameter at the interface is described solely by gδ . When
the supercurrent flows, the Josephson coupling contributes to
the phase dependent suppression of the order parameter at the
interface [17].

In macroscopic samples of strongly type-II superconduc-
tors, the influence of the interfacial pair breaking on the
Meissner effect is small, in the measure of κ−1 � 1, and
will be disregarded below. Thus the local penetration depth
of the Meissner effect is considered to be spatially constant,
irrespective of the boundary conditions for the order parameter,
and equal to λL which is related to the bulk condensate density.
Contrary to its negligible influence on the Meissner effect, the
interfacial pair breaking can have a considerable impact both
on the critical current and, in the presence of a pronounced
Josephson coupling, on the current-phase relation. For this
reason the standard expression and estimates for j (χ ), which
do not take into account effects of the interfacial pair breaking
and of the Josephson coupling strength, can fail.
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The harmonic current-phase relation j (χ ) = jc sin χ takes
place under the condition g� � max(1, gδ), which incor-
porates not only tunnel junctions, defined as g� � 1, but
also the junctions with a strong Josephson coupling 1 �
g� � gδ in the presence of an intense interfacial pair break-
ing [16,17]. The junctions satisfying the generalized condition
g� � max(1, gδ) will be called harmonic junctions. With the
corresponding expression for the critical current of harmonic
junctions (see (S10) in [17]) and with those for λL and ξ , the
quantity λJ in (1) can be written as

λJ =
(

c�0

16π2λLjc

)1/2

=
(

λLξ

g�

)1/2 1√
2 + g2

δ − gδ

. (3)

Hence, the characteristic length scale λJ substantially depends
on the strength of the interfacial pair breaking gδ .

In standard tunnel junctions with gδ � 1 one gets λJ � λL,
since the parameter g� is proportional to the junction trans-
parency and in this case extremely small. The characteristic
length (3) decreases ∝g

−1/2
� with increasing the effective

Josephson coupling constant and becomes comparable with
λL at the characteristic value g

1/2
� ∼ κ−1/2 � 1, which can

be still small in the strongly type-II superconductors. At the
same time, λJ increases with the interfacial pair breaking. In
junctions with an intense pair breaking gδ � 1 the limiting
relation λJ ≈ ( λLξ

g�
)1/2gδ follows from (3). One sees that λJ

considerably exceeds λL under the condition g
1/2
� � gδκ

−1/2,
which allows the strong coupling constant g� � 1, provided
gδ � κ1/2. Thus, in the presence of an intense interfacial
pair breaking the local electrodynamics can be applied to
describing the harmonic junctions with a large Josephson
coupling.

If a strongly nonlocal regime λJ � λL takes place, one can
combine the results of Ref. [5] with Eq. (3), where the effects of
the interfacial pair breaking are taken into account. This leads
to the following characteristic scale of an isolated Josephson
vortex:

λ2
J

λL
= ξ

g�

(√
g2

δ + 2 − gδ

)2
. (4)

Further on the condition λJ � λL will be assumed, which
ensures an applicability of the local theory. For the quan-
titative analysis, let us consider the junction of Ferrell and
Prange [1,4], i.e., a wide junction occupying the half-space
y > 0, Ly → ∞ under the magnetic field applied at the
junction edge y = 0. The magnetic field is assumed to be fully
screened far inside the junction plane (y → ∞), where the
supercurrent density also vanishes. In describing the screening
effects, the magnetic flux � through the junction will be
considered not exceeding half of the flux quantum |�| � �0

2 .
The magnetic field H0 at the junction edge at � = �0

2 is known
to be the highest field, for which a solution with no vortex
precursors is possible, and, therefore, the magnetic field as well
as the current density decay monotonically with increasing the
distance y from the interlayer edge. The screening of such an
external field is only metastable, since it exceeds the lower
critical field [2,18]. At the same time, the spatial distributions
of the quantities H (y), j (y), and χ (y), controlled by the

screening effect at � = �0
2 , coincide with their spatial profiles

in the half of an isolated Josephson vortex involving single flux
quantum �0. Hence, when � is equal to half of a flux quantum,
the penetration depth lj(

�0
2 ) represents a characteristic size ljv

of the vortex, a half of its effective width along the y axis. One
also notes that the magnetic field in the center of the vortex,
produced by the vortex Josephson current, coincides with the
magnetic field H0 at the junction edge at � = �0

