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Optical excitation of phase modes in strongly disordered superconductors
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According to the Goldstone theorem the breaking of a continuous U(1) symmetry comes along with the
existence of low-energy collective modes. In the context of superconductivity these excitations are related
to the phase of the superconducting (SC) order parameter and for clean systems are optically inactive; that is,
single-mode excitations do not directly couple to light. Here we show that for strongly disordered superconductors
phase modes acquire a dipole moment and appear as a subgap spectral feature in the optical conductivity. This
finding is obtained with both a gauge-invariant random-phase approximation scheme based on a fermionic
Bogoliubov–de Gennes state and a prototypical bosonic model for disordered superconductors. In the strongly
disordered regime, where the system displays an effective granularity of the SC properties, the optically active
dipoles are linked to the isolated SC islands, offering a new perspective for realizing microwave optical devices.
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I. INTRODUCTION

In the last decades the failure of the BCS paradigm of super-
conductivity in several materials led to a profound modification
of the description of the superconducting (SC) phenomenon
itself. A case in point is the occurrence of Cooper pairing
and phase coherence at distinct temperatures, associated with
the appearance of a single-particle gap � and a nonzero
superfluid stiffness Ds , respectively. This behavior is observed,
e.g., in high-temperature cuprate superconductors [1,2], in
strongly disordered films of conventional superconductors
[3–8], and, recently, also in SC heterostructures [9]. In all
these materials the BCS prediction that Ds is of order of the
Fermi energy, much larger than � ∼ Tc, is violated due to the
strong suppression of Ds . The resulting scenario, supported
by systematic tunneling measurements, suggests that pairing
survives above Tc, leading to a pseudogap state dominated by
phase fluctuations enhanced by the low Ds value [10].

In all this, optics represents a preferential playground to
address the peculiar role of disorder. Indeed, as we shall
see, disorder renders collective modes, which are optically
inactive in a clean superconductor, visible. The possibility that
in the presence of quenched disorder phase fluctuations can
induce a finite-frequency absorption has been discussed in the
past within the context of high-temperature cuprates [11,12],
where an excess optical absorption has been measured in
the microwave regime [11], and, more recently, within the
context of conventional disordered superconductors [13].
However, due to the complexity of these materials, the previous
literature focused mostly on phenomenological models for the
phase degrees of freedom, leaving open their relevance for
a more realistic description of conventional superconductors,
where deviations from dirty BCS theory have recently been
reported as well [14–17]. While more recent attempts have
been made to describe the superconductor-insulator transition
(SIT) within minimal bosonic models for disorder, like the
diluted quantum XY model [13], it has not been established
yet if in conventional superconductors with a small SC gap
the collective-mode absorption occurs below the threshold
for a photon to break apart a Cooper pair. It has been
recently suggested, by extending previous work in the same

context [18,19], that within Lorentz-invariant models the
amplitude fluctuations of the SC order parameter can give rise
to subgap absorption even in the clean case when the quantum-
critical point for SC destruction is approached [20]. However,
these processes involve excitations of multiple (amplitude
and phase) bosonic modes, so that they are expected to be
subleading with respect to direct one-mode phase excitations,
which is the issue discussed in the present work. In addition, the
behavior of amplitude fluctuations in the presence of disorder
in a system far from criticality, where the dynamics of ampli-
tude fluctuations is known not to be Lorentz invariant [21–23],
is another question still open. Finally, in the last few years the
systematic investigation of strongly disordered conventional
superconductors by means of real-space probes like scanning
tunnel microscopy (STM) [5,8] revealed an emergent gran-
ularity of the SC properties induced by even homogeneous
disorder. It would be interesting, as suggested in a recent
experiment performed above Tc [24], to establish a connec-
tion between this real-space image and the low-temperature
response of the system excited at a finite frequency.

In this paper we address all the above issues by computing
the optical conductivity within two prototypical fermionic
and bosonic models for disordered superconductors. First,
we consider as a microscopic fermionic model the attractive
Hubbard model with on-site disorder, which has already been
shown to reproduce several features observed in strongly
disordered conventional superconductors [25–30]. We show
that thanks to the breaking of translational invariance the
collective modes couple to light via an intermediate particle-
hole excitation process. Most remarkable, this coupling leads
to the emergence of additional optical absorption, mainly due
to phase modes, below the BCS-like threshold for a photon to
break apart a Cooper pair, making it accessible experimentally
at low temperatures.

Deeper insight into the mechanism leading to a finite
electric dipole for the phase modes is then gained through
a comparison with the XY model in transverse random
field. Within this effective bosonic description of disordered
superconductors [31,32] the randomness of the transverse field
induces an inhomogeneity of the local superfluid stiffness
quite different from the one of uniformly disordered XY
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models [12,13]. Indeed, in full analogy with the outcomes of
the fermionic Hubbard model [25,26,29,30], the local super-
fluid stiffness forms, at strong disorder, good SC regions of tens
of nanometers embedded in a poorly SC background. Since
the dc superfluid current flows along preferential percolative
paths through the good SC regions [30], the finite-frequency
optical absorption occurs in the remaining isolated SC regions,
thanks to the presence of a finite phase difference between the
opposite sides of the islands, which then act as nanoantennas.
This nanoscale selective optical effect, which we propose to
test via microscopic imaging [33], can be used to tune the
resonant frequency and the quality factor of superconducting
microresonators [34].

