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Supersolidity of a dipolar Fermi gas in a cubic optical lattice
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We study the phase diagram of a dipolar Fermi gas at half-filling in a cubic optical lattice with dipole moments
aligned along the z axis. The anisotropic dipole-dipole interaction leads to the competition between pz-wave
superfluid and nematic charge-density-wave (CDW) orders at low temperatures. We find that the superfluid
phase survives with weak interactions and the CDW phase dominates with strong interactions. In-between, the
supersolid phase appears as a balance between superfluid and CDW orders. The superfluid density is anisotropic
in the supersolid and superfluid phases. In the CDW phase, there is a semimetal-to-insulator transition with
increase of the interaction strength. Experimental implications are discussed.
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I. INTRODUCTION

Recent experimental advances in creating ultracold het-
eronuclear molecules 40K87Rb [1] and 23Na40K [2], and mag-
netic dipolar atoms 161Dy [3] have opened an avenue to explore
novel fermionic many-body systems [4]. Due to its anisotropy
and long range, the dipole-dipole interaction is capable to
produce many interesting phases in dipolar Fermi gases. The
attractive part of the dipole-dipole interaction may generate p-
wave [5,6] and other superfluids with unconventional pairing
[7,8]. In two-dimensional optical lattices, the anisotropic
dipole-dipole interaction can lead to px-wave superfluid
phase [9,10], bonding order [10], charge-density-wave (CDW)
phases [9–12], topological px + ipy-wave superfluid phase
[13], antiferromagnetic and d-wave superfluid phases [14,15],
and even fractional Chern insulators [16].

In this work, we study a single-component dipolar Fermi
gas with dipole moments aligned along the z axis in a cubic
optical lattice at half-filling. The anisotropic dipole-dipole
interaction is attractive in the z direction favoring pz-wave
superfluid phase [5]. In the x-y plane, the dipole-dipole
interaction is repulsive favoring a checkerboard CDW pattern
[9–11,17]. In the cubic lattice, this CDW is a nematic CDW,
uniform in the z direction. The competition between CDW and
superfluid is one of the fundamental problems in condensed
matter physics. While CDW is a diagonal long-range order
usually with a carrier gap, the superfluid is dissipationless flow
with an off-diagonal long-range order. The major intriguing
aspect that we are going to address is whether or not these
competing orders could coexist under certain conditions in
this system. This supersolid problem is different from that
for a two-component system in which the superfluid order is
driven by an s-wave interaction between different components
and the dipolar interaction is only responsible for the CDW
order [18].

Our main results are shown in the phase diagram in Fig. 1.
When the strength of the dipole-dipole interaction is weak,
the pz-wave superfluid phase dominates. When the interaction
strength is strong, the nematic CDW phase is preferred. Both
superfluid and CDW orders are present with intermediate
interactions, resulting in a supersolid phase. The superfluid
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density is anisotropic in the supersolid and superfluid phases,
different in the x-y plane and in the z direction. The excitations
in the CDW phase are gapless near the supersolid phase,
showing a semimetal behavior. As the interaction strength
increases, a band gap is developed in the CDW phase, similar to
a semiconductor. The experimental implications of our results
are also discussed.

II. MODEL HAMILTONIAN AND
HARTREE-FOCK-BOGOLIUBOV APPROXIMATION

We consider a single-component dipolar Fermi gas at
half-filling in a three-dimensional optical lattice Vopt (r) =
V0[sin2(xπ/a) + sin2(yπ/a) + sin2(zπ/a)] with lattice con-
stant a and potential depth V0. The dipole moment d is fixed
in the z direction by a strong dc electric field. We study the
case where the potential depth is large so we can focus on the
lowest band. The Hamiltonian of this system is given by

H = −t
∑
〈jj ′〉

(a†
j aj ′ + H.c.) − μ

∑
j

a
†
j aj

+ 1

2

∑
j �=j ′

Vj−j ′a
†
j a

†
j ′aj ′aj , (1)

where the first right-hand side term describes the nearest-
neighbor hopping with hopping amplitude t , j = (jx,jy,jz)
is the lattice site index, Rj = a(jx,jy,jz) is the lattice vector,
and μ is the chemical potential. Due to particle-hole symmetry,
μ = 0 at half-filling. The dipole-dipole interaction is given by

Vj−j ′ = d2 |Rj − Rj ′ |2 − 3(jz − j ′
z)

2a2

|Rj − Rj ′ |5 . (2)

The strength of the dipole-dipole interaction is measured by
the dimensionless coupling constant J = d2/(ta3). In current
experiments on 40K87Rb, the dipole moment d can be as high
as 0.57 Debye and the lattice constant a is typically 532 nm.