2 .
As a weak applied field � � �0 induces only a small

supercurrent in the junction (| sin χ | � 1), one can con-
sider small phase differences and linearize the sine func-
tion in Eq. (1). This results in a simple exponentially
decaying solution of (1): χ = χ0 exp(−y/λJ), H (y) =
−[�0χ0/(4πλLλJ)] exp(−y/λJ). The latter expression sig-
nifies that the quantity (3) coincides with the weak-field
penetration depth exactly: lj0 = λJ [4,18]. With the in-
creasing magnetic flux through the junction, the linearized
description fails and one should use the solution of Eq. (1)
found in Ref. [1]. For the magnetic field at x = 0 in-
side the junction y > 0, with a maximum at the junc-
tion edge y = 0, one has H (y) = ∓�0/{2πλLλJ cosh[(y +
y0)/λJ]}, y0 � 0, and the phase difference is χ (y) = ±2 arcsin
sech[(y + y0)/λJ].

Since the spatial profile H (y) of the magnetic field in the
junction interlayer (x = 0) can substantially differ from the
exponential one, the equality

∫ +∞

0
H (y)dy = ljH (0) (5)

will be put to use for a quantitative description of the junction
penetration depth lj. Equation (5) is in agreement with the
standard definition of magnetic penetration depths in various
other circumstances [18,19]. Here H (0) is the magnetic field
at the junction edge y = 0, and (5) defines a characteristic size
of an adjacent region, where the magnetic field as well as the
dc supercurrent are confined within the junction.

Substituting the solution for H (y) in (5) and taking the
integral, one gets lj as a function of y0. Since y0 and � are im-
plicitly related to each other in accordance with the condition
� = 2λLljH (0), one obtains eventually the dependence of the
Josephson penetration depth on the magnetic flux through the
junction

l−1
j (�) = λ−1

J

sin(π�/�0)

π�/�0
, |�| � 1

2
�0, (6)

and the relation

H (0) = �0

2πλJλL
sin

(
π�

�0

)
. (7)

Thus, lj(�) goes up with the increase of the magnetic flux
within the given limits. While lj(�) ≈ lj0 = λJ for π |�| � �0,
one gets lj(

�0
2 ) ≡ ljv = π

2 λJ when half of the flux quantum
pierces the junction. Here both the weak-field penetration
depth lj0 and the characteristic size of the Josephson vortex
ljv are associated with one and the same length scale λJ. The
difference between them, though quantitatively noticeable, is
not significant.
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III. lj IN JUNCTIONS WITH ANHARMONIC
CURRENT-PHASE RELATIONS

In anharmonic junctions the equation for a spatially
dependent phase difference takes the form [cf. (1)]

d2χ [(y)]

dy2
− 16π2λL

c�0
j [χ (y)] = 0, (8)

and the defining relation for the penetration depth lj(�) as a
function of the magnetic flux is [17]

l−1
j (�) =

[
8λL�0

c�2

∫ 2π�
�0

0
j (χ )dχ

]1/2

. (9)

Here j (χ ), the Josephson current density in the absence of the
magnetic field, is assumed to be an odd function of χ .

Equation (9) describes the junction penetration depth and
its magnetic flux dependence, assuming the current-phase
relation of the junction to be known. Therefore, making use
of the results of the GL theory for the anharmonic phase
dependence j (χ ), allows one to obtain from (9) the quantity
lj(�). Substituting j = jc sin χ in (9), one easily reproduces
Eq. (6) for harmonic junctions.

The results for harmonic junctions remain applicable to
the anharmonic case under sufficiently weak applied magnetic
fields, when a spatially dependent current density is small
enough throughout the junction plane allowing the lineariza-
tion of the current-phase relation: j ≈ j ′

0χ , j ′
0 = ( dj (χ)

dχ
)χ=0.

Then the integration of the current density in (9) results in the
penetration depth lj0 = ( c�0

16π2λLj ′
0
)1/2. Though for anharmonic

junctions j ′
0, in general, is not the critical current, it is so for the

harmonic ones. With this proviso, the weak-field penetration
depth lj0 coincides with λJ.