II. FERMIONIC MODEL

The model Hamiltonian we consider to investigate a
disordered superconductor is the attractive Hubbard model
(U < 0) with local disorder Vi ∈ [−V,V ] and hopping t

restricted to nearest neighbors,

H = −t
∑
〈ij〉σ

(c†iσ cjσ + H.c.) + U
∑

i

ni↑ni↓ +
∑
iσ

Viniσ , (1)

which we solve in the mean field on an N ≡ Nx × Ny lattice
(up to N = 20 × 20 with periodic boundary conditions) by
using the Bogoliubov–de Gennes (BdG) approach [35,36].
The total current in direction α is defined as usual as

Jα(q,ω) = −e2Kαβ(q,ω)Aβ(q,ω), (2)

Kαβ(q,ω) = Dδαβ − χαβ(q,ω) . (3)

Here D = t
N

∑
n,σ 〈(c†n,σ cn+α̂σ + H.c.)〉 is the diamagnetic

term, where 〈· · · 〉 denotes the thermal and disorder average,
which restores the translational invariance for model (1),
allowing one to define the Fourier transform χαβ(q,ω) of
the correlation function for the paramagnetic current jα

n =
−it

∑
σ [c†nσ cn+α̂,σ − c

†
n+α̂,σ cnσ ]. In a superconductor the su-

perfluid stiffness is defined by the transverse q → 0 limit of
Eq. (2). For example, for a field along the x direction one has
Jx = −e2DsAx , where

Ds = D − Re χxx(qx = 0,qy → 0,ω = 0). (4)

The optical conductivity is obtained from Eq. (2) by assuming
a homogeneous vector potential, so that

Ax(ω) = Ex(ω)

iω
, (5)

and the real part of the optical conductivity is

σ (ω) = −e2Re
Kxx(q = 0,ω)

i(ω + i0+)
, (6)

leading to

σ (ω) = e2πδ(ω)[D − Re χxx(0,ω)] + e2 Im χxx(0,ω)

ω

≡ e2πDsδ(ω) + σreg(ω), (7)

where we separated explicitly the superfluid response at ω = 0
from the regular part σreg occurring at finite frequency. By
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FIG. 1. (Color online) Schematic of the optical absorption σS/σN

(S = SC, N = normal state) in a disordered superconductor. (left)
In the BCS approach only (a) the single-particle excitations across
the SC gap 2� are included, corresponding to the (b) bare-bubble
approximation for the current-current response function. (c) The
resulting optical conductivity consists of a � peak at ω = 0 of
weight DBCS

s (arrow) plus a regular part (solid line) starting at
ω = 2�. (right) When vertex corrections are included, (a) an excited
quasiparticle can be converted in a collective mode, described in
(b) the diagrammatic approach by the RPA resummations of the
corresponding amplitude, phase, or density fluctuations. (c) An
additional absorption appears at energies ω < 2�, corresponding to
a superfluid peak at ω = 0 with strength Ds < DBCS

s .

using the Kramers-Kronig relations for χxx one then finds the
well-known optical sum rule∫ ∞

0
dωσ (ω) = πe2

2
Ds +

∫ ∞

0+
σreg(ω) = πe2

2
D. (8)

Equation (8) shows that any paramagnetic process described
by σreg leads to a suppression of the superfluid stiffness with
respect to the diamagnetic term D, which at small density and
weak interactions reduces to the usual form D � n/m. In the
BCS theory χ ≡ χ0 is computed in the so-called bare-bubble
approximation [see Fig. 1(b), left] [35], in which one includes
only particle-hole excitations on top of the BCS ground state.
At T = 0 these excitations are exponentially suppressed by
the opening of the gap, so that the optical absorption is
possible only above the threshold to break a Cooper pair,
i.e., at ω > ωpair = 2� [see Fig. 1(c), left]. Provided that
ωpair is smaller than the inverse lifetime of quasiparticles, the
resulting σBCS

reg (ω) is given by the well-known Mattis-Bardeen
formula [37], and the superfluid stiffness DBCS

s is smaller than
D already at T = 0. In the following we will also show that
collective modes, neglected in the BCS approach, give rise
to a finite contribution to σreg(ω) at strong disorder, which is
located mainly below ωpair [see Fig. 1(c), right]. This additional
optical absorption is accompanied by a further reduction of
Ds with respect to DBCS

s [30], which has been experimentally
reported [4,15,16].

The full optical response beyond the BCS level can be
computed by including vertex corrections [35], which also
guarantee full gauge invariance of the theory [35,38]. The
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current-current correlation function χ can then be expressed
in a compact form as (see Appendix A)

χ = χ0 + 
̂T V [1 − �̂0V ]−1
̂, (9)

where 
̂ is the vector containing the correlation functions that
couple the current jα

n to collective modes, i.e., particle-particle
(amplitude and phase) and density fluctuations, described
by the random-phase approximation (RPA) resummation of
the bare susceptibility �̂0 [see Fig. 1(b), right]. V̂ and �̂0

are matrices both in real space and in the phase space
of collective modes, and translational invariance for χ is
recovered after averaging over disorder configurations. In the
clean case collective modes contribute only to the longitudinal
response at finite q [35,38]. In contrast, disorder renders the 
̂

susceptibilities finite even for a q = 0 external perturbation,
so that the collective modes contribute to the optical response.
Notice that this optical mechanism is similar to the one
discussed recently for few-layer graphene [39] to explain
the huge infrared-phonon peaks [40]. In that case doping
activates the intermediate particle-hole process, analogous to
what disorder does in our problem.

The results for the optical conductivity at finite frequency
for two representative values of coupling U and disorder are
shown in Fig. 2, along with their BCS counterparts. As one
can see, the major differences between the two appear below
the scale ωpair = 2�, marked with a dashed line. Notice that
in the model (1) the spectral gap � in the single-particle
excitations remains finite (and relatively large) at strong
disorder, as has been discussed previously [25,26,29]. As
a consequence, the BCS calculation always shows a finite
threshold at ωpair, with a profile that coincides at low disorder
with the Mattis-Bardeen prediction [37]. In contrast, the full
response extends also below ωpair, with a shape and intensity
that depend on both the SC coupling U and disorder. This result
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FIG. 2. (Color online) σ (ω) in units of σ0 ≡ e2/� for the
fermionic model (1). Here N = 20 × 20 and we averaged over 50
disorder configurations. The main panels report the curves without
(thin red line) and with (thick black line) vertex corrections, while the
dashed vertical lines mark ωpair = 2�. The insets show a zoom of the
low-energy part along with the results of the bosonic model (10)
(dashed lines), with W and J parameters assigned as described
in the text.