The dipole-dipole interaction is attractive along the z

direction, and repulsive in the x-y plane. The dipoles tend
to align closely in the z direction and repel each other in
the x-y plane. Neighboring fermions in the z direction may
take advantage of the attraction to form Cooper pairs and drive
the system into a Bardeen-Cooper-Schrieffer (BCS) superfluid
state with pz-wave symmetry. Another possible consequence
is that the fermions may form a CDW order by packing closely
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FIG. 1. (Color online) Phase diagram of the dipolar Fermi gas at
half-filling. (The dimensionless coupling constant J of the dipolar
interaction is defined below.) The normal state (NS) is most stable
at high temperatures and weak couplings. The pz-wave superfluid
phase (SF) is favored at low temperatures and weak couplings. The
nematic CDW phase is favored at strong couplings. The dashed line
denotes the boundary between semimetallic (sm) and semiconductive
(sc) CDWs. The supersolid phase (SS) exists between the superfluid
and CDW phases.

in the z direction and repelling each other as far as possible
in the x-y plane. At half-filling, by avoiding the strongest
repulsion from nearest neighbors in the x-y plane, and this
CDW order displays a checkerboard pattern in the x-y plane.
We do not find other CDW orders as shown in the Appendix.

To study the competition between the pz-wave superfluid
and nematic checkerboard CDW orders, we apply the self-
consistent Hartree-Fock-Bogoliubov (HFB) approximation
[19], in which the Hamiltonian in Eq. (1) can be approximated
as

H = −t
∑
〈ij〉

(a†
i aj + H.c.) + 1

2

∑
i �=j

Vi−j (nja
†
i ai + nia

†
j aj )

− μ
∑

i

ni+1

2

∑
i �=j

[�ija
†
i aj+�ija

†
j a

†
i + H.c] − E0,

(3)

where �ij = Vi−j 〈aiaj 〉 is the pairing amplitude, �ij =
−Vi−j 〈a†

i aj 〉 is the exchange interaction energy, ni = 〈a†
i ai〉 is

the local density, and E0 = −∑
i �=j Vi−j (ninj − |〈a†

i aj 〉|2 +
|〈aiaj 〉|2)/2. In the presence of nematic checkerboard CDW,
the density distribution is given by nj = 1/2 + (−1)jx+jy C =
1/2 + eiq·Rj C with 0 < |C| � 1/2 and q = (π,π,0)/a. The
order parameter of nematic checkerboard CDW can be defined
as δ = V (q)C with V (q)/t � −5.353 58J . Since the dipole-
dipole interaction is strongest between nearest neighbors, we
consider the pairing and exchange interactions only between
nearest neighbors. We describe the superfluid order by � =
Viz〈ajaj+iz〉, where iz = (0,0,1). Without losing generality,
we assume � > 0 and δ > 0. In momentum space, the
Hamiltonian becomes, up to an innocuous additive constant,

H = 1

4

∑
k

ψ
†
k

(
ξkσz − �kσy δσz

δσz ξk+qσz − �kσy

)
ψk, (4)

where σα is the Pauli matrix (α = x,y,z), ψ
†
k =

(a†
k,a−k,a

†
k+q,a−k−q), �k = 2� sin(kza),

ξk =
∑

α

(−2t + �α) cos(kαa) − μ,

and �α is the self-energy correction to the hopping energy
due to the exchange interaction, �x = �y due to symmetry.
Note, in principle, the CDW order couples operators ak, ak+q,
ak+2q,...together. However, for nematic checkerboard CDW,
2q = 2(π,π,0)/a is a reciprocal lattice vector. Thus, from
the relation ak = ∑

j exp[−ik · Rj ]aj/
√

N where N is the
total number of lattice sites, ak+2q = ak, only operators ak and
ak+q are independent among the operators ak+lq where l is an
integer.