An analytical expression for lj can be obtained for arbitrary
values of the Josephson coupling g� in the regime of a
pronounced interfacial pair breaking g2

δ � 1, which guaran-
tees that the planar junctions are the weak links. Using the
corresponding current-phase relation of the GL theory, one
gets from (9) [17]

lj(�,g�,gδ) = 2(π |�|/�0)
√

(gδ + g�)λLξ

ln1/2
[
1 + 4g�(gδ+g�)

g2
δ

sin2 π�
�0

] . (10)

Under the condition 4g�(gδ + g�) sin2 π�
�0

� g2
δ , which is

satisfied in the weak-field and/or in the tunneling limits,
Eq. (10) reduces to (6) with λJ defined in (3) and taken at
g2

δ � 1.
The junction penetration depth (10), as a function

of the magnetic flux, monotonically increases from lj0 =
gδ(λLξ

/
g�)1/2 in the weak-field limit to

ljv(g�,gδ) = π
√

(gδ + g�)λLξ

ln1/2
[
1 + 4g�(gδ+g�)

g2
δ

] , (11)

when half of the flux quantum pierces the junction.
In strongly anharmonic junctions (g� � gδ) the relation

ljv � lj0 takes place, which signifies a pronounced mag-
netic field dependence lj(�). The corresponding quantitative

1

2
3

4 5

0 2000 4000
30

100

200

g�

l
�
jv

FIG. 2. (Color online) The dimensionless characteristic size of
the Josephson vortex l̃jv as a function of g� taken for various gδ � 1:
(1) gδ = 100, (2) gδ = 500, (3) gδ = 1000, (4) gδ = 2000, and (5)
gδ = 3000.

condition follows from (11):

ljv ≈ g�

gδ

π√
2 ln1/2 2g�

gδ

lj0 � lj0. (12)

A significant difference between the characteristic size of
the Josephson vortex lj(

�0
2 ) = ljv and the weak-field penetra-

tion depth lj0 is in striking contrast with the harmonic junctions,
where ljv = π

2 lj0 = π
2 λJ.

A substantial increase of ljv as compared to lj0 is associated
with the behavior of the quantity

∫ π

0 j (χ )dχ , which enters the
right-hand side of (9) at � = �0

2 . For the harmonic current∫ π

0 j (χ )dχ = 2jc that leads to ljv = π
2 lj0. In the strongly

anharmonic regime, when g� � gδ and g2
δ � 1, the Josephson

current j (χ ) is small outside a pronounced narrow peak of
the width 
 ∼ gδ

g�
� 1 in a vicinity of χ = χc (see (S11)

and (S12) in [17] and also Fig. 2 in Ref. [15]). The critical
current jc is determined by the height of the peak: jc = j (χc).
Therefore, a qualitative estimate is

∫ π

0 j (χ )dχ ∼ 
jc � jc.
In accordance with Eq. (9), this results in an increase of ljv.
Such an unconventional behavior of j (χ ) originates from the
phase-dependent proximity effect near the interface, which
takes place when g� � gδ and g2

δ � 1 [17].
To ensure the applicability of the result (12), the conditions

g� � gδ , g2
δ � 1, allowing strongly anharmonic effects to

manifest themselves in the junctions, have to be restricted
further as the consequence of applying the local electrodynam-
ics. This leads to the relation lj(�) � λL, which is sensitive
to the magnetic flux. In weak fields one gets lj0 � λL and
ultimately κ1/2g

1/2
� � gδ . Joining the conditions results in

strong inequalities κ1/2g
1/2
� � gδ � g�, g2

δ � 1. If these are
satisfied, the relation lj(�) � λL and the results (10)–(12)
would take place in the whole region |�| � 1

2�0. The condi-

tions κ1/2g
1/2
� � gδ � g� are quite restrictive and uncommon

as they can be satisfied only at huge values of g�. On account
of a monotonic increase of lj(�) with �, substantially weaker
conditions ljv � λL emerge at |�| = 1

2�0. Then the local
approach is justified in describing the Josephson vortex and,
in particular, its size (11), and can fail at smaller values of |�|.
This results in g

1/2
� � κ1/2, up to a logarithmic factor.
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As seen from (11), the dimensionless characteristic size
of the Josephson vortex l̃jv(g�,gδ) = ljv/

√
λLξ is expressed,

within the GL theory, solely via the parameters g� and gδ .
The quantity l̃jv is shown in Fig. 2 for various strengths
of the interfacial pair breaking, as a function of g�. The
numerical results have been obtained by carrying out the
evaluation of j (χ ) with the exact self-consistent formulas of
the GL theory [15,17], and further by calculating the junction
penetration depth (9) at � = 1

2�0. All the curves in Fig. 2
are perfectly approximated by Eq. (11). As a function of
the Josephson coupling strength g�, the quantity ljv shows
a nonmonotonic behavior. In the harmonic regime g� � gδ

the penetration depth decreases with g� as lj ∝ g
−1/2
� [see (3)].

