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We construct, to leading orders in the momentum expansion, an effective theory of a chiral (px + ipy)
two-dimensional fermionic superfluid at zero temperature that is consistent with nonrelativistic general coordinate
invariance. This theory naturally incorporates the parity and time-reversal violating effects such as the Hall
viscosity and the edge current. The particle number current and stress tensor are computed and their linear
response to electromagnetic and gravitational sources is calculated. We also consider an isolated vortex in a
chiral superfluid and identify the leading chirality effect in the density depletion profile.
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I. INTRODUCTION

Chiral fermionic superfluids enjoy a long-standing and
continuous interest in condensed matter physics. This goes
back to studies of thin films of 3He-A which is believed to
form a chiral condensate [1,2]. More recently, low-dimensional
chiral superfluids attracted some attention due to the pres-
ence of Majorana zero-energy edge quasiparticles [3,4] that
might facilitate progress towards a fault-tolerant quantum
computer [5,6].

In this paper we construct and analyze the effective theory
of a two-dimensional fermionic superfluid at zero temperature
that forms a chiral condensate which in momentum space takes
the form

�p = (p1 ± ip2)�̂, (1)

where �̂ is a real function of |p| and the sign defines
the chirality of the condensate. In addition, p1 and p2 are
projections of the momentum vector on the orthonormal spatial
vielbein which will be defined later. The order parameter
is the p-wave eigenstate of the orbital angular momentum.
We will assume that (1) is the energetically favored ordering.
The usual spontaneous breaking of the global particle number
U (1)N symmetry is accompanied by the breaking of the
vielbein rotation SO(2)V symmetry. The condensate (1)
remains invariant under the diagonal combination of U (1)N
and SO(2)V transformations which leads to the symmetry
breaking pattern

U (1)N × SO(2)V → U (1)D. (2)

This implies the presence of a single gapless Goldstone
mode in the spectrum that governs the low-energy and long-
wavelength dynamics of the superfluid at zero temperature.
The effective theory of this Goldstone field has an infinite num-
ber of terms and can be organized in a derivative expansion.
This allows us to include corrections to the well-known Landau
superfluid hydrodynamics in a systematic fashion and to study
phenomena at length scales that are larger than microscopic
length scales (e.g., the coherence length). In this paper we

restrict our attention only to the leading and next-to-leading
order terms in the derivative expansion.

Our guiding principle is the nonrelativistic version of gen-
eral coordinate invariance developed in [7]. We put the chiral
superfluid into a curved space, switch on an electromagnetic
source, and demand the invariance of the effective theory
with respect to nonrelativistic diffeomorphisms and U (1)N
gauge transformations. Since the general coordinate invariance
can be viewed as a local version of Galilean symmetry, the
symmetry constraints on the effective theory are (even in flat
space) more restrictive than just the ones imposed by the
Galilean invariance alone. This approach proved to be useful
before and led to new predictions for unitary fermions [7,8]
and quantum Hall physics [9].

While our effective theory might be viewed as a toy model
mimicking only some aspects of low-energy dynamics in
thin films of 3He-A and spin-triplet superconductors, our
predictions, in principle, can be tested experimentally with
ultracold spin-polarized fermions confined to two spatial
dimensions.

II. EFFECTIVE THEORY OF CHIRAL SUPERFLUIDS

Our starting point is the effective theory of a conventional
(s-wave) superfluid constructed in [7]. In curved space with
a metric gij and in the presence of an electromagnetic U (1)N
source Aν , the leading order action of the Goldstone field θ

was found to be1

S[θ ] =
∫

dtdx
√

gP (X), (3)

where g ≡ detgij ,

X = Dt θ − gij

2
DiθDj θ, (4)

1In this paper we follow the notation of [7] except that the mass of
the fermion is set to unity.
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and the covariant derivative Dνθ ≡ ∂νθ − Aν with ν = t,x,y.
The superfluid ground state has a finite density that we
characterize by the chemical potential μ. In the effective action
it enters as a background value for the Goldstone field that is
decomposed as

θ = μt − ϕ, (5)

with ϕ standing for a phonon fluctuation around the ground
state. This allows us to identify the function P (X) in Eq. (3)
with the thermodynamic pressure as a function of the chemical
potential μ at zero temperature. As demonstrated in [7], the
expression X transforms as a scalar under the infinitesimal
nonrelativistic diffeomorphism transformation xi → xi + ξ i

provided

δθ = −ξk∂kθ,

δAt = −ξk∂kAt − Akξ̇
k,

δAi = −ξk∂kAi − Ak∂iξ
k + gikξ̇

k,

δgij = −ξk∂kgij − gik∂j ξ
k − gkj ∂iξ

k.

(6)

In addition, X is invariant under U (1)N gauge transformations.
These observations ensure that the leading order effective ac-
tion (3) is invariant under general coordinate transformations.

As becomes clear from the symmetry breaking pattern (2),
in the case of a chiral superfluid we need a gauge potential
for SO(2)V vielbein rotations. To this end we introduce an
orthonormal spatial vielbein ea

i with a = 1,2. It is easy to
check that the vielbein necessarily satisfies2

gij = ea
i e

a
j , εabea

i e
b
j = εij . (7)

Such vielbein however is not unique and defined only up to a
local SO(2)V rotation in the vielbein index a. This allows us
to introduce a connection

ωt ≡ 1
2

(
εabeaj ∂t e

b
j + B

)
,

ωi ≡ 1
2εabeaj∇ie

b
j = 1

2

(
εabeaj ∂ie

b
j − εjk∂jgik

)
,

(8)

where eaj ≡ ea
i g

ij and the magnetic field B ≡ εij ∂iAj . Under
a local (i.e., time- and position-dependent) infinitesimal
SO(2)V rotation

ea
i → ea

i + φ(t,x)εabeb
i , (9)

the connection ων transforms as an Abelian gauge field ων →
ων − ∂νφ. Using Eq. (8) together with the transformation law
of the vielbein one-form

δea
i = −ξk∂ke

a
i − ea

k ∂iξ
k, (10)

one can show that ων transforms as a one-form under the
nonrelativistic diffeomorphisms, i.e.,

δων = −ξk∂kων − ωk∂νξ
k. (11)

In hindsight this simple transformation of ων clarifies the
appearance of the magnetic field B in the definition of ωt .

