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Josephson effect and triplet-singlet ratio of noncentrosymmetric superconductors
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We calculate the Andreev bound states and the corresponding Josephson current for an asymmetric
two-dimensional Josephson junction by solving Bogoliubov–de Gennes equations. The junction consists of
a noncentrosymmetric superconductor (NCS) separated by a tunneling barrier with a variable height to a
conventional s-wave superconductor. In addition to the antisymmetric spin-orbit coupling in the NCS on the
one side, this asymmetric junction gives rise to a Rashba spin-orbit coupling at the interface. We explore the rich
parameter space and recover various limiting cases such as s-wave/p-wave junction and the asymmetric s-wave
junctions. In addition, we report a transition from a 0 junction to a π/2 junction with increasing triplet-singlet
pairing ratio of the NCS, which serves as a mechanism to determine the unknown ratio in a variety of NCS’s.
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I. INTRODUCTION

Noncentrosymmetric superconductors (NCS) provide the
unique possibility to study a microscopic coexistence of spin
singlet and spin triplet superconductivity in a bulk material
[1–4]. This is due to the absence of inversion symmetry which
would allow us to distinguish even (spin singlet) and odd
(spin triplet) parity pairing states. In this context the presence
of strong antisymmetric spin-orbit coupling (ASOC) plays
an essential role. The parity mixing of the pairing state is
determined by the strength of ASOC and, in a much stronger
way, by the pairing interaction. Interesting effects are expected
in NCS if the two parities appear in comparable magnitude.
One possible realization is CePt3Si and several other Ce-based
NSC, where magnetic fluctuations may mediate a sizable or
even dominant odd-parity component [4,5].

The question of how to determine the relative magnitude
of the two parity components has been addressed in various
ways. Børkje and Sudbø [6] proposed to consider steps in
the current-voltage characteristics of NCS-NCS junctions.
The observation of a zero-bias anomaly in quasiparticle
tunneling spectroscopy of certain directions would indicate the
presence of helical edge state of topologically nontrivial phase
with dominant odd-parity pairing [7]. As discussed first by
Vorontsov et al. [8] the helical states would carry spin currents
which would be another indication for the topologically
nontrivial state. Crossed Andreev reflection between two
interfaces between spin-polarized normal metals and a NCS
has been proposed as a further diagnostic tool by Fujimoto
[9]. Asano and Yamano [10] considered a NCS-NCS junction
and predicted a difference in the temperature dependence of
the critical current giving insights into parity mixing. Klam
and collaborators suggested Raman scattering as a way to de-
termine the odd-even parity ratios [11]. Experimentally, Yuan
et al. [12] analyzed the temperature-dependent penetration
depth for noncentrosymmetric Li2PdxPt3−xB, as nodes can
appear due to parity mixing.
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In this study we analyze yet another method to get insight
into the ratio of even- and odd-parity component, based on
the current-phase relation of the Josephson contact between a
NCS and a conventional s-wave (BCS) superconductor. Indeed
working Josephson contacts of this kind have been fabricated
for CePt3Si [13] and isostructural LaPt3Si [14], both coupled to
Al. Hayashi et al. [15] pointed out that the observed qualitative
difference in the interference effect in a magnetic field for
Al-CePt3Si Josephson contacts could be understood in terms
of selection rules for the even- and odd-parity components of
the superconducting pairing state. While the selection rules are
concerned with lowest order Josephson tunneling, we would
like to extend our discussion including higher order couplings,
restricting ourselves, however, to contributions of the Andreev
bound states at the two-dimensional interface. These are giving
the most relevant contributions to the deviations from ordinary
current phase relations.

Much attention has been focused on Josephson junctions
with ground state energy other than 0 or π . These so-called
ϕ junctions were predicted for interfaces including uncon-
ventional superconductors [16,17] and in the context of time
reversal symmetry breaking [15,18,19]. We will demonstrate
in this paper that Josephson junctions with NCS provide
additional opportunities to obtain interesting ϕ junctions.

We will here concentrate on systems like CePt3Si and
LaPt3Si which have a tetragonal crystal symmetry and an
ASOC with Rashba-like structure (point group C4v), as we
will introduce below. In order to discriminate between differ-
ent triplet-singlet ratios, the considered junction is oriented
parallel to the c axis (fourfold axis of the crystal) of the NCS.
For that case the triplet component of the gap, which is in the
simplest case of p-wave type, will contribute the most to the
Josephson current.

