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Knight shift spectrum in vortex states in s- and d-wave superconductors
on the basis of Eilenberger theory
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From the spatial structure of vortex lattice state calculated by Eilenberger theory, we study the resonance
line shape of Knight shift of the paramagnetic moments in s- and d-wave superconductors, comparing with the
Redfield pattern of the internal field distribution. We discuss the deviation from the temperature dependence of
the Yosida function and the magnetic field dependence of the paramagnetic susceptibility. In addition to the
calculation in the clean limit, influences of the impurity scattering are estimated in the Born limit and in
the unitary limit. These results are helpful for the analysis of NMR experiments to know properties of the
superconductors.
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I. INTRODUCTION

In the study of superconductivity, the observation of Knight
shift by NMR experiments is an important method to identify
the pairing symmetry. The Knight shift is related to the
paramagnetic susceptibility, and it is suppressed below the su-
perconducting transition temperature, if the superconductivity
is the spin-singlet pairing [1,2]. At a zero field, the temperature
(T ) dependence of the Knight shift is described by the Yosida
function [1]. It shows either an exponential T dependence
at low T in the s-wave superconductors with the full gap,
or a power-law T dependence in anisotropic superconductors
with nodes. On the other hand, the paramagnetic susceptibility
χ is proportional to the electronic specific heat at low
T , since both quantities are proportional to zero-energy
density of states (DOS). In the s-wave pairing, we expect
the linear H dependence of χ at low-H and low-T region
[3,4]. In the d-wave pairing with line nodes, we expect the
relation χ ∝ √

H due to the Volovik effect [3–7]. Therefore
by the careful observations of the T and H dependencies
of the Knight shift, we may obtain valuable information
to identify the pairing symmetry of the superconductivity.
However, the NMR experiment to detect the Knight shift is
usually performed in the vortex states under static magnetic
fields. Therefore, in order to correctly analyze the Knight
shift, we have to evaluate properties of the resonance line
shape of the NMR spectrum considering the nonuniform
spatial structure of paramagnetic moments in the vortex
states.

In the NMR experiment, the spectrum of the nuclear spin
resonance is determined by the internal magnetic field and
the hyperfine coupling to the spin of the conduction electrons.
Therefore, in a simple consideration, the effective field for
the nuclear spin is given by Beff(r) = B(r) + AhfMpara(r)
[4,8–10], where B(r) is the internal field distribution, Mpara(r)
is the paramagnetic moment of conduction electrons, and Ahf

is a hyperfine coupling constant depending on species of the
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nuclear spins. The resonance line shape of NMR is given by

P (ω) =
∫

δ(ω − Beff(r))dr, (1)

i.e., the intensity at each resonance frequency ω comes from
the volume satisfying ω = Beff(r) in a unit cell. When the
contribution of the hyperfine coupling is dominant, the NMR
signal selectively detects Mpara(r). This is the experiment
observing the Knight shift. As the resonance line shape of
the NMR spectrum for the Knight shift, we calculate the
distribution function P (M) = ∫

δ(M − Mpara(r))dr from the
spatial structure of Mpara(r). On the other hand, in
the case of negligible hyperfine coupling, the NMR signal
is determined by B(r). This resonance line shape in the vortex
lattice state is called “Redfield pattern” [11–13]. The resonance
line shape is given by the distribution function P (B) =∫

δ(B − B(r))dr calculated from the internal field B(r).
Since the hyperfine coupling constant has different values

for different nuclei, whether we observe the Redfield pattern
of P (B) or the Knight shift spectrum of P (M) depends
on the target nuclei in the NMR experiment, even in same
superconductors. The distributions of P (M) and P (B) were
sometimes confused in analysis of the NMR resonance line
shape in the vortex states. Thus, it is important to clarify
differences of the behaviors between P (B) and P (M).

The purpose of this work is to calculate the Knight shift
spectrum P (M) and the Redfield pattern P (B) in the vortex
lattice state on the basis of Eilenberger theory [3,13–15],
and discuss differences between them. We quantitatively
estimate the T and H dependencies of the Knight shift
spectrum. We discuss their behaviors depending on the pairing
symmetries, i.e., s-and d-wave pairings. In addition to the
clean limit, we study the influence of the impurity scatterings
in the Born and the unitary limits, where the residual DOS
appears in the superconducting state [16–24]. We discuss
how the impurity scattering changes the NMR resonance line
shape.