When the parameter g� increases further and the anharmonic
features of the current-phase relation become pronounced,
the integral of the supercurrent over the phase difference in
Eq. (9) diminishes, as discussed above. As a consequence, the
junction penetration depth (9) [and, in particular, (10) and (11)]
gradually goes up with increasing g� in the region g� � gδ ,
g2

δ � 1. As follows from (11), a minimum of ljv(g�,gδ) as
a function of g� at fixed gδ takes place at g2

� ∼ g2
δ � 1.

Specifically, the minima of l̃jv(g�,gδ), which correspond to
curves 1 and 2 of Fig. 2, are ljv,min(gδ = 100) ≈ 29.7675
at g� ≈ 129.562, and ljv,min(gδ = 500) ≈ 66.5611 at g� ≈
647.781.

After rewriting the condition ljv(g�,gδ) � λL in the form
l̃jv(g�,gδ) � √

κ , one can see that the applicability domain of
the results shown in the figures and obtained within the local
theory, depends on the GL parameter κ � 1. For example,
all the curves in Fig. 2 satisfy the condition l̃jv(g�,gδ) �
30 � 3 and, therefore, they are applicable to the case κ = 10.
However, for κ = 100 a substantial part of curve 1 does not
satisfy the condition l̃jv(g�,gδ) � 10 in the given region of
g�. It is in contrast to the other curves, which remain wholly
justified. Similar remarks would apply in fact to all subsequent
figures of the paper (Figs. 3–8).

With increasing the interface parameter gδ , the critical
current jc and the integral

∫ π

0 j (χ )dχ decrease irrespective
of the relation between gδ and g�. For this reason and in
accordance with (9) and (10), the junction penetration depth
monotonically increases with increasing gδ at fixed � and g�.
The quantity l̃jv as a function of gδ , taken for various g�, is

1
2

3
4

0 1000 2000 3000
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50

100

150

200

gΔ

l jv

FIG. 3. (Color online) The dimensionless characteristic size of
the Josephson vortex l̃jv as the function of gδ taken for various g�: (1)
g� = 300, (2) g� = 1000, (3) g� = 3000, and (4) g� = 5000.

depicted in Fig. 3. In the region g2
δ � 1 the exact results are in

agreement with those following from (11). As a consequence
of the nonmonotonic dependence on g�, the curves in Fig. 3,
which correspond to different g�, can cross each other.

IV. THE SPATIAL STRUCTURE OF AN ISOLATED
JOSEPHSON VORTEX

While in harmonic junctions the Josephson screening of
the magnetic field is characterized by the only length scale λJ,
in the strongly anharmonic junctions the spatial distributions
of χ (y), H (y), and j (y) along the junction plane contain two
characteristic lengths, at a fixed value of the applied magnetic
field. Since in the strongly anharmonic regime the current
density j (χ ) has a pronounced narrow peak as a function of
χ , the Josephson current experiences abrupt spatial changes in
a small region of y, where varying in space phase difference
passes through the vicinity of χ (yc) = χc with a change of y.
The quantities H (y) and dχ(y)

dy
change comparatively quickly

in that small space region, so that a smaller characteristic
length is determined by the particular form of the anharmonic
current-phase relation. As a result, the spatial profile of j [χ (y)]
contains narrow peaks, while χ (y) and H (y) acquire more
angular shape as compared to that in the harmonic junctions.
The greater characteristic length is the junction penetration
depth lj(�), which can evolve considerably with the varying
magnetic field, as shown in the preceding section. Due to a
small value of the supercurrent outside the peak region, in
strongly anharmonic junctions dχ(y)

dy
is almost constant and

χ (y) is nearly a linear function of y over the scale ∼lj(�).
Consider here an isolated Josephson vortex deep inside

the junction plane, which is known to contain a single
flux quantum. The magnetic field is symmetric and the
current density is antisymmetric with respect to the vortex
center, while χ (y) changes monotonically overall by 2π . In
the presence of a strong interfacial pair breaking g2

δ � 1,
the equation describing the spatial dependence of the phase
difference within the local Josephson electrodynamics can be
written as [17]

dχ

dỹ
= π

ln1/2
[
1 + 4g�(gδ+g�)

g2
δ

sin2 χ(ỹ)
2

]
ln1/2

[
1 + 4g�(gδ+g�)

g2
δ

] . (13)

Here the dimensionless coordinate ỹ = y/ljv is introduced and
H (y) > 0 assumed.