This paper is organized as follows. In Sec. II we present the
model Hamiltonian and the ansatz to solve the Bogoliubov–de
Gennes equations. Section III reports analytical results for the
Andreev bound states for certain limiting cases, and in Sec. IV
we present the current-phase relations for Josephson junctions
with different values for the singlet and triplet order parameter.
Finally, we summarize our results in Sec. V.
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FIG. 1. (Color online) Geometry of the 2D Josephson junction.
The upper circles indicate electronlike quasiparticles and the lower
circles holelike quasiparticles. Both are labeled with the associated
wave vectors.

II. MODEL

We consider a Josephson junction in a two-dimensional
(2D) geometry, as shown in Fig. 1, between a noncentrosym-
metric superconductor (NCS) on the left hand side (x < 0) and
a conventional s-wave BCS superconductor on the right hand
side (x > 0), indicated by I and II, respectively. The NCS is
described by an intrinsic ASOC of the form hASOC = αgk · τ

parametrized by a coupling constant α, the vector function
gk describing the anisotropy in momentum k, and the Pauli
matrices τ . In view of CePt3Si, we choose a Rashba type of
spin-orbit vector gk = (ky,−kx,0)T [20,21]. At the interface
we allow for a spin independent potential barrier V0(x) =
V0δ(x). Due to breaking of the inversion symmetry at the
interface [1,15], we additionally include a Rashba spin-orbit
coupling at the interface

hSO = αR(k × n) · τ δ(x), (1)

where n = (1,0,0)T is the normal vector of the interface. For
our restricted two-dimensional geometry this simplifies to

hSO = −αRτzkyδ(x). (2)

Note that this additional term vanishes if one restricts to per-
pendicular tunneling. The order parameter on the conventional
superconductor side

�II
σσ ′ = {�0e

iφiτ y}σσ ′ (3)

is represented by an amplitude �0 and a phase φ. On side
I the order parameter can be viewed as a superposition of
a even-parity spin-singlet (ψ) and an odd-parity spin-triplet
(d gk) component:

�I
σσ ′(k) = {[ψ1 + d gk · τ ]iτ y}σσ ′ . (4)

This parity-mixed state is time reversal symmetry invariant
such that the relative phase between the even- and odd-parity
component is 0 or π . Without loss of generality we can,
therefore, choose ψ and d to be real and define the ratio p =
d/ψ of the two components as measure for the distribution
between even- and odd-parity character. We assume [22,23]
that the d vector of the odd-parity component in the NCS is
parallel to gk, as other odd-parity states are suppressed by the
ASOC.

It is convenient to split the Bogoliubov–de Gennes Hamil-
tonian in k space into three parts corresponding to the three
regions of the device, the left hand side (ĤI), the right hand
side (ĤII), and the barrier in the middle (ĤV):

HBdG = �(−x)ĤI + �(x)ĤII + δ(x)ĤV, (5)

with

ĤI =

⎛
⎜⎝

ξk + αgz α(gx − igy) d(−gx + igy) ψ + dgz

α(gx + igy) ξk − αgz −ψ + dgz d(gx + igy)
d(−gx − igy) −ψ + dgz −ξk + αgz α(gx + igy)

ψ + dgz d(gx − igy) α(gx − igy) −ξk − αgz

⎞
⎟⎠ , (6)

ĤII =

⎛
⎜⎜⎝

ξk 0 0 �0e
iφ

0 ξk −�0e
iφ 0

0 −�0e
−iφ −ξk 0

�0e
−iφ 0 0 −ξk

⎞
⎟⎟⎠ , (7)

ĤV =

⎛
⎜⎝

ξk + V0 − αRky 0 0 0
0 ξk + V0 + αRky 0 0
0 0 −ξk − V0 − αRky 0
0 0 0 −ξk − V0 + αRky

⎞
⎟⎠ , (8)

with the abbreviation for the kinetic term

ξk = �
2k2

2m
− μ. (9)

Defining the angle θ of a quasiparticle trajectory through kx = |k| cos θ , ky = |k| sin θ , the Hamiltonian on the NCS side I of the
junction reads