The Hamiltonian (4) can be diagonalized by canonical
transformation. The quasiparticles split into two bands with
excitation energies given by

Ẽk± =
√

E2
k± + |�k|2, (5)

where

Ek± = 1

2
(ξk + ξk+q) ±

√
1

4
(ξk − ξk+q)2 + δ2. (6)

The ground-state wave function is given by


 =
∏

k,s=±
(u′

ks + v′
ksb

†
ksb

†
−ks)|0〉, (7)

where the quasiparticle annihilation operator is given by bk+ =
ukak + vkak+q, bk− = vkak − ukak+q, and the coefficients are
u′2

ks = 1 − v′2
ks = (1 + Eks/Ẽks)/2 and u2

k = 1 − v2
k = [1 +

(ξk − ξk+q)/(Ek+ − Ek−)]/2. The pairing gap �, CDW gap
δ, and self-energy �α can be solved self-consistently from
coupled equations

1

J t
= 1

N

∑
k,s

sin2(kza)

Ẽks

tanh
Ẽks

2kBT
, (8)

1

V (q)
= − 1

N

∑
k,s

sEks

2Ẽks(Ek+ − Ek−)
tanh

Ẽks

2kBT
, (9)

�α

J t
= 1

N
(1 − 3δzα)

∑
k,s

cos(kαa)
sEks

Ẽks

Eks−ξk+q

Ek+ − Ek−
tanh

Ẽks

2kBT
.

(10)

III. PHASE DIAGRAM

By solving the self-consistency equations (8)–(10), we can
obtain order parameters and map out the phase diagram as
shown in Fig. 1. At zero temperature, pairing gap � and
CDW gap δ vary with the coupling strength J , as shown
in Fig. 2. We find (1) � �= 0 and δ = 0 in the pz-wave
superfluid (SF) phase at weak coupling J < Jc1 � 0.84;
(2) � = 0 and δ �= 0 in the CDW phase at strong coupling
J > Jc2 � 1.00; (3) � �= 0 and δ �= 0 in the supersolid (SS)
phase at intermediate coupling Jc1 < J < Jc2. The superfluid
phase exists with smaller coupling constants below the
critical temperature. The CDW phase can survive higher
temperatures with larger coupling constants. In-between at
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FIG. 2. (Color online) The pairing gap � and CDW gap δ as
a function of the coupling constant J at zero temperature. The
superfluid (SF) phase with � �= 0 and δ = 0 exists at J < Jc1 � 0.84;
the CDW phase with � = 0 and δ �= 0 exists at J > Jc2 � 1.00;
the supersolid phase with � �= 0 and δ �= 0 exists in-between,
Jc1 < J < Jc2.

zero temperature, the supersolid region is quite sizable and
can be unambiguously identified. When the temperature goes
up, it gradually shrinks and eventually vanishes at a quadruple
point (J,kBT /t) ≈ (0.892,0.09), where the supersolid phase
meets with normal, superfluid, and CDW phases. The phase
transitions between these phases are continuous.

The appearance of the superfluid phase at weak interactions
is due to Cooper instability, which can be identified from the
infrared divergence on the right-hand side of Eq. (8) in the limit
that the pairing gap � vanishes. In comparison, the CDW order
can not survive at weak interactions because unlike in two
dimensions at half-filling, there is no perfect Fermi surface
nesting in three dimensions and a finite critical coupling
constant Jc1 is required for the appearance of the CDW order at
zero temperature. Just above this critical point, the superfluid
and CDW orders coexist but compete with each other. As the
coupling constant increases, as shown in Fig. 2, initially both
order parameters increase, but eventually the superfluid gap
starts to decrease. As long as the CDW gap is small enough for
the system to remain metallic, Cooper instability guarantees
a finite superfluid gap. However, at another critical coupling
constant Jc2 when the CDW gap is large enough to turn the
system into an insulator, Cooper instability is no longer present
and the superfluid order vanishes.