The spatial profiles of the phase difference χ (ỹ), of the
magnetic field H (ỹ) and of the supercurrent density j (ỹ) in an
isolated Josephson vortex, are depicted in Figs. 4–6. The vortex
center is taken here at y = 0, and the asymptotic values of the
phase difference are χ−∞ = 0, χ∞ = 2π . All the distributions
obtained confirm that the overall large scale of the spatial
variations is ljv. In this respect, even a comparatively small
difference between λJ and ljv = π

2 λJ in harmonic junctions
can be discerned. In each of these figures curve 1 describes the
behavior of the corresponding quantity in harmonic junctions
with a strong interfacial pair breaking. It is similar to the
analogous profiles in standard tunnel junctions. A particularly
interesting case of strongly anharmonic junctions is described
by curve 3 in the figures. Curve 3 in Fig. 4 demonstrates a sharp

174516-5



YU. S. BARASH PHYSICAL REVIEW B 89, 174516 (2014)

3
1

2

2 1 0 1 2
0

Π
2

Π

3 Π
2

2 Π

y�ljv

Χ

FIG. 4. (Color online) The spatial profile of the phase difference
in the Josephson vortex in the junctions with gδ = 102 and various
g�: (1) small Josephson couplings g� � 1, (2) g� = 102, and (3)
g� = 104.

crossover of the gradual behavior of the phase difference and
its asymptotic value. It is in contrast to curve 1, which smoothly
varies over the only scale ljv. Curve 2 shows an intermediate
behavior. Similarly, in contrast to curves 1 and 2, curve 3 in
Fig. 5, which describes the profile of the magnetic field in
strongly anharmonic junctions, shows no noticeable tails of
the field at distances |y| > ljv.

Curve 3 in Fig. 6 demonstrates that the supercurrent flows
in strongly anharmonic junctions mostly in a small narrow
part of the Josephson vortex. As was noted above, these are
the narrow peaks in the current-phase relation of strongly
anharmonic junctions, which transform into spatial peaks
of the supercurrent density due to a spatial dependence of
the phase difference. An effect of similar origin, but with a
transformation into the magnetic flux dependence, has been
recently predicted in strongly anharmonic junctions, whose
widths are much less than the junction penetration depth [20].
The narrow central Fraunhofer peak of the total critical current

31

2

�2 �1 0 1 2
0

0.5

1

y�ljv

H�H0

FIG. 5. (Color online) The spatial profile H (ỹ) in the Josephson
vortex, normalized to the field value H0 in its center, in junctions with
gδ = 102 and various g�: (1) small Josephson couplings g� � 1, (2)
g� = 102, and (3) g� = 104.
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FIG. 6. (Color online) The spatial profile j (ỹ), normalized to its
critical value jc, in the Josephson vortex in junctions with gδ = 102

and various g�: (1) small Josephson couplings g� � 1, (2) g� = 102,
and (3) g� = 104.

was found to possess the following half-width at the half of
the peak (��/�0) ≈ 1.35gδ/g� � 1, under the conditions
g� � gδ and g2

δ � 1.

V. THE LOWER CRITICAL FIELD

The lower critical field of the junction is known to satisfy
the relation Hjc1 = 4π�l/�0, where �l is the thermodynamic
potential of the Josephson vortex per unit length. For the
junctions with an intense interfacial pair breaking g2

δ � 1 one
gets [17]

Hjc1 =
�0gδ

∫ ∞
−∞ ln

[
1 + 4g�(gδ+g�)

g2
δ

sin2 χ(ỹ)
2

]
dỹ

8πλLλJ

√
g�(gδ + g�) ln

[
1 + 4g�(gδ+g�)

g2
δ

] , (14)

where χ (ỹ) is the solution of Eq. (13) and λJ ≈ (λLξ/g�)1/2gδ

[see (3)]. For harmonic junctions, when g� � gδ , the loga-
rithmic functions in (14) can be expanded and the integral
calculated with the solution χ (ỹ) = −2 arcsin sech(πỹ/2).
This results in Hjc1 = �0/(π2λLλJ), in agreement with the
conventional expression [2,18].