2Here we introduced the antisymmetric Levi-Civita symbol εij =
εij , ε12 ≡ +1. The Levi-Civita tensor is then εij = 1√

g
εij , εij =√

gεij .

We are now in position to construct the leading order
effective theory of a chiral superfluid. Quite naturally the
theory is still defined by the action (3) with the covariant
derivative now given by

Dνθ ≡ ∂νθ − Aν − sων. (12)

For the chiral p-wave superfluid s = ±1/2 with the sign
determined by chirality of the ground state.3 This ensures that
the Goldstone boson is coupled to the proper (broken) linear
combination of U (1)N and SO(2)V gauge fields. One must set
s = ±n/2 for a chiral superfluid with pairing in the nth partial
wave.

It is interesting to note that instead of the usual formalism,
where the superfluid is described by a single Goldstone boson
θ , there is an alternative approach in which the Lagrangian
depends on the phase of the condensate θ and the superfluid
velocity vi . We present this alternative description of a (chiral)
superfluid in Appendix A and demonstrate there that by
integrating out vi one obtains the usual Goldstone effective
action.

We point out that Galilean invariance4 alone is not sufficient
to fix the leading order action (3). Under a Galilean boost the
magnetic field B transforms as a scalar, i.e., δB = −ξk∂kB.
For this reason the prefactor multiplying the magnetic field
B in the first equation in (8) is not constrained by the Galilei
invariance. Thus only the general coordinate invariance fixes
uniquely the leading order Lagrangian of a chiral superfluid.

Time reversal and parity act nontrivially as

T : t → −t, θ → −θ,Ai → −Ai, ωt → −ωt ;

P : x1 ↔ x2, A1 ↔ A2, ωt → −ωt , ω1 ↔ −ω2.
(13)

For a fixed s �= 0 the effective theory (3) is not separately
invariant under neither time-reversal T nor parity P . On the
other hand, PT is a symmetry of the theory for any value of s.
Note however that the action (3) is separately invariant under
T and P if one transforms the chirality of the ground state,
i.e., s → −s.

For s = 0 the action (3) is the leading order term in a
derivative expansion that follows the counting in [7], where
∂νθ ∼ Aν ∼ gij ∼ O(1) when expanded around the ground
state. In addition, in this power counting a derivative acting on
any field O increases the order by one, i.e., [∂νO] = 1 + [O].
Nonlinear effects of fields with [O] = 0 are included, since
[On] = n[O] = 0 for any n � 1. For this reason we conclude
from the scaling of the metric that [ea

i ] = 0 and [ων] = 1. As a
result, Dνθ turns out to be of a mixed order: it contains terms
both of leading and next-to-leading order in the derivative
expansion. Since one can show that the only possible next-
to-leading order contribution consistent with symmetries is

3The effective action previously found in [10] is contained in Eq. (3).
This becomes obvious after expanding P (X) around the ground state
X = μ.

4The infinitesimal Galilean boost with velocity vk is realized by a
combination of the gauge transformation α = vkx

k together with the
diffeomorphism ξk = vkt .
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already contained in Dνθ , our theory is complete up to and
including next-to-leading order.5

By introducing the superfluid density ρ ≡ dP/dX and
the superfluid velocity vj ≡ −Dj θ the nonlinear equation of
motion for the Goldstone field can be written in the general
covariant form

1√
g

∂t (
√

gρ) + ∇i(ρvi) = 0, (14)

which is the continuity equation in curved space. With respect
to nonrelativistic diffeomorphisms, ρ transforms as a scalar
and vi transforms as a gauge potential, i.e.,

δρ = −ξk∂kρ, δvi = −ξk∂kvi − vk∂iξ
k + gikξ̇

k. (15)

By linearizing the equation of motion (14) in the absence of
background gauge fields (Aν = ων = 0) one finds the low-
momentum dispersion relation of the Goldstone field to be

ω2 = c2
s p2, (16)

where the speed of sound cs ≡ √
∂P/∂ρ is evaluated in the

ground state.
From Eq. (12) the vorticity ω ≡ 1

2εij ∂ivj can be expressed
as

ω =
√

g

2

(
B + s

2
R

)
, (17)

where we used that the Ricci scalar 1
2

√
gR = εij ∂iωj in

two dimensions. In the absence of a magnetic field in flat
space, the superfluid velocity field is irrotational, i.e., ω = 0,
except for singular quantum vortex defects. For an elementary
vortex located at a position xv the vorticity is ω(x) = πδ(x −
xv)/2. Single valuedness of the macroscopic condensate wave
function yields quantization of the total magnetogravitational
flux on a compact manifold. For example, for a p-wave
superfluid living on a sphere S2 with no magnetic field, the total
flux is

∫
S2 ω = π , which is accommodated in two elementary

quantum vortices.

III. CURRENT AND STRESS TENSOR

In this section, starting from the effective action (3), we
construct and analyze the U (1)N current and the stress tensor.

A. U(1)N current

In curved space the temporal and spatial part of the U (1)N
three current are found to be

J t ≡ − 1√
g

δS

δAt

= ρ,

(18)

J i ≡ − 1√
g

δS

δAi

= ρgij vj︸ ︷︷ ︸
convective

+ s

2
εij ∂jρ︸ ︷︷ ︸
edge

.