FIG. 3. (Color online) Comparison between σ (ω) computed us-
ing the full gauge-invariant response (solid black line) and the contri-
bution of phase fluctuations only (dashed red line; see Appendix A).
The results of Fig. 2 for the bosonic model (10) (dotted blue line) are
reported as well.

can explain the residual optical absorption in the microwave
regime [14,17] and deviations from BCS theory [4,15,16]
observed recently at strong disorder. In particular, the smearing
of the ωpair threshold due to the presence of a dissipative
channel associated with phase modes can lead to an apparent
optical gap smaller than the one measured by STM, explaining
the puzzling results of Ref. [17]. At the same time this effect
can influence the performance of superconducting microwave
devices, a field that has grown dramatically over the past
decade [34]. Finally, two remarks are in order with respect
to the results of Fig. 2. First of all, we checked that even
though all the collective modes enter in the full response,
the main contribution to σreg(ω) at low energy stems from
phase fluctuations. This is shown explicitly in Fig. 3, where
σreg(ω) has been computed by including only the phase-current
vertex in Eq. (9) (see Appendix A). Second, one could wonder
what happens when the Coulomb interaction, neglected in
the present calculations, is taken into account. Indeed, it is
well known that in the presence of long-range interactions
the soundlike dispersion of phase modes is converted into
a plasmonic one [38]. However, while this effect appears
dramatically in the dielectric function, it tends to cancel out in
the optical conductivity, as discussed in Appendix C. While in
the clean case the cancellation is exact, leaving only soundlike
modes in the optical conductivity, for weak disorder it is still
a good approximation, as discussed in Ref. [41]. For strong
disorder the mixing between the transverse and longitudinal
responses could move part of the optical spectral weight to
the plasma energy, but its explicit investigation is beyond the
scope of the present paper.

III. BOSONIC MODEL

To systematically address the structure of the phase excita-
tions responsible for the subgap absorption we also compute
the optical conductivity within an effective bosonic model for
the disordered superconductor, i.e., the XY spin-1/2 model in
a transverse random field [31]:

HPS ≡ −2
∑

i

ξiS
z
i − 2J

∑
〈i,j〉

(S+
i S−

j + H.c.). (10)
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In the pseudospin language Sz = ±1/2 corresponds to a site
occupied or unoccupied by a Cooper pair, while superconduc-
tivity corresponds to a spontaneous in-plane magnetization,
e.g., 〈Sx

i 〉 �= 0. Disorder is represented by the random trans-
verse field ξi , box distributed between −W and W . The optical
response of classical [12] and quantum [13] XY -like models
has been addressed previously by introducing disorder in the
coupling J . The model (10) focuses instead on the competition
between pair hopping J and localization W [31,42–44], which
has recently been proven to describe successfully [5,43] the
STM experimental results in the SC phase near the SIT. We
first solve the model (10) in the mean field to determine
〈Sx

i 〉 = 1
2 sin θi and then rotate to the local coordinate system

such that the new z axis is S̃z
i = Sz

i cos θi + Sx
i sin θi . At strong

disorder the SC order parameter develops an inhomogeneous
spatial distribution, with SC islands embedded in an insulating
background (see Fig. 6 below), in analogy both with the
fermionic model (1) [25,26,30] and with tunneling experi-
ments [5,8]. Small fluctuations with respect to the mean-field
configuration can be described by means of a Holstein-
Primakov (HP) scheme, where spins are bosonized as usual
as S̃z

i = 1/2 − a+
i ai , S̃+

i � ai , and S̃−
i � a+

i . Here we have

defined S̃±
i = S̃x

i ± iS̃
y

i , with S̃x
i = −Sz

i sin θi + Sx
i cos θi and

S̃
y

i = S
y

i being orthogonal to the local quantization axis. The
Hamiltonian (10) is then mapped into a quadratic model
HPS = EMF + H′

PS that can be diagonalized by means of
a Bogoliubov transformation ai = ∑

α(uαiγα + vαiγ
†
α ):

H′
PS =

∑
ij

[
Aij (a†

i aj + H.c.) + 1

2
Bij (aiaj + H.c.)

]
=

∑
α

Eαγ †
αγα + const. (11)

Here Aij = 2δij ξi/ cos θi − J (1 + cos θi cos θj )(1 − δij ) and
Bij = J (1 − cos θi cos θj )(1 − δij ) are the matrices that enter
in the eigenvalue problem for the excitation energies Eα [45].
The equivalence between the HP excitations and the SC phase
excitations at the Gaussian level can be made explicit by the
identification of the phase operators �i and their conjugated
momenta Li ,

�i = −2
S

y

i

sin θi

=
∑

α

i
φαi√

2
(γ †

α − γα), (12)

Li = S⊥
i sin θi =

∑
α

�αi√
2

(γ †
α + γα), (13)

where φαi = √
2(vαi − uαi)/ sin θi and �αi = (uαi +

vαi) sin θi/
√

2. The fluctuation part of the Hamiltonian (11)
can then be expressed as

H′
PS = 1

2

∑
i,μ=x,y

J
μ

i [�μ�i]
2 + 1

2

∑
ij

X−1
ij LiLj , (14)

where J
μ

i ≡ J sin θi sin θi+μ̂ are the local stiffnesses of the
disordered superconductor, �μ is the discrete derivative in
the μ direction, and X−1

ij = 2(Aij + Bij )/ sin θi sin θj is the
inverse matrix of the compressibilities. Consistent with the
identification (12) the usual Peierls coupling to the gauge field

in the pseudospin model (10) corresponds to the replacement
S+

i S−
i+μ → S+

i S−
i+μe−2ieAμ , with a factor of 2 accounting for

the double charge of each Cooper pair. This leads in Eq. (14)
to the shift �μ�i → �μ�i − 2eAμ, i.e., the usual minimal-
coupling scheme. The real part of the optical conductivity for
the bosonic model (10) is then easily obtained as σB(ω) =
e2πδ(ω)DB

s + σB
reg(ω), with

DB
s = DB − 1

N

∑
α

Zα, (15)