ĤI =

⎛
⎜⎜⎝

ξk iα|gk|e−iθ −id|gk|e−iθ ψ

−iα|gk|eiθ ξk −ψ −id|gk|eiθ

id|gk|eiθ −ψ −ξk −iα|gk|eiθ

ψ id|gk|e−iθ iα|gk|e−iθ −ξk

⎞
⎟⎟⎠ . (10)
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The energy eigenvalues on the left- and right-hand side of the interface are given by E = ±Eλ with Eλ =√
(ξk + λα|gk|)2 + �2

λ, with the index λ being λ = 0 for the BCS superconductor and λ = ±1 for the NCS due to the spin-split
bands. Accordingly also the pair potential is defined by �0 and �± = ψ ± d|gk| for the two sides. The corresponding eigenvectors
lead to the following ansatz for the wave function on side I (NCS):

�I(x,y) = a+

⎛
⎜⎝

u+
iu+e−iθ

−iv+e−iθ

v+

⎞
⎟⎠ e−ik+

x+xeik+
y+y + a−

⎛
⎜⎝

u−
−iu−e−iθ

iv−e−iθ

v−

⎞
⎟⎠ e−ik+

x−xeik+
y−y

+ b+

⎛
⎜⎝

v+
−iv+eiθ

iu+eiθ

u+

⎞
⎟⎠ eik−

x+xeik−
y+y + b−

⎛
⎜⎝

v−
iv−eiθ

−iu−eiθ

u−

⎞
⎟⎠ eik−

x−xeik−
y−y , (11)

which is similar to the ansatz used in Ref. [10]. On the side II the ansatz for the wave function reads accordingly as usual for a
conventional superconductor,

�II(x,y) = c

⎛
⎜⎝

u0

0
0

v0e
−iφ

⎞
⎟⎠ eik+

x0xeik+
y0y + d

⎛
⎜⎝

0
u0

−v0e
−iφ

0

⎞
⎟⎠ eik+

x0xeik+
y0y

+ e

⎛
⎜⎝

v0

0
0

u0e
−iφ

⎞
⎟⎠ e−ik−

x0xeik−
y0y + f

⎛
⎜⎝

0
v0

−u0e
−iφ

0

⎞
⎟⎠ e−ik−

x0xeik−
y0y, (12)

with the following wave vectors:

�k±
xλ = �k±

λ cos θ

=
√

2m(EF ±
√

E2 − |�λ|2 − λαkF) cos θ, (13)

�k±
yλ = �k±

λ sin θ

=
√

2m(EF ±
√

E2 − |�λ|2 − λαkF) sin θ, (14)

and the coherence factors

uλ =

√√√√E +
√

E2 − �2
λ

2E
, (15)

vλ =

√√√√E −
√

E2 − �2
λ

2E

�λ

|�λ| , (16)

with λ = 0 (I) and λ = ±1 (II).
The above ansatz contains the following approximations.

In order to obey the Bogoliubov–de Gennes equations, the
wave vectors k±

x± and k±
y± have to be expanded to the first

nonvanishing order. That is, we replace the wave vectors by
kF in the off-diagonal entries of Ĥ I. Whereas we use the
full expression on the diagonal for the kinetic energy: ξk →
�

2(k±
λ )2/2m − EF = ±

√
E2 − �2

λ − λαkF. Taking only the
leading order in the expansion of the wave vector into account,
our equations and thus our results do not depend on the
strength of the ASOC α. However, the indirect impact of the

ASOC through the parity mixing of the order parameter is the
dominant effect.

The matching conditions for the wave functions at the
interface require

�I(0,y) = �II(0,y) (17)

and

∂x�(x,y)|x=0+ − ∂x�(x,y)|x=0−

= kF cos θ

⎛
⎜⎝

Z− 0 0 0
0 Z+ 0 0
0 0 Z+ 0
0 0 0 Z−

⎞
⎟⎠ �(0,y), (18)

taking the barrier potential into account in the latter condition,
and including also the spin-orbit coupling term in the inter-
face. It is convenient to define the following dimensionless
parameters describing the interface:

Z± = Z′ ± ZR tan θ = 2m(V0 ± αR�kF sin θ )

�2kF cos θ
, (19)

Z′ = Z

cos θ
, Z = 2mV0

�2kF
, (20)

ZR = 2mαR

�kF
= αRpF

EF
. (21)

For Z = ZR = 0, it is obvious from these boundary conditions
that the Andreev bound states, emerging at the interface as a
subgap part of the spectrum, do not depend on the angle θ and
are in this sense dispersionless with respect to ky . On the other
hand, for finite scattering potentials Z, the spectrum becomes
θ dependent through the renormalization of the barrier and the
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back scattering of quasiparticles. This has also an important
influence on the Andreev bound states as a function of the
Josephson phase φ, as will be discussed later.