IV. EXCITATIONS

These different phases can be identified by their different
excitation spectra. In the CDW phase, the excitations split
into two bands Ek± as given by Eq. (6). The minimum point
of the upper band is at kx ± ky = ±π/a,kz = ±π/a and the
maximum point of the lower band is at kx ± ky = ±π/a,kz =
0. When the CDW gap δ is small, it effectively shifts the
chemical potential up in the lower band Ek− and down in the
upper band Ek+. There are gapless excitations at the Fermi
surfaces in these two bands and the system is metallic. As
the CDW gap increases, the Fermi surfaces become smaller
and smaller, and the system turns into a semimetal. When the
CDW gap is large enough, the upper band is totally above

the lower band, and the system becomes an insulator. Near
the transition point when the band gap is small, the system is
similar to a semiconductor. The band gap in the CDW phase
can be detected by the two-photon Bragg spectroscopy in
the interband transition. The effective coupling between the
two bands in this scheme is given by �

∑
k(a†

k±pak + H.c.)
where the wave vector transfer for detecting the band gap is
p = (0,0,π/a) or p = (±1,±1,±1)π/a, and � is the coupling
strength. We find that when the band gap is much larger than
the thermal energy, the transition intensity is approximately
given by

I (ω) =
∑

k

�2δ4

(Ek+ − Ek−)4
δ(ω + Ek− − Ek±p+), (11)

where ω is the frequency difference between two photons. The
intensity is finite only when the photon energy difference �ω

is larger than the band gap.
In the superfluid phase, the superfluid gap �k vanishes

at kz = 0 and ±π/a planes. The excitations are gapless at
k∗

F the intersection of these planes and the Fermi surface,
�k∗

F
= 0 and ξk∗

F
= 0. Near these nodal lines, the excitations

are linearly dispersed, Ẽk − Ẽk∗
F

≈
√

(vF · δk)2 + (2�aδkz)2,
where δk = k − k∗

F and vF is the Fermi velocity, ξk − ξk∗
F

≈
vF · δk. As a result, the density of states is proportional to
energy near the zero energy, similar to Dirac points in two
dimensions. The excitations in the supersolid phase are similar
to the superfluid phase, except that due to CDW order there
are gapless excitations at two nodal lines in each of kz = 0 and
±π/a planes.

Due to the pz symmetry of the superfluid order parameter,
superfluid and supersolid phases support nontrivial surface
states. Considering open boundaries normal to the z direction
and without losing generality neglecting variations of pairing
and CDW order parameters near the boundary, we obtain
localized surface states near the boundary with dispersions
given by

Ekρ
=

√
4t2(cos kxa + cos kya)2 + δ2, (12)

where kρ = (kx,ky). In the superfluid phase, these surface
states are gapless, but in the supersolid phase they are gapped
by the CDW gap δ. In the CDW phase, the surface states are
delocalized and merge into the gapped bulk spectrum.

V. SUPERFLUID DENSITY

Both superfluid and supersolid phases support dissipation-
less supercurrents, but the supersolid is weaker due to its
CDW order. This transport property can be measured by
the superfluid density which is the stiffness of the system
responding to phase twists. From the response function of
phase twists, the anisotropic superfluid density ρα

s can be
obtained [20]:

ρα
s

ta2
=

(
2 − �α

t

) ∑
k

[
nk cos(kαa) − (2t − �α)Fk

kBT csc2(kαa)

]
,

(13)

where nk = 〈a†
kak〉, Fk = nk(1 − nk) − |〈a−kak〉|2 −

|〈a†
kak+q〉|2 − |〈a−k−qak〉|2.
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FIG. 3. (Color online) The anisotropic superfluid density ρz
s and

ρx
s versus interaction strength J at zero temperature. ρz

s decreases
monotonically with J , while ρx

s increases with J in the superfluid
phase and starts to decrease in the supersolid phase.