σB
reg(ω) = e2π

2N

∑
α

Zα[δ(ω + Eα) + δ(ω − Eα)], (16)

where DB = (1/N )
∑

i 4J
μ

i is the diamagnetic term of the
bosonic model (10), μ = x, for instance, and the effective
dipole Zα of each excitation mode is

Zα = 1

Eα

[∑
i

2J
μ

i �μφαi

]2

. (17)

For a uniform stiffness (Jμ

i =const) one finds that Zα is
proportional to the total derivative of the phase modulation,
which then vanishes for periodic boundary conditions. Thus,
the inhomogeneity of J

μ

i induced by disorder is a crucial pre-
requisite to obtain a finite electric dipole, which is responsible
for σreg(ω) shown in Fig. 4. As one can see, the optical response
moves towards decreasing energies for increasing disorder
(i.e., W/J ), and its total spectral weight

∫ ∞
0+ dωσreg(ω) =

(π/2)(DB − DB
s ) [see Eqs. (15) and (16)] first increases, due

to the disorder-tuned optical absorption at finite ω, and then
decreases again, due to the strong suppression by disorder
of the diamagnetic term DB itself (see the inset in Fig. 4).
Notice that the decrease of DB with increasing disorder reflects
the suppression of the local order parameter, encoded in the
fermionic language (1) in the suppression of the BCS stiffness
DBCS

s . This analogy can be used to obtain a quantitative
comparison between the fermionic and the bosonic approaches
by fixing W/J of the model (10) in order to reproduce
DB

s /DB = Ds/D
BCS
s . In this way we can account in both

models for the same transfer of spectral weight from ω = 0 to
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FIG. 4. (Color online) σreg(ω)/σ0 for the bosonic model (10) at
different values of W/J . The lattice size is N = 50 × 50, and
the average is taken over 100 disorder configurations. The inset
shows the disorder dependence of the diamagnetic term DB , the
superfluid stiffness DB

s , and the total spectral weight
∫ ∞

0+ dωσreg(ω) =
(π/2)(DB − DB

s ) in units of J .
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FIG. 5. (Color online) (a) and (b) Density of phase modes N (ω)
and effective dipole Zα at two values of disorder (averaged over 100
disorder configurations). (c) Spatial structure of the phase modes
φαi in the one-dimensional case for a given disorder realization. The
solid lines represent the spatial dependence of the eigenfunctions φαi

[whose gradient enters Eq. (17) for the effective dipole Zα] at selected
values of the excitation energies Eα . In the lower part of the figure we
also represent with bars the spatial variations of the local stiffness J x

i .
As one can see, the largest effective dipole Zα is realized for the blue
and orange excitations, whose monotonic phase variations overlap
with a region of large local stiffness.

σreg(ω) (see Appendix B). The results are shown in Fig. 3 and in
the inset of Fig. 2. As one can see, at large U the bosonic model
reproduces in a quantitative way the characteristic energy
scales for optical absorption in the fermionic model. At weaker
coupling the comparison is instead only qualitative, due partly
to the difficulties of clearly separating the contribution of
quasiparticles and collective modes.

Let us finally analyze the connection between the optical
response and the inhomogeneous spatial distribution of the
SC properties. The optical response (16) is proportional to
the density of states of phase modes N (ω), weighted by
the effective dipole function Zα of Eq. (17). Both quantities
depend on disorder, as shown in Figs. 5(a) and 5(b), and in
general the 1/Eα prefactor of Eq. (17) favors a larger dipole
for lower-energy modes. In addition at strong disorder, when
the system segregates into SC islands with large local stiffness
J i

μ, the optical absorption is large when the phase excitations
occur inside the SC regions, according to Eq. (17). This effect
can be better visualized in a one-dimensional version of the
model (10), as shown in Fig. 5(c). Here one can clearly see that
the largest optical dipole is realized when a monotonic phase
variation overlaps with a good SC region. Since the charge is
the conjugate variable of the phase gradients, one then realizes
a charge unbalance on the two sides of the island, making it
optically active.

At strong disorder this space-selective optical absorption
is strictly connected to the emergence of percolative paths
for the superfluid currents, analogous to the ones discussed
in Ref. [30] for the fermionic model (1). In Fig. 6 we show
at two values of W/J the currents in the presence of a finite
applied field A = −Ax̂ for a given disorder configuration,
superimposed on the map of the local stiffnesses J x

i . Since
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0.2 0.4 0.6 0.8 1
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x�J
0

FIG. 6. (Color online) Local supercurrents (arrows) for an ap-
plied field A = −Ax̂ superimposed over the map of the local
stiffnesses J x

i /J for a given disorder realization and two values of
W/J . The size of the arrows is proportional to the strength of the
total local current, whose diamagnetic contribution is proportional to
the local stiffness displayed in the underlying map. The current flows
along preferential paths connecting the regions with large J x

i . This
means that the isolated SC islands, i.e., those which reside far from
the main percolative paths of the current, have a large paramagnetic
response responsible for the absorption at finite frequencies. For
example, for W/J = 18 the whole diamagnetic contribution of the
white regions on the bottom of the map is transferred to σreg(ω).

J x
i is a measure of the local diamagnetic response, a small

current occurring over a good SC region is due to a large local
paramagnetic response, i.e., to an optical absorption at finite
frequencies. At strong disorder the percolative supercurrent
paths leave aside several isolated SC islands, which then
contribute to σreg(ω) thanks to the dipole-activation mechanism
explained above.