5The term in the Lagrangian of the form Q(X)(∂t + vi∂i)X is
consistent with continuous symmetries for an arbitrary function Q(X)
and gives contributions to next-to-leading order. It does not however
respect PT invariance and should not be included.

In addition to the usual convective term, we find the parity-
odd contribution to the current which is proportional and
perpendicular to the gradient of the superfluid density. In a
near-homogeneous finite system this part of the current flows
along the edge of the sample, where the density changes
rapidly. It is important to stress that the edge current is
perpendicular to ∂jρ, but not to the electric field Ej ≡
∂tAj − ∂jAt . Thus there is no static Hall conductivity in the
chiral superfluid in agreement with general arguments of [11].
The edge current was found in the study of superfluid 3He-A
by Mermin and Muzikar [12].

The current conservation equation is

1√
g

∂t (
√

gJ t ) + ∇iJ
i = 0. (19)

Since ∇iJ
i
edge = 0, this is consistent with the equation of

motion (14).
In a nonhomogeneous chiral superfluid the edge current is

flowing even in the ground state. This implies that the ground
state has a nonvanishing angular momentum LGS. In flat space
this is given by

LGS =
∫

d2xεklx
kJ l = s

∫
d2xρ︸ ︷︷ ︸
N

, (20)

where N denotes the total number of fermions. This result has a
simple explanation in the limit of strong interatomic attraction,
where the many-body fermionic system can be viewed as a
Bose-Einstein condensate of tightly bound molecules. In the
chiral superfluid with pairing in the nth orbital wave every
molecule has the intrinsic angular momentum l = ±n with
the sign determined by the chirality of the ground state. In
the BEC limit interactions between molecules are weak and
thus the total angular momentum is just the sum of internal
angular momenta of separate molecules. Note however that
Eq. (20) should be valid also away from the BEC limit as long
as the density near the edge varies on length scale that is large
compared to any microscopic length scale.

The result (20) was derived for a finite droplet of the chiral
superfluid, where the density decreases continuously to zero
at the boundary. Let us consider now a superfluid confined in
a solid vessel. In this case, when we vary the action, together
with the bulk current (18) we find an additional current that
flows along the one-dimensional boundary. This current is
localized at the boundary and is given by

J i
boundary = s

2
ρεij n̂j , (21)

where n̂ is a unit outer-pointing normal vector. The boundary
current flows in the opposite direction to the edge part of the
bulk current (18). When the velocity is zero, the total current
at the boundary is

J i
boundary +

∫
d2x J i

edge = 0. (22)

The value of the angular momentum is then the same as in
Eq. (20). However, the density is not an analytic function at
the boundary in the topologically nontrivial phase. Therefore,
the total angular momentum of the superfluid in the ground
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state confined in a solid vessel may change. For a thorough
investigation of this question we refer to [13].

More general values of the parameter s are also possible.
Interesting examples are anyon superfluids of fractional
statistical phase [14,15]

θ = π

(
1 − 1

n

)
. (23)

When n = 1 the anyon becomes a boson (scalar) and when
n → ∞ it becomes a fermion. Similarly to the chiral super-
fluid, for any n > 1 time reversal and parity invariance are
broken. Expanding the action (3) to second order around the
ground state we find a term

�L = s

2

ρ

c2
s

AtB. (24)

This was identified as responsible for the Landau-Hall effect
in the anyon superfluid [14,15]. The coefficient of this term
was determined in [16] to be

�L = e2

8π

(
n − 1

n

)
AtB. (25)

For anyons, scale invariance fixes c2
s = ρ/2 leading to the

identification

s = 1

2

(
n − 1

n

)
. (26)

Therefore the orbital angular momentum is also fractional, as
expected.

B. Stress tensor

In curved space the invariance of the effective action with
respect to an infinitesimal nonrelativistic diffeomorphism ξ i

implies

S
[
θ + δθ,Aν + δAν,gij + δgij ,e

a
i + δea

i

] = S
[
θ,Aν,gij ,e

a
i

]
,

(27)

and leads to the Euler equation

1√
g

∂t (
√

gJk) + ∇iT
i
k = EkJ

t + εikJ
iB, (28)

where T i
k ≡ T ijgjk and the contravariant stress tensor is

defined by

T ij ≡ 2√
g

δS

δgij

. (29)

Generically the Euler equation is the conservation equation
only if Ek = 0 and B = 0.

Now we wish to compute the stress tensor T ij for the chiral
superfluid (3). In this case, the variation of the vielbein is
related to the variation of the metric via

ea
i → ea

i + 1
2eaj δgij + δλεabeb

i . (30)

In this way the first relation in Eq. (7) is satisfied up to second
order in δgij . There is an ambiguity in the transformation of
the vielbein parametrized by δλ which is related to the SO(2)V

gauge freedom of the vielbein. In the following we set δλ = 0.
For the contravariant components of the metric,

gijgjk = δi
k → δgij = −gilgjmδglm, (31)

so one cannot use the metric to raise the indices of the metric
variation.