As shown in Fig. 3, the superfluid density is generally
different in the z direction and the x-y plane ρz

s �= ρx
s . In the

weak interaction limit J → 0, it saturates at approximately
ta2/3. As J increases, ρz

s decreases monotonously, signaling
the softening of superfluid density in the z direction. In
contrast, ρx

s increases with J . This anisotropic behavior of
the superfluid density is primarily due to the renormalization
of the hopping matrix by the exchange interaction, i.e., �z < 0
and �x > 0. In the supersolid phase, both ρz

s and ρx
s decrease

dramatically due to CDW order and continuously collapse to
zero at Jc2, implying that off-diagonal-long-range order of the
supersolid phase is destroyed.

VI. DISCUSSION AND CONCLUSION

In current experiments with 40K87Rb [1], the lattice
constant is a = 532 nm and the hopping amplitude can be as
large as t � 0.1ER for reasonable potential depth V0 = 3.4ER ,
where ER is the recoil energy. The dipole interaction strength
J is tunable over the range 0 < J < 2.4 with an external
electric field. Under these conditions, the highest critical
temperature for superfluid and supersolid phases is about
0.6 nK in the HFB approximation. This superfluid transition
temperature may be suppressed further by fluctuations such
as the induce interaction. In contrast, the CDW transition
temperature can be as high as 1.6t (approximately 10.6 nK)
for J = 1.5. Similarly, for 161Dy in lattice with a = 225 nm
and t � 0.02ER for V0 = 10ER [21], J is in the range
0 < J < 1 [3]. The highest superfluid transition temperature
is about 0.53 nK, and the CDW transition temperature is 0.8t

(about 4.7 nK) for J = 1. Experimental observations of these
ordered phases may be available by further cooling of these
dipolar Fermi gases confined in optical lattices in the future.

In summary, we study the competition between the pz-wave
superfluid and nematic CDW phases of a dipolar Fermi gas at
half-filling in a cubic optical lattice. We find that the superfluid
phase exists with weak interactions and the CDW phase shows
up with strong interactions. The supersolid phase appears with
intermediate interactions, as a balance between superfluid and
CDW orders. The superfluid density is weaker in the z direction

than in the x-y plane in both supersolid and superfluid phases.
In the CDW phase, there is a semimetal-to-insulator transition
when the interaction strength is increased.
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APPENDIX: CDW ORDERS OF A DIPOLAR FERMI GAS
AT HALF-FILLING IN SQUARE AND OPTICAL LATTICES

In a dipolar Fermi gas trapped in a square lattice with
dipoles aligned in the perpendicular direction, the checker-
board CDW pattern is the ground state at half-filling [9–11].
However, in a mean-field study [17], other CDW orders were
found to be favored with strong dipolar interaction. Fluctua-
tions become important when the interaction is strong, which
are beyond mean-field description. To accurately examine
whether there are other ground states at half-filling in a square
lattice, we perform a density-matrix renormalization-group
(DMRG) calculation of 72 dipolar fermions on a 12 × 12
square lattice with periodic boundary condition. The DMRG
method is one of the best numerical methods to study strongly
correlated systems in low dimensions. As shown in Fig. 4,
we obtain density structure factor S(q) = ∑

j eiq·Rj 〈njn0〉 and
density modulation nq = ∑

j e−iq·Rj 〈nj 〉/N of the wave vec-
tor q in the entire Brillouin zone, which provides information
about the CDW order. As shown in Fig. 4, Bragg peaks
in density structure factor and peaks in density modulation
only appear at q = (π/a,π/a) and not at any nontrivial wave
vectors, which clearly indicates that the checkerboard CDW
state is the ground state.

For CDW orders in a cubic lattice at half-filling, since
the dipolar interaction in the z direction is strongly attractive
favoring density distributed uniformly along the z direction,
we consider the density modulations only in the x-y plane.
With lattice size as big as 24 × 24 × 24, we include up to 31
different CDW orders and their linear combinations, and nu-
merically solve coupled mean-field equations for these CDW
order parameters with various dipolar interaction strengths.
We find only the nematic checkerboard pattern can appear.
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FIG. 4. (Color online) DMRG results for (a) static density struc-
ture factor S(q) and (b) density modulation amplitude nq along the
path � = (0,0) → X = (π,0) → M = (π,π ) → � = (0,0) in the
Brillouin zone with various interaction strengths. The Bragg peak
at (π,π ) shows the checkerboard CDW order.
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