In order to have a guide for the barrier parameters, let us here
give an estimate for the spin-orbit coupling in the interface. For
this purpose we assume that the spin splitting of the energy
bands at an interface may reach 2|αR|pF = 0.02 · · · 0.1 eV
following Ref. [1]. Assuming a typical value for the Fermi
energy of about EF ∼ 5 eV, we estimate that realistic values
for |ZR| will not exceed |ZR| = 0.005 · · · 0.05.

III. ANALYTICAL RESULTS

The Andreev bound states are calculated from Eqs. (17)
and (18), leading up to eight independent equations. Solving
this system of linear equations requires that the determinant of
the corresponding 8 × 8 matrix is zero. This yields an implicit
and rather lengthy equation for the energy E for given phase
difference φ and angle θ (ky). We first consider several limiting
cases where a simple analytical expression of the energy can
be given, and compare with known results and the numerical
calculations in the next section.

As a first limiting case we examine a quasi-one-dimensional
interface (i.e., θ = 0) without Rashba spin-orbit coupling at
the interface (ZR = 0). Here the Andreev bound states are
determined easily by the following equation (from here on we
put �0 = 1 as the energy unit):

8E4 − 8(�− + �+)E2 cos(φ)

+ �−�+
[
8 cos2(φ) − �2

0Z
2(Z2 + 4)

]

+ 4�0(Z2 + 2)[�+(E2 − �− cos(φ))

+ �−(E2 − �+ cos(φ))]

+ �2
0�+�−[(Z2 + 4)Z2 + 8]

+ �2
0E

2Z2(Z2 + 4) = 0, (22)

with �λ =
√

E2 − �2
λ and λ = ±,0. This expression repro-

duces the results for the Andreev bound states in asymmetric
Josephson junctions as, for example, given in Ref. [24].

One can further consider a transparent junction (i.e., Z =
0 and ZR = 0), where the equation which determines the
Andreev bound states simplifies considerably:

(E2 + �0�+ − �+ cos φ)(E2 + �0�− − �− cos φ) = 0.

(23)

Since this equation factorizes, we obtain two pairs of solutions
for �+ and �− which can be easily calculated:

E2
±(φ) = �2

± sin2 φ

1 + �2± − 2�± cos φ

for �± (1 − �± cos φ) (�± − cos φ) > 0 . (24)

By rescaling |gk| = 1, the Andreev bound states energies in
the singlet limit ψ = 1, d = 0, �± = 1 have the solution

E2
± = cos2 φ

2
. (25)

This is consistent with the Z = 0 curves in Fig. 4(b). If instead
one considers an interface with large tunneling potential Z �
1, then Eq. (22) yields

E2 = �−�+ − �−�+. (26)

In the singlet limit this yields E2 = 1. This is consistent
with the trend that the bound state energies are flattened with
increasing Z in Fig. 4(b). On the other hand, the transparent
junction Z = 0 at the triplet limit ψ = 0, d = 1, �± = ±1
yields

E2
+ = cos2 φ

2
,

(27)

E2
− = sin2 φ

2
,

which are consistent with the Z = 0 curves in Fig. 6(b).
For a “mixed-parity” junction, such as the ψ = 0.3 and
d = 0.7 case studied in Fig. 5, some branches of Andreev
bound states appear only for a limited range of φ due to
the condition in Eq. (24), meaning the subgap states merge
with the quasiparticle continuum at the limiting values of φ.
The condition in Eq. (24) simplifies to �− > cos φ for the
special case ψ + d = 1 (dotted line in Fig. 2), which will be
considered in the following section.