IV. CONCLUSIONS

In summary, we computed the optical response due to col-
lective modes in two prototype fermionic and bosonic models
for disordered superconductors. In both cases we find that
disorder renders phase fluctuations optically active, in a range
of energies that lies below the threshold for single-particle
excitations for the fermionic case. The bosonic approach
allows us to establish a clear correspondence between the
optical response and the spatial inhomogeneity of the SC order
parameter, showing that optical absorption stems predomi-
nantly from phase fluctuations within the good SC regions.
Besides explaining recent experiments in strongly disordered
superconductors [14–17] our results could be further checked
experimentally by means of near-field scanning microwave
impedance microscopy [33]. Indeed, the proposed mechanism
of direct correspondence between the SC granularity and
optical absorption, evidenced in Fig. 6, can be potentially
mapped out by this technique, which is able to resolve spatial
variations at length scales well below the radiation wavelength.
In this respect the variation of the microwave optical properties
of disordered superconductors at the nanoscale can be used
to improve the performance of SC microresonators built in
standard geometries or even to design new nanoelectric devices
targeted for space- and frequency-selective applications.
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APPENDIX A: OPTICAL CONDUCTIVITY
FOR THE FERMIONIC MODEL

In order to compute fluctuations on top of the inhomoge-
neous BdG ground state we evaluate dynamical correlation
functions

χnm(X̂,Ŷ ) = −i

∫
dteiωt 〈T X̂n(t)Ŷm(0)〉, (A1)

where X̂,Ŷ correspond to either pair or charge fluctua-
tion operators, i.e., δ�i ≡ ci↓ci↑ − 〈ci↓ci↑〉0, δ�

†
i ≡ c

†
i↑c

†
i↓ −

〈c†i↑c
†
i↓〉0, and δni ≡ ∑

σ (c†iσ ciσ − 〈c†iσ ciσ 〉0). Here and in the
following a naught subscript or superscript denotes evaluation
in the BdG ground state.

The local interactions between pair (Uδ�
†
i δ�i , Uδ�iδ�

†
i )

and charge (U/2δniδni) fluctuations are contained in the
matrix V so that the resummation

χ = [1 − χ0V ]−1χ0 (A2)

allows us to compute the dynamical amplitude Ai ≡ (δ�i +
δ�

†
i )/

√
2 and phase �i ≡ (δ�i − δ�

†
i )/

√
2 correlations.

Vertex corrections to the bare current-current correlation
function χ0

nm(jα,jβ) can be obtained by defining 
α
nm =

χ0
nm(jα,Ŷ ) and 


α

mn = χ0
mn(Ŷ ,jα), which couple the current

jα
n between sites Rn and Rn+α̂ to the pair and charge

fluctuations Ŷm ≡ (Am,�m,δnm). The full (gauge-invariant)
current correlation function is then obtained from

χnm

(
jα
n ,jβ

m

) = χ0
nm

(
jα
n ,jβ

m

) + 
α
nmVmk


β

km

+
α
nmVmkχklVls


β

sm

= χ0
nm

(
jα
n ,jβ

m

) + 
α
nmVmk[1 − χ0V ]−1

kl 

β

lm.

(A3)

The average over several disorder configurations (typically
50–70) restores translational invariance for χnm, so that σ (ω)
can be computed according to Eq. (7). The predominant
role of phase fluctuations for the subgap optical response is
demonstrated in Fig. 3, where the dashed lines correspond to
σ (ω) computed by including only the phase-current vertex in
Eq. (A3), whereas the solid lines correspond to the full optical
conductivity, dressed by all the collective modes.

APPENDIX B: COMPARISON BETWEEN THE BOSONIC
AND FERMIONIC MODELS

In order to make a quantitative comparison between the
bosonic and fermionic models we propose a scheme based on
the equivalence of the optical spectral weight due to collective
modes in both models. In the fermionic model the diamagnetic
term D is only weakly dependent on disorder. On the other
hand, the BCS estimate of the superfluid density DBCS

s is

strongly suppressed due to the enhanced paramagnetic con-
tribution of quasiparticles. In the bosonic model quasiparticle
excitations are not present; however, the localization effects
due to disorder are taken into account in the effective local
stiffnesses J

μ

i , which enter in the bosonic diamagnetic term
DB . Any additional correction due to phase fluctuations is
encoded in the ratio Ds/D

BCS
s or DB

s /DB for the fermionic or
bosonic model, respectively. The ratio Ds/D

BCS
s also measures

the relative strength of the subgap optical response with respect
to the BCS-like part. However, since this one is also slightly
modified by vertex corrections, especially at weak coupling
(see red and black lines in Fig. 2), we estimate an effective
D̃BCS

s from the integrated spectral weight at ω > 2� of the
full optical conductivity. Thus, for a given U in the fermionic
model (1) we determine W/J in the bosonic model (10)
in order to have DB

s /DB = Ds/D̃
BCS
s . This establishes a

rescaling function α such that W/J = α(V0/t). We then fix a
factor γ (J = γ t) such that DB/J = D̃BCS

s /γ t , and we then
plot σreg as a function of ω/t , as shown in the insets of Fig. 2.
This procedure reveals that already for U/t = 5, i.e., in the
intermediate-coupling regime, the ratio J/t obtained in this
way is very similar to the value J/t ∼ t/U predicted by the
exact mapping of the clean attractive Hubbard model onto the
pseudospin model [32].

APPENDIX C: OPTICAL CONDUCTIVITY OF THE
CLEAN GAUSSIAN PHASE-ONLY MODEL WITH

LONG-RANGE INTERACTION

In order to illustrate the effect of the long-range interaction
on the optical conductivity we compare the computation of
the optical conductivity of the quantum Gaussian phase-only
model with and without the effect of the long-range forces in
three-dimensional physical space.

As a starting point we take the effective action of a Bose
fluid with short-range forces expanded to quadratic order in
density and phase fluctuations as appropriate to describe, for
example, helium IV [46]. To consider a charged fluid we add
the long-range interaction and the coupling with the gauge
field. The action reads

S =
∑

q

∫
dt

{
− δρ(q)

θ̇ (−q)

2e
+ 1

2e2

[
1

χ0
+ λv(q)

]
|δρ(q)|2

+1

8
Ds |iqθ (q) + 2eA(q)|2

}
. (C1)

Here Ds is the superfluid stiffness, χ0 is the “short-range” com-
pressibility, and v(q) = 4πe2/q2 is the long-range Coulomb
interaction. λ = 0 describes a model with short-range inter-
actions, while λ = 1 is the model with short- and long-range
interactions. We can define “long-range” compressibility by

χ (q) ≡ χ0

1 + λv(q)χ0
. (C2)

Diagrammatically, χ (χ0) is the reducible (irreducible) com-
pressibility with respect to the Coulomb interaction v(q).