To single out the dependence of Hjc1 on the effective
interface parameters g� and gδ , it is convenient to introduce
the dimensionless lower critical field of the junctions H̃jc1 =
Hjc1/H

∗, taken in units of H ∗ = �0/(λ3/2
L ξ 1/2). Figure 7

displays H̃jc1 as a function of the strength of the Josephson
coupling, for various values of the strong interfacial pair
breaking. It is a nonmonotonic function of g�. In tunnel
junctions the field increases with g� and decreases with gδ as
Hjc1 = 2�0/(π2λJ 2λL) ∝ g

1/2
� g−1

δ . A decrease with g� under
the conditions g� � gδ � 1 takes place for the same reason,
for which the penetration depth increases (see Fig. 2 above
and its discussion).

The relation Hjc1 � Hc1 is to a large extent close to the
strong inequality ljv � λL, which determines the applicability
of the local theory to describing the structure of the Josephson
vortex. Here Hc1 = �0(ln κ + 0.08)/(4πλ2

L) is the lower
critical field of the massive strongly type-II superconductor

174516-6



MAGNETIC PENETRATION DEPTH AND VORTEX . . . PHYSICAL REVIEW B 89, 174516 (2014)

1

2

3
4

5
0 2000 4000

0.001

0.003

0.007

g�

FIG. 7. (Color online) The dimensionless lower critical field H̃jc1

as a function of g�, taken for various gδ � 1: (1) gδ = 100, (2) gδ =
500, (3) gδ = 1000, (4) gδ = 2000, and (5) gδ = 3000.

without weak links. After reducing the relation Hjc1 � Hc1

to the form H̃jc1 � (ln κ + 0.08)/(4π
√

κ), one sees that the
applicability domain of the condition Hjc1 � Hc1, in terms of
Fig. 7, depends on the GL parameter κ � 1. For example, for
κ = 10 one obtains a strong inequality H̃jc1 � 0.06, which
applies to all the curves in Fig. 7. For κ = 100 one gets the
relation H̃jc1 � 0.037. It is fully applicable to curves 2–5 and
only partially to curve 1. This is very similar to what was said
above regarding Fig. 2 plotted for the dimensionless quantity
l̃jv, taken for the same set of parameters.

In tunnel junctions, the field H0 in the center of the
Josephson vortex is related to Hjc1 as Hjc1 = 2

π
H0 [2,18]. In

strongly anharmonic junctions with an intense interfacial pair
breaking, the ratio Hjc1/H0 depends on g� and gδ . As shown in
Fig. 8, the ratio varies between 2

π
and unity. It monotonically

increases with g�, while the pair breaking tends to suppress it
towards its standard value.

1
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FIG. 8. (Color online) The ratio Hjc1/H0 as a function of g�, for
various gδ � 1: (1) gδ = 100, (2) gδ = 1000, and (3) gδ = 3000.

VI. DISCUSSION

A pronounced unconventional behavior of the magnetic
properties of the planar junctions emerges, when the parame-
ters g� and gδ are large and satisfy the conditions g2

δ � 1, g� �
gδ . A phase dependent suppression of the order parameter at
the junction interface, taking place under such conditions due
to the proximity effect (see (S13) in [17]), is of key importance
here. Qualitatively, the Josephson current (S11) increases and
the junction penetration depth (10) and (11) decreases with
increasing g�, when g� � gδ , g2

δ � 1 and the suppression
does not substantially depend on g�. However, if g� � gδ ,
then a phase dependent local decrease of the condensate
density at the interface takes place with g� and results in the
anharmonic Josephson current, which substantially decreases
in the wide region of the phase difference. Though the critical
current does not diminish in this regime (see (S12) in [17]),
the integral

∫ π

0 j (χ )dχ decreases with g�. This induces an
increase of the Josephson vortex size ljv , demonstrating an
important role the anharmonic effects play in the problem in
question.