IV. NUMERICAL RESULTS

Since for a general set of parameters {ψ,d,θ,Z,ZR} it is
usually not possible to provide an analytical expression for the
Andreev bound states energies in our junction, we turn here
to numerical solutions. As mentioned in the Introduction, our
interest is to examine the transition in the Josephson tunneling
between a pure even- and a pure odd-parity superconductor
on the NCS side. The parameter space for the gap values
which we will explore is illustrated in Fig. 2. In this diagram,
constant ratios between even- and odd-parity component are
represented by straight lines through origin. It turns out that
the results for the current-phase relation along these lines of

FIG. 2. (Color online) Interpolated phase diagram of the
NCS/BCS junction at Z = 0.5, ZR = 0, characterized according to
the minimum of the junction free energy. Other values of Z and
ZR show qualitatively similar results. The dotted line indicates the
ψ + d = �0 line.
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constant ratio are at least qualitatively similar. Therefore, we
show only some representative examples mainly along the
line ψ + d = 1, labeled by the dots in Fig. 2 and shown
in detail in Figs. 4–6. In the following we will characterize
the Josephson junction through the phase φ at which the
junction energy is minimized. The standard junctions have this
at phase φ = 0 (mod 2π ) and are correspondingly called “0
junctions”. There are also “π/2 junctions” which have minima
at φ = ±π/2. All other junctions we refer to as “φ junctions”.
These different junctions have implications on interference
experiments using, for example, the superconducting quantum
interference devices (SQUID) type of arrangements.

A. Josephson current

It has been demonstrated by Chang and Bagwell [25] that
the Josephson current for an asymmetric contact junction
can be decomposed into two contributions. The first one
can be calculated from discrete Andreev bound states, while
the second contribution can be assigned to the continuous
quasiparticle spectrum above the gaps and becomes important
only for strongly asymmetric junctions [25]. Since we are
mainly interested in the parity change of the order parameter
with ψ + d = �0, we ignore, for simplicity, the continuum
contribution to the current, which is expected to give small
corrections of the same symmetry as the Josephson current
originating from the Andreev bound states at the interface
[24,25]. The expression for the current per unit surface area
flowing perpendicular to the surface is then given by Ref. [26]:

jx = e

�

∑
a

∑
ky

∂Ea(φ)

∂φ
f (Ea), (28)

where each Ea(φ) denotes one of the up to four branches in the
spectrum of bound states and f (E) = 1/[exp(E/kBT ) + 1]
is the Fermi-Dirac distribution function. To simplify matters
we restrict to T = 0. Note that the sum over ky can be
easily converted into an integral over the scattering angle θ .
Furthermore, it is important to account for the right multiplicity
of Ea(φ). The numerical differentiation is then performed after
the bound states are assigned to one of the up to four branches.
Eventually, a Fourier analysis of the Josephson current is
performed and the free energy F is calculated.

B. Discussion

As mentioned above we do not take the continuum states
into account, as we can expect from the discussion in Ref. [24]
that their effect is limited to an antisymmetric contribution
which does not affect the essential conclusions of the current-
phase relation. We will include the spin-orbit coupling of the
interface by a rather larger value of ZR = 0.5 to compare with
the case ZR = 0. However, the effect of the spin-orbit coupling
is rather weak for our junction geometry. The general reason
for this is the fact that due to the renormalization of Z according
to Eq. (20), the main contribution to the Josephson current is
given by the Andreev bound states for θ = 0, where there is
no contribution from Rashba spin-orbit coupling according to
Eq. (1).

Now, let us consider the combined results for the Andreev
bound states and Josephson current along the line ψ + d = 1.
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FIG. 3. (Color online) First [∝sin(φ), solid and dotted lines] and
second [∝sin(2φ), dashed and dash-dotted lines] Fourier component
of the total current along the dotted line in the phase diagram of Fig. 2
(ψ + d = 1) for Z = 0.5. The dotted and dash-dotted line correspond
to ZR = 0 and the solid and dashed line to ZR = 0.5.

In order to discuss all relevant and qualitative different cases,
we show here results for the parameters (ψ = 1,d = 0), (ψ =
0.3,d = 0.7), and (ψ = 0,d = 1) in Figs. 4–6. The upper panel
displays the numerical results of the Josephson current for
(Z = 0.5,ZR = 0) in dotted lines and (Z = 0.5,ZR = 0.5) in
solid lines as to compare the influence of the interface Rashba
spin-orbit coupling. The first five Fourier coefficients of the
current-phase relation are shown as an inset with nonzero
Rashba spin-orbit coupling.