We can use the Euler-Lagrange equation for charge fluctu-
ations to eliminate them in terms of phase fluctuations

δρ(q) = eχ (q)
θ̇(q)

2
.
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After performing a Wick rotation one obtains the thermody-
namic action of the Gaussian phase-only model in Matsubara
frequency [38,47,48],

S = 1

8

∑
q,ωn

[
χ (q)ω2

n|θ (q,ωn)|2

+Ds |iqθ (q,ωn) + 2eA(q)|2]. (C3)

The electromagnetic kernel is given by

e2Kαβ = ∂ ln Z

∂Aα(q)∂Aβ(−q)

∣∣∣∣
A=0

,

with Z = ∫
Dθe−S. This leads to Eq. (3) with D = Ds and

the current-current response,

χαβ = D2
s

4
qαqβ〈θ (q,ωn)θ (−q, − ωn)〉,

where the correlator can be computed directly from the action.
We also define a generalized complex conductivity tensor,

which is the current response to the time derivative of the vector
potential at finite momentum. The generalized conductivity in
the real frequency axis reads

σ̄αβ(q,ω) = −e2 Kαβ(q,ω + i0+)

i(ω + i0+)
. (C4)

The relation with the usual conductivity will be discussed
below.

We first set λ = 0 and analyze the short-range model. In
this case the current response reads

χαβ = −D2
s

χ0

qαqβ

(iωn)2 − ω2
q
,

where we defined the sound mode dispersion

ω2
q = Dsq

2

χ0
. (C5)

One can check that the transverse (T ) and longitudinal (L)
parts do not mix, so we can separate the electromagnetic kernel
as

K = qαqβ

q2
KL +

(
δαβ − qαqβ

q2

)
KT ,

with

KL = Ds

(iωn)2

(iωn)2 − ω2
q
, KT = Ds. (C6)

From Eq. (C4) one obtains L and T conductivities,

σ̄ ir
L (q,ω) = ie2Ds

2

(
1

ω + i0+ + ωq
+ 1

ω + i0+ − ωq

)
,

σ̄ ir
T (q,ω) = ie2Ds

ω + i0+ . (C7)

As expected, in the limit q → 0 both conductivities coincide,
but the longitudinal conductivity, neglecting long-range forces,
has a sound pole at finite momentum. Thus, longitudinal fields
excite sound modes, as can be expected.

In Eq. (C7) ir stands for “irreducible” with respect to the
Coulomb interactions and means that σ̄ ir is the response to an

external field, neglecting the polarization of the medium. As
we shall argue below, the polarization of the medium can be
taken into account by including its effect on the electric field.

We now repeat the computation in the presence of long-
range forces, i.e., setting λ = 1. Expressions can be obtained
from above with the substitution χ0 → χ (q).

The electromagnetic kernel Eq. (C6) remains the same with
the replacement ωq → �q. Thus, one gets the well-known
shift of the longitudinal modes to the plasma frequency, �0 =
4πe2Ds , with a quadratic dispersion for small momentum,

�2
q = Dsq

2

χ (q)
= �2

0 + ω2
q.

Here ωq is still given by Eq. (C5). This procedure automatically
resums the effect of the long-range interaction in the response
function so that the resulting conductivity is a reducible
response,

σ̄ re
L (q,ω) = ie2Ds

2

(
1

ω + i0+ + �q
+ 1

ω + i0+ − �q

)
,

σ̄ re
T (q,ω) = ie2Ds

ω + i0+ . (C8)

We now reach a paradox since the T and L parts do not fulfill
the common expectation that at q → 0 one should have

σ̄L(q → 0,ω) = σ̄T (q → 0,ω). (C9)

To solve this paradox one should examine more carefully
the definition of the optical conductivity. The physical conduc-
tivity is defined as the response to the electric field E, which
is the sum of the displacement field D and the field due to the
polarization of the medium P,

E = D − 4πP. (C10)

From Maxwell’s equation we also have that the longitudinal
part of the electric field is related to the sum of the induced
charge δρ and the external charges ρe,

4π (ρe + δρ) = ∇ · E, (C11)

E = −1

c
Ȧ − ∇φ. (C12)

We can also separate the potentials into an induced part and
an external part,

φ = φext + φind, (C13)

A = Aext + Aind. (C14)

Since the long-range interaction was included in the action,
we are working in the Coulomb gauge and ∇ · Aind = 0. Also
without loss of generality we can take φext = 0. It follows that

4πδρ = −4π∇ · P = −∇2φ, (C15)

4πρe = ∇ · D = −1

c
∇ · Ȧ. (C16)

The last equation shows that the time derivative of the vector
potential is related to the longitudinal part of the displacement
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DL. From the definition (C4) we conclude that σ̄ re
L is the

current response to D, while the physical conductivity is
the response to E. We can obtain the physical longitudinal
conductivity σ̄L by introducing the longitudinal screening
function DL = εLEL. Thus,

JL = σ̄ re
L DL = σ̄LEL,

with σ̄L ≡ σ̄ re
L εL. Equation (C10) tells us that the effect of the

long-range forces has been included in E; thus, σ̄L has to be
computed as the response to a field neglecting the long-range
interaction in the action, i.e., for λ = 0. We can thus identify
the physical conductivity with the irreducible conductivity,
σ̄L = σ̄ ir

L , which solves the paradox. Therefore, Eq. (C9) is
only valid for the irreducible conductivities. In the transverse
case σ re

T = σ ir
T , while in general these responses are different

for longitudinal fields.
As a consistency check we can compute the dielectric

function. The charged bosons act as polarizable media. The
longitudinal current can be defined as the time derivative of
the polarization. Assuming a harmonic time dependence,

PL = −JL

iω
= − σ̄ ir

L

iω
EL.