First, consider the s-wave superfluid, i.e., set s = 0. Using
δ
√

g = 1
2

√
ggij δgij we find

T
ij

s=0 = 2√
g

δS

δgij

= Pgij + ρvivj , (32)

which is the stress tensor of the ideal fluid.
For the chiral superfluid additional variation of the action

arise from the variation of the connection (8). Namely, we find

δωt = − 1
4εingjk∂tgnkδgij − 1

4Bgij δgij ,

δωl = − 1
4εingjk∂lgnkδgij − 1

2εjk∂j δglk

+ 1
4εmk∂mglkg

ij δgij . (33)

This leads to

δSch ≡
∫

dtdx
√

gP ′ ∂X

∂ωμ

δωμ, (34)

which in detail is given by

δSch = s

4

∫
dtdx

√
g[P ′εingjk∂tgnk − P ′D lθεingjk∂lgnk]δgij

+ s

2
εkj

∫
dtdx∂k(P ′D iθ )δgij

+ s

4

∫
dtdx

√
gP ′gij [B + εmkD lθ∂mglk]δgij . (35)

After a tedious but straightforward calculation we find

�T
ij

ch ≡ 2√
g

δSch

δgij

= (
viJ

j

edge + vjJ i
edge

) + T
ij

Hall − s2

4
ρRgij , (36)

with

T
ij

Hall = −ηH (εikgjl + εjkgil)Vkl. (37)

Here the strain rate tensor Vkl ≡ 1
2 (∇kvl + ∇lvk + ∂tgkl) and

ηH = − s
2ρ. With respect to general coordinate transforma-

tions both Vkl and T
ij

Hall transform as tensors. T
ij

Hall is known as
the Hall viscosity part of the stress tensor and was discovered
first in [17,18]. It generically arises in two-dimensional many-
body systems that break time reversal and parity [19,20].

In flat space with the metric gij = δij the force density
arising from the Hall viscosity is given by

f i
Hall = −∂jT

ij

Hall = ηHεij�vj , (38)

and thus the net work per unit of time produced by the Hall
viscosity in a region S surrounded by a boundary ∂S is

w = ηH

∫
S

viε
ij�vj = ηH

∮
∂S

nkεij vi∂kvj , (39)

where nk is the normal vector to the boundary ∂S . We
conclude that the Hall viscosity is dissipationless in the bulk
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of the region S . Alternatively, its contribution to the bulk
entropy production is vanishing since T

ij

HallVij = 0.

IV. LINEAR RESPONSE

In linear response theory the induced current δJ is linear
in the source δA , i.e.,

δJ μ(t,x) =
∫

dx′
∫

t ′<t

dt ′K μν(t,x; t ′,x′)δAν(t ′,x′), (40)

where we introduced the response kernel K μν(t,x; t ′,x′)
with μ,ν = t,x,y. In a spacetime homogeneous sys-
tem K μν(t,x; t ′,x′) = K μν(t − t ′,x − x′) and it is conve-
nient to transform to Fourier space, where δJ μ(ω,p) =
K μν(ω,p)δAν(ω,p).

Following [21–23], one can determine linear response of a
superfluid in three steps:

(1) First, solve the linearized equation of motion of the
Goldstone field in the presence of the external source δA .

(2) Second, substitute the solution θ (A ) into the definition
of the current J .

(3) Third, determine the induced current δJ as a function
of the source δA .

The response to electromagnetic sources depends on the
electric and magnetic fields Ei and B. The response to
gravitational sources has similar contributions, that depend on
a parity odd “electric” field Eωi = ∂tωi − ∂iωt and the scalar
curvature R. In fact, the form of the covariant derivative (12)
implies that the full response depends on the combinations

Etot
i = Ei + sEωi, B tot = B + s

2
R. (41)

In this section we compute the linear response of the
U (1)N current and stress tensor to the electromagnetic and
gravitational source, respectively. The calculation is done in a
homogeneous chiral superfluid ground state in flat space with
no background U (1)N potential Aν = 0.

A. U(1)N current response to electromagnetic source

In the presence of the electromagnetic source Aν , the
linearized equation of motion for the phonon field ϕ, defined
in Eq. (5), takes the form of the relativistic wave equation

∂2
t ϕ − c2

s �ϕ = −∂t

(
At + s

2
B

)
+ c2

s ∂iA
i, (42)

which is solved in momentum space

ϕ(ω,p) = −iω
(
At + s

2B
) − ic2

s piA
i

ω2 − c2
s p2

. (43)

By substituting this solution into Eq. (18) we find to linear
order in the source

δρ|θ(A) ≡ ρ|θ(A) − ρGS = ρGS

(
ipiE

i + s
2 p2B

)
ω2 − c2

s p2
, (44)

J i |θ(A) = σ (ω,p)Ei + i

(
1 − s2

4

p2

c2
s

)
ρL(ω,p)εijpjB

+ σH (ω,p)εijEj , (45)

with

σ (ω,p) = ρGS iω

ω2 − c2
s p2

,

ρL(ω,p) = ρGS −c2
s

ω2 − c2
s p2

,

σH (ω,p) = sρGS

2

−p2

ω2 − c2
s p2

.

(46)

Here the electric field is Ej = −i(pjAt + ωAj ), the magnetic
field is B = iεijpiAj , and ρGS denotes the superfluid density
in the ground state. One can check explicitly that the
conservation law −iωδρ + ipiJ

i = 0 is satisfied.
In essence, the first line of Eq. (45) governs the electromag-

netic response of a conventional two-dimensional (s-wave)
superfluid with the idealized Drude dynamical conductiv-
ity σ (ω,p) and the London diamagnetic response function
ρL(ω,p). Note that the numerical prefactor of the parity-even
term ∼s2 in the bracket in front of the London term is
not a reliable prediction of the theory (3) since it might be
modified by additional next-to-next-to-leading order terms in
the Lagrangian not discussed here. On the other hand, the
second line of Eq. (45) is responsible for the (anomalous)
dynamical Hall response of the chiral superfluid. The peculiar
property of the Hall conductivity σH (ω,p) is that it vanishes in
the static limit, defined by setting first p = 0 and then taking
ω → 0. In this strict sense the Hall conductivity of a chiral
superfluid vanishes, which is in agreement with the arguments
presented in Sec III.