Figure 3 displays the first two Fourier coefficients with and
without interface Rashba spin-orbit coupling, including more
data points along the line ψ + d = 1. The physical interpreta-
tion is the following: As mentioned in the Introduction, the lack
of inversion symmetry invalidates the classification according
to parity—thus the singlet and the triplet gap function mixes
and the relevant gap functions become �+ and �−. Almost
all response and transport functions reflect the nodal structure
of these two gaps. Around ψ = d, a sign change occurs in
�−, which can be translated into a phase shift of the phase
φ by π . As a consequence the first Fourier component has to
display a sign change, whereas no sign change is allowed for
the second Fourier component when crossing the point ψ = d.
Thus, the second Fourier component remains nonpositive for
all parameters. Calculations with larger Z (tunneling limit)
display no qualitative change compared to Fig. 3 for the ϕ

junctions (not shown here).
In panel (b) of Figs. 4–6 the corresponding numerically

calculated Andreev bound states are shown in filled symbols.
Since we focus on bound states that provide the main
contribution to the current, i.e., with θ = 0, the Rashba
spin-orbit splitting effect on the bound states cannot be
seen, as explained above. Therefore it is important to note
that the difference in both displayed current-phase relations
(with ZR = 0 and ZR = 0.5) originates from the bound states
with θ �= 0, which generally give smaller contributions to
the Josephson current. For comparison we show in panel
(b) the analytically calculated spectrum of Andreev bound
states from Eq. (24) for a transparent junction (Z = 0). Turning
on the potential scattering (Z) at the interface, introduces an
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FIG. 4. (Color online) Calculated current-phase relation from the
Andreev bound states for a two-dimensional 0 junction with ψ = 1,
d = 0, �0 = 1, and Z = 0.5. The Josephson current (a) is shown for
ZR = 0 (dotted line) and ZR = 0.5 (solid line). Because of the small
differences between both curves, the Fourier coefficients are only
shown for the ZR = 0.5 case as an inset. The Andreev bound states
(b) are shown for the quasiparticle angle θ = 0, once with Z = 0
(solid line) and once with Z = 0.5 (filled symbols). Note that the
Rashba spin-orbit coupling is idle in this θ = 0 case.

anticrossing between the branch of the bound states associated
with �+ (solid line) and the one with �− (dashed line). This
means that the clear distinction between the branches of bound
states belonging to �+ and �− breaks down. Since we chose
ψ + d = 1 in Figs. 4–6, the order parameter �+ stays constant
for all ratios ψ/d, leading to the branch of BCS-like Andreev
bound states in the transparent case (Z = 0) that is identical
in all these figures (solid line).

In Fig. 4 the well-known BCS Josephson junction with
(ψ = 1,d = 0) is recovered as a limiting case. Again, only a
small difference can be seen for the current-phase relation with
and without Rashba spin-orbit coupling at the interface, shown
in Fig. 4(a). For this BCS case and θ = 0, the Andreev bound
states [Fig. 4(b)] are spin degenerate for Z = 0 (solid line)
as well as for Z = 0.5 (filled symbols). This spin degeneracy
is lifted with increasing odd-parity contribution to the gap, as
seen, for example, in Fig. 5(b) for Z = 0 and Z = 0.5. The
different Andreev bound state spectra for these two cases are
due to the anticrossing at φ = 0 and further restrictions due
to the finite Z. The special case ψ = d = 1/2 (not shown
in detail here) yields zero-energy bound states due to the
node of �− pointing towards the interface. In this case, the
nontransparent junction carries no current from the Andreev
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FIG. 5. (Color online) Josephson current (a) for a φ junction with
parameters ψ = 0.3, d = 0.7, �0 = 1, and Z = 0.5. The minima
of the free energy are located at φ = 0.64π and φ = 1.36π . The
spin-degenerate Andreev bound states for θ = 0 and Z = 0 are shown
in solid and dashed lines, corresponding to the “+” and “−” band,
respectively. Apart from that, same labeling as in Fig. 4.

bound states. This can be also seen in Fig. 3, where all Fourier
components go through zero for ψ = d = 1/2. Figure 5 shows
with the parameters (ψ = 0.3,d = 0.7) a different behavior.
The current-phase relation in Fig. 5(a) has a negative slope at
φ = 0, the second Fourier component becomes dominant, and
associated with this, the ground state energy of the junction
is located at φ = 0.64π and φ = 1.36π . Note that for this
case only two particle-hole symmetric and nondegenerate
branches of Andreev bound states exist for Z = 0.5, a feature
originating again from the restriction to a finite Z. Finally, the
case of (ψ = 0,d = 1) is displayed in Fig. 6 for the sake of
completeness. A detailed discussion of this junction can be
found in Ref. [27].