A possibility of achieving large values of g� and gδ in
experiments has not been established as yet. However, a
number of microscopic models persuasively indicate that the
strong inequalities g2

δ � 1, g� � gδ , resulting in a pronounced
anharmonic current-phase relation, can be satisfied under
certain conditions. More restrictive relations emerge due to
the application of local Josephson electrodynamics at large
g�. In weak fields this results in the uncommon conditions
κ1/2g

1/2
� � gδ � g�, which are only satisfied at huge values

g� � 104, and could be challenging in an experimental realiza-
tion. For the Josephson vortices the conditions are substantially
weaker: g

1/2
� � κ1/2, g2

δ � 1, g� � gδ .
There are no fundamental upper bounds to large values of

the parameters g� and gδ . Microscopic model results for g�

can be obtained based on the corresponding studies of the
Josephson current near Tc [14,16,21,22], or of the boundary
conditions for the superconductor order parameter at the inter-
face in the GL theory [23–27]. As follows from the microscopic
results, in dirty junctions with small and moderate transparen-
cies, g� can vary from vanishingly small values in the tunneling
limit to those well exceeding 102 and leading to a substantially
anharmonic behavior of the Josephson current. The parameter
g� goes up, when the interface transparency increases. In
highly transparent planar junctions g� can generally take huge
values. As g� ∝ ξ (T ), an additional increase of g� occurs
near Tc.

Large gδ corresponds to a strong suppression of the
order parameter at the junction interface. A strong in-
terfacial pair breaking can be induced by proximity to
superconductor-normal metal interfaces and to magnetically
active boundaries in various superconductors, including
isotropic s-wave ones [21,23,28–31]. In unconventional su-
perconductors a significant pair breaking can be present also
near superconductor-insulator and superconductor-vacuum
interfaces [32–38]. Under certain conditions, the order pa-
rameter can be fully suppressed on the boundary, in par-
ticular, for symmetry reasons in unconventional supercon-
ductors. This signifies that gδ can, in general, take huge
values.
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A specific microscopic example studied in detail theoret-
ically [14,21], in which the parameters g� and gδ of the GL
theory can satisfy the conditions g2

δ � 1, g� � gδ , is the dirty
SNS junction where the normal conductivity of the leads is
significantly less than the conductivity of a thin normal metal
interlayer.

VII. CONCLUSIONS

The problem of the magnetic field screening and of the
Josephson vortex structure in superconducting planar junctions
with anharmonic current-phase relations has been solved in
this paper within the GL theory. Since a strongly anhar-
monic behavior only appears due to a pronounced Josephson
coupling, an intense interfacial pair breaking needs to be
present for the planar junctions to be weak links. Another
reason for a pronounced interfacial pair breaking to play a
crucial role for the theory developed, is that an intense pair
breaking significantly increases the penetration depth and
thereby substantially extends an applicability domain of the
local Josephson electrodynamics, which in this case applies to
the junctions with the strong Josephson coupling.

The magnetic penetration depth lj in the junctions is
identified theoretically as a function of the magnetic flux, of the
Josephson coupling strength, and the interfacial pair breaking.
Due to a nonexponential spatial profile of the screened
magnetic field in the junction plane, a quantitative definition of
lj is put to use, similar to the standard definitions of magnetic
penetration depths in various other circumstances. In harmonic

junctions a characteristic size of the Josephson vortex along the
junction plane ljv and the weak-field penetration depth lj0 are
shown to be related as ljv = π

2 lj0. A pronounced magnetic field
dependence of lj, which induces a significant increase of ljv as
compared to lj0, is predicted in strongly anharmonic junctions.
A nonmonotonic dependence of ljv on the Josephson coupling
strength is obtained in such junctions, as a consequence of the
phase-dependent proximity effect, and demonstrated to result
in an applicability of the local approach to sufficiently large g�

at a fixed gδ .
A narrow peak in an anharmonic current-phase relation

was found to induce a peak in the spatial profile of the
supercurrent density, which is narrow compared to the size
of the Josephson vortex. A nonmonotonic dependence on the
Josephson coupling as well as a monotonic one on a strength
of the interfacial pair breaking, was obtained for the lower
critical field of the junctions.

An inclusion of the nonlocal effects into the theory
developed above is desirable. Possible restrictions on the
results obtained could be also associated with imperfections of
the planar geometry of the junctions. Their study would require
a significant extension of the theoretical approach used, and
lies outside the scope of the paper.
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