B. Stress tensor response to gravitational source

Here we consider a chiral superfluid in curved space with
spatial metric gij = δij + hij , where hij is a small perturbation
around the flat background. The linearized equation of motion
for the phonon field is given by

∂2
t ϕ − c2

s �ϕ = −s∂tωt + c2
s ∂th/2 + sc2

s ∂iω
i, (47)

where h ≡ Trhij = h11 + h22. This can be solved in the
Fourier space with the result

ϕ = ic2
s ωh/2 − isωωt − isc2

s piω
i

ω2 − c2
s p2

. (48)

First, we find

vi = ipiϕ + sωi

= s
σ (ω,p)

ρGS
Eωi + ic2

s

σ (ω,p)

ρGS
pi

h

2
+ i

s

2

ρL(ω,p)

ρGS
εijp

jR,

(49)

δP |θ(g) ≡ P |θ(g) − P GS = c2
s δρ|θ(g), (50)

where the parity-odd electric field Eωi ≡ −i(ωωi + piωt ). As
explained in Appendix B, Eωi is a gradient of the vorticity of
the displacement field. The variation of the pressure in Eq. (50)
follows from the thermodynamic definition of the speed of
sound c2

s = δP/δρ. Now we substitute Eqs. (49) and (50) into
the stress tensor (36). To linear order in sources the variation of
the pure contravariant stress tensor can be written in a matrix
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form

δT |θ(g) ≡ T |θ(g) − T GS

=
(

δP |θ(g) − s2

4
ρGSR

)
σ0 + P GSδg−1

+ ηH

[
−iω

hxx − hyy

2
− c2

s

2

σ (ω,p)

ρGS

(
p2

x − p2
y

)
h + is

σ (ω,p)

ρGS
(pxEωx − pyEωy) − s

ρL(ω,p)

ρGS
pypxR

]
σ1

+ ηH

[
iωhxy + c2

s

σ (ω,p)

ρGS
pxpyh − is

σ (ω,p)

ρGS
(pxEωy + pyEωx) + s

2

ρL(ω,p)

ρGS

(
p2

y − p2
x

)
R

]
σ3, (51)

where σ0 is the unity matrix and σi are the Pauli matrices. The
first two terms in the square brackets of Eq. (51) are linear in
s and break parity, we will discuss them in more detail below.
The last two terms are proportional to s2 and do not break
parity. They are of higher order and might get corrections from
next-to-next-to-leading order terms in the Lagrangian and thus
are not predicted reliably by our theory.

Now we are ready to extract the dynamic Hall viscosity
from the linear response calculation. Indeed, as argued in [24],
the gravitational wave

hij (t) = hij exp(−iωt) (52)

induces the following perturbation of the off-diagonal compo-
nent of the contravariant stress tensor

δT xy = −P GShxy + iωη(ω)hxy − iω
ηH (ω)

2
(hxx − hyy),

(53)

where η(ω) ≡ η(ω,p = 0) and ηH (ω) ≡ ηH (ω,p = 0). Direct
comparison with Eq. (51) gives us

η(ω) = 0, (54)

i.e., there is no shear viscosity because at zero temperature
superfluid does not dissipate energy. In addition we find

ηH (ω) = ηH = − s

2
ρGS. (55)

It is natural that in the leading-order theory (3) the Hall
viscosity does not depend on frequency.

C. Relation between Hall conductivity and viscosity

It was demonstrated in [9] that for Galilean-invariant
quantum Hall states the static electromagnetic Hall response at
small momenta p receives a contribution from the Hall viscos-
ity. Subsequently, the relation between the Hall conductivity
and stress response was generalized to other Galilean-invariant
parity-violating systems [25]. In addition, it was shown in [25]
that the relation can be extended to all frequencies. In
particular, for a chiral superfluid one finds

ηH (ω) = ω2

2

∂2

∂p2
x

σH (ω,p)

∣∣∣∣
p=0

. (56)

Using Eqs. (46) and (55) we checked that this relation is
satisfied within our leading-order effective theory.

D. Parity breaking terms and Kubo formula

The parity breaking contributions to the stress tensor due
to gravitational sources can be grouped in the odd viscosity
tensor, defined through the linear response formula

T
ij

odd = −η
ijkl

odd ∂thkl. (57)

The odd viscosity can be obtained from the Kubo formula
involving the parity-odd part of the retarded two-point function
of the stress tensor [25]. We define the frequency and
momentum-dependent odd viscosity

η
ijkl

odd (ω,p) ≡ 1

iω+ G
ijkl

R (ω+,p)odd, (58)

where ω+ ≡ ω + iε with ε → 0. In fact, the total viscosity
tensor contains an additional contact term inversely propor-
tional to the compressibility [25], but it is parity even and thus
does not affect our discussion of the odd viscosity.

The retarded two-point function is

G
ijkl

R (ω,p) = i

∫ ∞

0
dt

∫
d2x eiωt−ip·x〈[τ ij (t,x),τ kl(0,0)]〉,

(59)

where τ ij is the stress tensor in the absence of gravitational
sources.

To leading order in the phonon fluctuation, the parity even
and odd contributions to the stress tensor are

τ ij
even = P GSδij − ρGSδij ∂tϕ,

τ
ij

odd = −ηH (εikδjl + εjkδil)∂k∂lϕ.
(60)

The parity-odd contributions to the two-point function come
from cross terms of even and odd contributions. Therefore, to
leading order〈
τoddτ

ij
even

〉 = ρGSηHδij
[
σ 1

(
∂2
y − ∂2

x

) + 2σ 3∂x∂y

]
∂t 〈ϕϕ〉,

(61)〈
τevenτ

ij

odd

〉 = ρGSηHσ 0(εikδjl + εjkδil)∂k∂l∂t 〈ϕϕ〉,
where we are using the same matrix notation as before for
the first entry of the stress tensor in the two-point function. In
addition, we used 〈ϕ〉 = 0.