From the definition of the dielectric function

4πPL = (εL − 1)EL

one obtains that

εL = 1 − 4π

iω
σ̄ ir

L ,

in accord with the conclusion that σ̄ ir
L is the physical

conductivity.
From Eq. (C7) one obtains

εL = ω2 − �2
q

ω2 − ω2
q
, (C17)

which correctly has a zero at the frequency of the longitudinal
modes, i.e., the plasmons. One can explicitly check that σ̄ ir

L =
σ̄ re

L ε. The transverse conductivity does not get modified by
the long-range interaction, and therefore, σT = σ irr

T = σ red
T

(except for relativistic corrections, which we neglect).
A remarkable conclusion is that the longitudinal conductiv-

ity and dielectric function have a pole at the sound modes of
the neutral system. Now suppose that we perturb the system,
making it inhomogeneous. It is clear that the neutral sound
modes will appear as poles of the longitudinal conductivity
at zero momentum. For example, if a weak inhomogeneity
with characteristic wave vector Q is present, one expects that
a pole with frequency ∼ωQ will appear in the longitudinal
conductivity, and by virtue of Eq. (C9), it should also appear in
the transverse conductivity. This argument justifies neglecting
long-range effects in our computations of the conductivity of
the disordered system and explains the presence of structure
at the energy of sound modes even if the system is charged.

[1] For a review see, e.g., P. A. Lee, N. Nagaosa, and X.-G. Wen,
Rev. Mod. Phys. 78, 17 (2006).

[2] K. K. Gomes, A. N. Pasupathy, A. Pushp, S. Ono, Y. Ando, and
A. Yazdani, Nature (London) 447, 569 (2007).
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D. Shahar, and G. Grüner, Phys. Rev. B 75, 094506 (2007).

[15] E. F. C. Driessen, P. C. J. J. Coumou, R. R. Tromp, P. J. de Visser,
and T. M. Klapwijk, Phys. Rev. Lett. 109, 107003 (2012).

[16] P. C. J. J. Coumou, E. F. C. Driessen, J. Bueno, C. Chapelier,
and T. M. Klapwijk, Phys. Rev. B 88, 180505(R) (2013).

[17] D. Sherman, B. Gorshunov, S. Poran, N. Trivedi, E. Farber,
M. Dressel, and A. Frydman, Phys. Rev. B 89, 035149 (2014).

[18] S. Doniach and M. Inui, Phys. Rev. B 41, 6668 (1990).
[19] K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).
[20] D. Podolsky, A. Auerbach, and D. P. Arovas, Phys. Rev. B 84,

174522 (2011).
[21] I. O. Kulik, O. Entin-Wohlmant, and R. Orbach, J. Low Temp.

Phys. 43, 591 (1981).
[22] C. M. Varma, J. Low Temp. Phys. 126, 901 (2002).
[23] While the relativistic O(N ) model considered in Ref. [20]

assumes that amplitude fluctuations have a simple pole at
ω = m, in BCS-like superconductors amplitude fluctuations
display a square-root singularity ∼(ω2 − m2)−1/2 at the mass
m = 2� [21, 22].

[24] M. Mondal, A. Kamlapure, S. Chandra Ganguli, J. Jesudasan,
V. Bagwe, L. Benfatto, and P. Raychaudhuri, Sci. Rep. 3, 1357
(2013).