In the following we summarize our findings on the transition
from a pure BCS Josephson junction to a triplet-singlet
junction (Fig. 3 and Figs. 4–6):

(i) Despite our relatively large choice for the value of ZR

compared to our estimations, the current-phase relation shows
only small differences between ZR = 0 and ZR = 0.5. Yet
the largest differences can be seen for a dominant singlet
contribution (ψ > d). This is also reflected in the Fourier
components of the current, see Fig. 3. Altogether, the Rashba
spin-orbit coupling at the interface leads only to a slightly
larger contribution in higher order. Thus, our results are robust
with respect to this scattering contribution.
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FIG. 6. (Color online) Josephson current (a) for a π/2 junction
with parameters ψ = 0, d = 1, �0 = 1, and Z = 0.5. Same labeling
as in Fig. 5.

(ii) From the BCS junction (ψ = 1, d = 0) to the triplet-
singlet junction (ψ = 0, d = 1) the total amplitude of the
current shows the following nonmonotonous variation. The
amplitude is largest for ψ = 1 and decreases to zero at
ψ = d = 1/2 (at least for finite potential scattering Z). For
ψ < 1/2 the amplitude increases again and reaches, after
passing over an intermediate maximum, half of the largest
value at ψ = 0. Consequently a weak Josephson coupling
(compared to normal state junction resistance) may be an
indication for ψ ≈ d.

(iii) From ψ = 1 to ψ = 0 the period of the Josephson
current changes from 2π to π . This results from the vanishing
first Fourier component in Fig. 3, while the second component
remains finite.

(iv) The first Fourier component indicates a transition in
the junction through its sign change at ψ = d = 1/2. Clearly
the first Fourier component is dominant for ψ = 1, it decreases
and changes sign at ψ = d = 1/2, and vanishes again at ψ = 0
(see Fig. 3). Consequently, the Fourier decomposition of the
current-phase relation might be used for an identification of
the ratio ψ/d.

(v) The transition at ψ = d = 1/2 is also indicated by
the minimum of the free energy which defines the ground
state of the junction. For ψ > d the junction has only one

minimum1 around φ = 0. For ψ < d the previous minimum
at φ = 0 becomes a maximum and we obtain two new
degenerate ground states located symmetrically around φ = π .
The position of these two minima are in the proximity of φ = π

if d is close to ψ , and they shift continuously to the positions
φ = π/2 and φ = 3π/2 for (ψ = 0, d = 1).

V. CONCLUSION

We investigated the effect of interface Andreev bound states
on the Josephson current between a noncentrosymmetric and
a conventional s-wave superconductor. Using the tetragonal
point group symmetry C4v with Rashba-type spin-orbit cou-
pling for the NCS we aim at conditions potentially applicable
to noncentrosymmetric heavy Fermion superconductors such
as CePt3Si, which are especially interesting as candidates
for mixed-parity pairing of comparable even- and odd-parity
components. We apply a general Bogoliubov–de Gennes
formalism and present analytical as well as numerical results
for the Andreev bound states and the current-phase relation.
Our results show that the behavior of the Josephson current-
phase relation is dominated by the tunneling perpendicular to
the interface. In this way spin-orbit scattering effects of the in-
terface play a minor role for the geometry considered (normal
vector in the basal plane of the tetragonal crystal lattice).

We neglect in our analysis the contributions from the
continuum of quasiparticle spectrum restricting to the Andreev
bound states. Nevertheless, the main result of our study should
be unaffected by this constraint. Looking at a changing ratio
of even- and odd-parity component on the NCS side of the
junction, we find that the Josephson current-phase relation
changes its character, in a way as to shift the minimum of the
junction energy away from φ = 0 for a conventional BCS-BCS
junction (0 junction) to finite φ values after a transition at a
ratio d/ψ = 1 leading to a φ junction. The position of the
energy minimizing φ would be one way to figure out the ratio
of the parity-mixing state involved. Note that a φ junction
incorporated into a SQUID configuration would generally
yield interference pattern distinguishable from standard ones.
Another way to determine this unknown ratio is the direct
measurement of the current-phase relation, as explained in
Ref. [28]. This would give an important tool to characterize
the pairing state in a noncentrosymmetric superconductor.
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1This minima might be extended for some regions in the parameter
space. If the contribution from continuum states to the current
according to Ref. [24] is taken into account, we expect that only
one minimum will remain.
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