Using the Fourier transform of the two-point function of
the phonon field

Gϕϕ(ω,p) = 1

ρGS

1
1
c2
s
ω2 − p2

, (62)

one can recover the results we have derived before for the
linear response of the stress tensor to gravitational sources.

174507-6



EFFECTIVE THEORY OF CHIRAL TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 89, 174507 (2014)

Specifically, the odd-even contribution produce the terms
proportional to the trace of the metric perturbation in the
brackets in Eq. (51). These terms are especially interesting
because they are related to the fact that the superfluid is
compressible. The metric perturbation changes the volume
form by a term proportional to its trace δ

√
g = h/2. This

excites phonons that produce the stress we have computed
above. The even-odd terms give contributions to the variation
of the pressure.

The regular Hall viscosity term on the other hand does not
involve the phonon propagator and therefore it is a kinematic
response that will appear in the correlation function as a contact
term. Its origin is similar to the diamagnetic current, which is
obtained from a term in the action quadratic in sources.

V. VORTEX SOLUTION

Here we consider a vortex in a chiral superfluid in flat space
placed at the origin. We treat this problem in polar coordinates
(r,φ). Far away from the core, due to the single valuedness of
the condensate wave function

vr = 0, vφ = n

2r
, n ∈ Z. (63)

Here vr and vφ are the coefficients in the decomposition v =
vrer + vφeφ with er and eφ denoting the unit vectors in the
radial and angular directions.

We will determine the asymptotic behavior of the superfluid
density ρ(r) as r → ∞. From Eq. (28) the static Euler equation
reads

ρvj∂jv
i = −∂ip + ηHεij�vj − ∂j

(
viJ

j

edge + vjJ i
edge

)
,

(64)

which after the projection onto the radial direction becomes

ρ

r
v2

φ = c2
s ∂rρ − ηH

[
∂2
r vφ + 1

r
∂rvφ − 1

r2
vφ

]
− fedge, (65)

where fedge ≡ −δike
k
r ∂j (viJ

j

edge + vjJ i
edge) = − sn

2r2 ∂rρ. For
the velocity given by Eq. (63) we have ∇ · v = 0 and thus
�v = 0. This simplifies the previous equation to the form

ρ
n2

4r3
=

[
c2
s + sn

2r2

]
∂rρ. (66)

To leading order in the large-distance expansion[
c2
s + sn

2r2

]
→ c2

s∞ ≡ ∂P

∂ρ

∣∣∣∣
r→∞

(67)

and the differential equation (66) simplifies to

dρ

ρ
= n2dr

4c2
s∞r3

. (68)

It is easily integrated giving the density profile

ρ(r) = ρ∞

[
1 − n2

8c2
s∞r2

+ O(r−4)

]
, (69)

where ρ∞ is the asymptotic value of the superfluid density
away from the vortex core. Since the chirality parameter s

does not appear in Eq. (68), the leading order tail of the density
profile is invariant under n → −n.

Chirality effects arise first at next-to-leading order in the
large-distance expansion. By using

c2
s = ∂P

∂ρ
= c2

s∞ + ∂2P

∂ρ2

∣∣∣∣
r→∞

(ρ − ρ∞) + O[(ρ − ρ∞)2]

(70)

together with Eq. (69), we find that to next-to-leading order
we can replace

[
c2
s + sn

2r2

]
→ c2

s∞ +
(

sn − n2
ρ ∂2P

∂ρ2

4c2
s

∣∣∣∣
r→∞

)
1

2r2
(71)

in Eq. (66). The solution of Eq. (66) now gives the superfluid
density profile up to next-to-leading order

ρ(r) = ρ∞

⎡
⎣1 − n2

8c2
s∞r2

+
n4

(
1 − ρ ∂2P

∂ρ2

c2
s

∣∣
r→∞

)
128c4

s∞r4

+ sn3

32c4
s∞r4

+ O(r−6)

⎤
⎦ . (72)

Since in the chiral superfluid time reversal and parity are
spontaneously broken, the density profile is not invariant under
n → −n. The leading parity-violating correction appears first
in the 1/r4 tail. The relative difference between the densities
of a vortex (with n = 1) and an antivortex (with n = −1) is
asymptotically given by

�ρ

ρ∞
= s

16c4
s∞r4

+ O(r−6). (73)

From the point of view of the microscopic theory, our
hydrodynamic description becomes reliable only for r � ξ ,
where ξ is the coherence length of the chiral superfluid.
For weak interatomic attraction (BCS regime) the density
depletion in the vortex core is small. The maximal depletion
away from the core is

�ρ

ρ∞

∣∣∣∣
BCS

max

∼ s

16c4
s∞ξ 4

� 1, (74)

since cs∞ξ � 1 in the BCS limit. On the other hand, for strong
interatomic attraction the total density depletion in the core
becomes large. In addition, near the Feshbach resonance we
obtain

�ρ

ρ∞

∣∣∣∣
res

max

∼ s

16c4
s∞ξ 4

∼ 1. (75)

This happens because near the Feshbach resonance the only
relevant scale is given by the atomic density6 and thus cs∞ξ ∼
1 in this regime [26–28]. In summary, our result (73) for the
long-range depletion profile should be physically relevant in
the strongly interacting region near the Feshbach resonance
which contains in particular the topological quantum phase

6Due to the marginal nature of interactions in two spatial dimen-
sions, the effective range cannot be set to zero at the Feshbach
resonance. The dependence of physical observables on this length
scale is logarithmic, i.e., weak, and can thus be neglected.
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transition and its neighborhood [11]. Note, however, that due to
the divergence of the correlation length at the phase transition,
our approach has limited applicability in the close vicinity of
the phase transition point.