174506-8

http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1038/nature05881
http://dx.doi.org/10.1038/nature05881
http://dx.doi.org/10.1038/nature05881
http://dx.doi.org/10.1038/nature05881
http://dx.doi.org/10.1038/ncomms1140
http://dx.doi.org/10.1038/ncomms1140
http://dx.doi.org/10.1038/ncomms1140
http://dx.doi.org/10.1038/ncomms1140
http://dx.doi.org/10.1103/PhysRevLett.106.047001
http://dx.doi.org/10.1103/PhysRevLett.106.047001
http://dx.doi.org/10.1103/PhysRevLett.106.047001
http://dx.doi.org/10.1103/PhysRevLett.106.047001
http://dx.doi.org/10.1038/nphys1892
http://dx.doi.org/10.1038/nphys1892
http://dx.doi.org/10.1038/nphys1892
http://dx.doi.org/10.1038/nphys1892
http://dx.doi.org/10.1103/PhysRevB.85.014508
http://dx.doi.org/10.1103/PhysRevB.85.014508
http://dx.doi.org/10.1103/PhysRevB.85.014508
http://dx.doi.org/10.1103/PhysRevB.85.014508
http://dx.doi.org/10.1103/PhysRevB.88.014503
http://dx.doi.org/10.1103/PhysRevB.88.014503
http://dx.doi.org/10.1103/PhysRevB.88.014503
http://dx.doi.org/10.1103/PhysRevB.88.014503
http://dx.doi.org/10.1038/srep01792
http://dx.doi.org/10.1038/srep01792
http://dx.doi.org/10.1038/srep01792
http://dx.doi.org/10.1038/srep01792
http://dx.doi.org/10.1038/nature12494
http://dx.doi.org/10.1038/nature12494
http://dx.doi.org/10.1038/nature12494
http://dx.doi.org/10.1038/nature12494
http://dx.doi.org/10.1103/PhysRevLett.85.2569
http://dx.doi.org/10.1103/PhysRevLett.85.2569
http://dx.doi.org/10.1103/PhysRevLett.85.2569
http://dx.doi.org/10.1103/PhysRevLett.85.2569
http://dx.doi.org/10.1103/PhysRevB.61.R14924
http://dx.doi.org/10.1103/PhysRevB.61.R14924
http://dx.doi.org/10.1103/PhysRevB.61.R14924
http://dx.doi.org/10.1103/PhysRevB.61.R14924
http://dx.doi.org/10.1103/PhysRevB.67.144506
http://dx.doi.org/10.1103/PhysRevB.67.144506
http://dx.doi.org/10.1103/PhysRevB.67.144506
http://dx.doi.org/10.1103/PhysRevB.67.144506
http://dx.doi.org/10.1103/PhysRevX.4.021007
http://dx.doi.org/10.1103/PhysRevX.4.021007
http://dx.doi.org/10.1103/PhysRevX.4.021007
http://dx.doi.org/10.1103/PhysRevX.4.021007
http://dx.doi.org/10.1103/PhysRevB.75.094506
http://dx.doi.org/10.1103/PhysRevB.75.094506
http://dx.doi.org/10.1103/PhysRevB.75.094506
http://dx.doi.org/10.1103/PhysRevB.75.094506
http://dx.doi.org/10.1103/PhysRevLett.109.107003
http://dx.doi.org/10.1103/PhysRevLett.109.107003
http://dx.doi.org/10.1103/PhysRevLett.109.107003
http://dx.doi.org/10.1103/PhysRevLett.109.107003
http://dx.doi.org/10.1103/PhysRevB.88.180505
http://dx.doi.org/10.1103/PhysRevB.88.180505
http://dx.doi.org/10.1103/PhysRevB.88.180505
http://dx.doi.org/10.1103/PhysRevB.88.180505
http://dx.doi.org/10.1103/PhysRevB.89.035149
http://dx.doi.org/10.1103/PhysRevB.89.035149
http://dx.doi.org/10.1103/PhysRevB.89.035149
http://dx.doi.org/10.1103/PhysRevB.89.035149
http://dx.doi.org/10.1103/PhysRevB.41.6668
http://dx.doi.org/10.1103/PhysRevB.41.6668
http://dx.doi.org/10.1103/PhysRevB.41.6668
http://dx.doi.org/10.1103/PhysRevB.41.6668
http://dx.doi.org/10.1103/PhysRevB.56.8714
http://dx.doi.org/10.1103/PhysRevB.56.8714
http://dx.doi.org/10.1103/PhysRevB.56.8714
http://dx.doi.org/10.1103/PhysRevB.56.8714
http://dx.doi.org/10.1103/PhysRevB.84.174522
http://dx.doi.org/10.1103/PhysRevB.84.174522
http://dx.doi.org/10.1103/PhysRevB.84.174522
http://dx.doi.org/10.1103/PhysRevB.84.174522
http://dx.doi.org/10.1007/BF00115617
http://dx.doi.org/10.1007/BF00115617
http://dx.doi.org/10.1007/BF00115617
http://dx.doi.org/10.1007/BF00115617
http://dx.doi.org/10.1023/A:1013890507658
http://dx.doi.org/10.1023/A:1013890507658
http://dx.doi.org/10.1023/A:1013890507658
http://dx.doi.org/10.1023/A:1013890507658
http://dx.doi.org/10.1038/srep01357
http://dx.doi.org/10.1038/srep01357
http://dx.doi.org/10.1038/srep01357
http://dx.doi.org/10.1038/srep01357


OPTICAL EXCITATION OF PHASE MODES IN STRONGLY . . . PHYSICAL REVIEW B 89, 174506 (2014)

[25] A. Ghosal, M. Randeria, and N. Trivedi, Phys. Rev. B 65, 014501
(2001).

[26] Y. Dubi, Y. Meir, and Y. Avishai, Nature (London) 449, 876
(2007).

[27] Y. Dubi, Y. Meir, and Y. Avishai, Phys. Rev. B 78, 024502
(2008).

[28] A. Erez and Y. Meir, Europhys. Lett. 91, 47003 (2010).
[29] K. Bouadim, Y. L. Loh, M. Randeria, and N. Trivedi, Nat. Phys.

7, 884 (2011).
[30] G. Seibold, L. Benfatto, C. Castellani, and J. Lorenzana, Phys.

Rev. Lett. 108, 207004 (2012).
[31] M. Ma and P. A. Lee, Phys. Rev. B 32, 5658 (1985).
[32] S. Robaszkiewicz, R. Micnas, and K. A. Chao, Phys. Rev. B 23,

1447 (1981).
[33] K. Lai, H. Peng, W. Kundhikanjana, D. T. Schoen, C. Xie,

S. Meister, Y. Cui, M. A. Kelly, and Z.-X. Shen, Nano Lett. 9,
1265 (2009).

[34] J. Zmuidzinas, Annu. Rev. Condens. Matter Phys. 3, 169
(2012).

[35] R. S. Schrieffer, Theory of Superconductivity (Addison-Wesley,
Redwood City, CA, 1964).

[36] P. G. de Gennes, Superconductivity of Metals and Alloys
(Westview, Boulder, CO, 1966).

[37] D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412
(1958).

[38] For a discussion of this issue within an effective-action formal-
ism see, e.g., A. Paramekanti, M. Randeria, T. V. Ramakrishnan,
and S. S. Mandal, Phys. Rev. B 62, 6786 (2000); L. Benfatto,

A. Toschi, and S. Caprara, ibid. 69, 184510 (2004); H. Guo,
C.-C. Chien, and Y. He, J. Low Temp. Phys. 172, 5 (2013).

[39] E. Cappelluti, L. Benfatto, M. Manzardo, and A. B. Kuzmenko,
Phys. Rev. B 86, 115439 (2012).

[40] A. B. Kuzmenko, L. Benfatto, E. Cappelluti, I. Crassee, D. van
der Marel, P. Blake, K. S. Novoselov, and A. K. Geim, Phys.
Rev. Lett. 103, 116804 (2009); Z. Li, C.-H. Lui, E. Cappelluti,
L. Benfatto, K.-F. Mak, G. L. Carr, J. Shan, and T. F. Heinz,
ibid. 108, 156801 (2012).

[41] D. Belitz, S. De Souza-Machado, T. P. Devereaux, and D. W.
Hoard, Phys. Rev. B 39, 2072 (1989).

[42] L. B. Ioffe and M. Mezard, Phys. Rev. Lett. 105, 037001 (2010);
M. V. Feigel’man, L. B. Ioffe, and M. Mézard, Phys. Rev. B 82,
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