VI. CONCLUSION

In this paper we constructed the leading-order low-energy
and long-wavelength effective hydrodynamic theory of the
simplest chiral fermionic superfluid in two spatial dimensions.
The effective theory incorporates time reversal and parity
violating effects and thus naturally gives rise to the edge
particle current and Hall viscosity. In agreement with [25]
we found a relation between the Hall conductivity and
Hall viscosity response functions. As an application of the
formalism, we constructed a quantum vortex solution and
discovered that the leading chirality effect appears first in
the 1/r4 tail of the density depletion. Our predictions might
be tested in experiments with spin-polarized two-dimensional
ultracold fermions.

Since the chiral superfluid studied in this paper is a
fermionic topological liquid, it is known to posses a pro-
tected gapless fermionic edge mode in the weakly coupled
regime [2,11]. Although our theory contains only the bosonic
Goldstone mode as a degree of freedom, we believe that
the fermionic gapless edge state is (at least partially) taken
into account in our formalism. An important input for the
effective theory is the exact equation of state P (μ) which
defines the Lagrangian. Due to the topological phase transition,
the function P (μ) is nonanalytic at the critical value of
the chemical potential μcr. In mean-field studies one finds
μcr = 0 [2,11]. Consider now the ground state of a finite
droplet of the chiral superfluid in the weakly coupled regime.
While in the bulk μ is almost constant and positive, it
decreases towards zero near the boundary. This means that
in the topologically nontrivial weakly coupled phase there is
a closed contour μ = μcr which encircles the bulk, where the
Lagrangian is nonanalytic. This nonanalyticity can appear only
from integration of a massless mode. This one-dimensional
closed contour is the domain where the gapless fermionic mode
lives in the original fermionic model. On the other hand, in the
topologically trivial strongly coupled regime there is no such
a contour since in this regime μ < μcr already in the bulk.
In summary, in the weakly coupled regime the topologically
protected fermionic gapless mode was integrated out in Eq. (3)
and manifest itself via the nonanalyticity of the equation of
state. In the future it would be useful to derive the effective
theory from the microscopic fermionic model.

It would be interesting to extend our theory to higher
orders in the derivative expansion, where the nonrelativistic
general coordinate invariance might put many more addi-
tional constraints compared to those imposed by considering
Galilean invariance alone. Generalization of the theory to
chiral superfluids with spin degrees of freedom might prove
useful for better understanding of thin films of 3He.
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APPENDIX A: ALTERNATIVE DESCRIPTION
OF SUPERFLUID

We postulate that vμ = (1,vi) transforms like a vector under
spatial coordinate transformations, i.e.,

δvμ = −ξλ∂λv
μ + vλ∂λξ

μ, (A1)

where ξ t = 0. This means

δvi = −ξk∂kv
i + vk∂kξ

i + ξ̇ i ,

δvi ≡ gij v
j = −ξk∂kvi − vk∂iξ

k + gikξ̇
k.

(A2)

If such vi exists, then one can define the improved gauge
potentials

Ãt ≡ A0 + 1
2gij v

ivj , (A3)

Ãi ≡ Ai − gij v
j , (A4)

so that Ãμ transforms like a one-form

δÃμ = −ξk∂kÃμ − Ãk∂μξk. (A5)

In this formalism the action of a conventional s-wave
superfluid is

S[θ,vi] =
∫

dtdx
√

g[ρvμ(∂μθ − Ãμ) − ε(ρ)], (A6)

where ε(ρ) is the density of the internal energy that is not
associated with the macroscopic motion of the superfluid.
After expanding Ãμ, this action becomes

S =
∫

dtdx
√

g

[
ρDt θ + ρviDiθ + 1

2
ρgij v

ivj − ε(ρ)

]
.

(A7)

By integrating out vi , we find that

vi = −gijDj θ, (A8)

i.e., vi is the superfluid velocity. Moreover, by integrating the
theory (A6) over vi and ρ we reproduce the effective theory (3).

To describe chiral superfluids in this formalism we need to
use the improved connection

ωt ≡ 1
2

(
εabeaj ∂0e

b
j + εij ∂ivj

)
, (A9)

ωi ≡ 1
2εabeaj∇ie

b
j . (A10)

It can be checked that ωμ transforms like a one-form. The
action of a chiral superfluid becomes

S[θ,vi] =
∫

dtdx
√

g[ρvμ(∂μθ − Ãμ − sωμ) − ε(ρ)].

(A11)
Note that in this formalism the U (1)N current is pure
convective

Jμ ≡ − 1√
g

δS

δAμ

= ρvμ. (A12)
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APPENDIX B: INTERPRETATION OF Eω,i

In the linearized approximation around flat background
ea
i = 1

2ha
i , and one can check that the components of the

connection (8) are

ωt ∼ O(h2), ωi = − 1
2εjk∂jhki . (B1)

The spatial metric can be interpreted as the stress source
produced by a deformation xi → xi + ξ i , where ξ i is the
displacement vector. In this case hij = −∂iξj − ∂j ξi , which

is fixed by the transformation law of the metric under nonrela-
tivistic diffeomorphisms. The spatial part of the connection (8)
now becomes

ωi = 1
2∂i(ε

jk∂j ξk). (B2)

This can be viewed as the gradient of the torsion of the
displacement field. To linear order, the parity-odd electric field
is then

Eω,i � ∂tωi = ∂i

(
1
2εjk∂j ∂t ξk

) ≡ ∂i�, (B3)

where � is the vorticity of the displacement field.
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[27] S. S. Botelho and C. A. R. Sá de Melo, J. Low Temp. Phys. 140,

409 (2005).
[28] C.-H. Cheng and S.-K. Yip, Phys. Rev. Lett. 95, 070404 (2005).

174507-9

http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1016/j.aop.2005.11.001
http://dx.doi.org/10.1016/j.aop.2005.11.001
http://dx.doi.org/10.1016/j.aop.2005.11.001
http://dx.doi.org/10.1016/j.aop.2005.11.001
http://dx.doi.org/10.1103/PhysRevLett.98.020604
http://dx.doi.org/10.1103/PhysRevLett.98.020604
http://dx.doi.org/10.1103/PhysRevLett.98.020604
http://dx.doi.org/10.1103/PhysRevLett.98.020604
http://dx.doi.org/10.1103/PhysRevLett.108.066805
http://dx.doi.org/10.1103/PhysRevLett.108.066805
http://dx.doi.org/10.1103/PhysRevLett.108.066805
http://dx.doi.org/10.1103/PhysRevLett.108.066805
http://dx.doi.org/10.1103/PhysRevB.69.184511
http://dx.doi.org/10.1103/PhysRevB.69.184511
http://dx.doi.org/10.1103/PhysRevB.69.184511
http://dx.doi.org/10.1103/PhysRevB.69.184511
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.21.980
http://dx.doi.org/10.1103/PhysRevB.21.980
http://dx.doi.org/10.1103/PhysRevB.21.980
http://dx.doi.org/10.1103/PhysRevB.21.980
http://dx.doi.org/10.1103/PhysRevB.84.214509
http://dx.doi.org/10.1103/PhysRevB.84.214509
http://dx.doi.org/10.1103/PhysRevB.84.214509
http://dx.doi.org/10.1103/PhysRevB.84.214509
http://dx.doi.org/10.1142/S0217979289000725
http://dx.doi.org/10.1142/S0217979289000725
http://dx.doi.org/10.1142/S0217979289000725
http://dx.doi.org/10.1142/S0217979289000725
http://dx.doi.org/10.1142/S0217984989001400
http://dx.doi.org/10.1142/S0217984989001400
http://dx.doi.org/10.1142/S0217984989001400
http://dx.doi.org/10.1142/S0217984989001400
http://dx.doi.org/10.1103/PhysRevB.40.8726
http://dx.doi.org/10.1103/PhysRevB.40.8726
http://dx.doi.org/10.1103/PhysRevB.40.8726
http://dx.doi.org/10.1103/PhysRevB.40.8726
http://dx.doi.org/10.1103/PhysRevLett.75.697
http://dx.doi.org/10.1103/PhysRevLett.75.697
http://dx.doi.org/10.1103/PhysRevLett.75.697
http://dx.doi.org/10.1103/PhysRevLett.75.697
http://dx.doi.org/10.1023/A:1023084404080
http://dx.doi.org/10.1023/A:1023084404080
http://dx.doi.org/10.1023/A:1023084404080
http://dx.doi.org/10.1023/A:1023084404080
http://dx.doi.org/10.1103/PhysRevB.79.045308
http://dx.doi.org/10.1103/PhysRevB.79.045308
http://dx.doi.org/10.1103/PhysRevB.79.045308
http://dx.doi.org/10.1103/PhysRevB.79.045308
http://dx.doi.org/10.1103/PhysRevB.84.085316
http://dx.doi.org/10.1103/PhysRevB.84.085316
http://dx.doi.org/10.1103/PhysRevB.84.085316
http://dx.doi.org/10.1103/PhysRevB.84.085316
http://dx.doi.org/10.1007/BF02787879
http://dx.doi.org/10.1007/BF02787879
http://dx.doi.org/10.1007/BF02787879
http://dx.doi.org/10.1007/BF02787879
http://dx.doi.org/10.1070/PU2006v049n01ABEH002577
http://dx.doi.org/10.1070/PU2006v049n01ABEH002577
http://dx.doi.org/10.1070/PU2006v049n01ABEH002577
http://dx.doi.org/10.1070/PU2006v049n01ABEH002577
http://dx.doi.org/10.1103/PhysRevB.77.174513
http://dx.doi.org/10.1103/PhysRevB.77.174513
http://dx.doi.org/10.1103/PhysRevB.77.174513
http://dx.doi.org/10.1103/PhysRevB.77.174513
http://dx.doi.org/10.1007/JHEP04(2012)091
http://dx.doi.org/10.1007/JHEP04(2012)091
http://dx.doi.org/10.1007/JHEP04(2012)091
http://dx.doi.org/10.1007/JHEP04(2012)091
http://dx.doi.org/10.1103/PhysRevB.86.245309
http://dx.doi.org/10.1103/PhysRevB.86.245309
http://dx.doi.org/10.1103/PhysRevB.86.245309
http://dx.doi.org/10.1103/PhysRevB.86.245309
http://dx.doi.org/10.1103/PhysRevLett.94.230403
http://dx.doi.org/10.1103/PhysRevLett.94.230403
http://dx.doi.org/10.1103/PhysRevLett.94.230403
http://dx.doi.org/10.1103/PhysRevLett.94.230403
http://dx.doi.org/10.1007/s10909-005-7324-3
http://dx.doi.org/10.1007/s10909-005-7324-3
http://dx.doi.org/10.1007/s10909-005-7324-3
http://dx.doi.org/10.1007/s10909-005-7324-3
http://dx.doi.org/10.1103/PhysRevLett.95.070404
http://dx.doi.org/10.1103/PhysRevLett.95.070404
http://dx.doi.org/10.1103/PhysRevLett.95.070404
http://dx.doi.org/10.1103/PhysRevLett.95.070404