This paper is organized as follows. After the introduction,
formulation of our calculation is explained in Sec. II. In
Sec. III, after calculating the spatial structure of Mpara(r)
and B(r), we discuss the T and H dependencies of the
resonance line shape P (M) and P (B) in the clean limit
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and in the presence of nonmagnetic impurity scatterings for
the s-wave pairing. The results for the dx2−y2 -wave pairing
are reported in Sec. IV. The last section is devoted to
summary.

II. FORMULATION BY SELFCONSISTENT
QUASICLASSICAL THEORY

We calculate the spatial structure of vortices in the
vortex lattice state by quasiclassical Eilenberger theory
[3,4,13–15], including impurity scatterings [18–24]. In order
to estimate paramagnetic susceptibility, we include weak
Zeeman term μBB(r), where μB is a renormalized Bohr
magneton [3,4,8,9,25,26]. The quasiclassical theory assumes
that the atomic scale is enough small compared to the
superconducting coherence length ξ , and we focus the spatial
structure in the order of ξ scale. The quasiclassical condition
is satisfied in many superconductors. We also assume that
the size of the impurity is in the atomic scale, so that the
impurity does not work as a pinning center for vortices. Thus
we consider the case of uniform vortex lattice points in this
work. The impurity scatterings contribute to the self-energy of
the electronic states.

To obtain quasiclassical Green’s functions g(iωn,k,r),
f (iωn,k,r), and f †(iωn,k,r), we solve Ricatti equation ob-
tained from Eilenberger equations[

ωn + iμB + 1

τ
〈g〉k + v · (∇ + iA)

]
f

=
(

�φ + 1

τ
〈f 〉k

)
g,

[
ωn + iμB + 1

τ
〈g〉k − v · (∇ − iA)

]
f †

=
(

�∗φ∗ + 1

τ
〈f †〉k

)
g, (2)

where g = (1 − ff †)1/2, μ = μBB0/πkBTc, and v = vF/vF0

with Fermi velocity vF and vF0 = 〈v2
F〉1/2

k . 〈· · · 〉k indicates the
Fermi surface average. k is the relative momentum of the
Cooper pair on the Fermi surface, and r is the center-of-mass
coordinate of the pair. In our calculations, length, temperature,
Fermi velocity, magnetic field, and vector potential are,
respectively, measured in unit of ξ0, Tc, vF0, B0, and B0ξ0. Here,
ξ0 = �vF0/2πkBTc, B0 = φ0/2πξ 2

0 with the flux quantum φ0.
Tc is superconducting transition temperature in the clean limit
at a zero magnetic field. The energy E, pair potential � and
Matsubara frequency ωn are in unit of πkBTc.

For simplicity, we consider the spin-singlet pairing
on the two-dimensional cylindrical Fermi surface,
k = (kx,ky) = kF(cos θk, sin θk) and Fermi velocity
vF = vF0k/kF. The order parameter is �̃(r,k) = �(r)φ(k)

with the pairing function φ(k) =
√

2(k2
x − k2

y)/k2
F for the

dx2−y2 -wave pairing, or φ(k) = 1 for the s-wave pairing. As
magnetic fields are applied to the z axis, the vector potential
is given by A(r) = 1

2 H × r + a(r) in the symmetric gauge,
where H = (0,0,H ) is a uniform flux density, and a(r) is
related to the internal field B(r) = H + ∇ × a(r). As shown in
the insets of Fig. 1, the unit cell of the vortex lattice is given by
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FIG. 1. (Color online) (a) Profiles of the paramagnetic moment
Mpara(r) at H = 0.02 as a function of radius r/ξ0 from the vor-
tex center along the nearest-neighbor (NN) directions at T/Tc =
0.1, 0.2, . . . ,0.9. The inset shows a density plot of spatial structure
of Mpara(r) at T/Tc = 0.1. Peak height at the vortex core is truncated
in the density plot. Dashed lines indicate a unit cell of the vortex lattice
in our calculations. (b) The same as (a), but at H = 0.1. (c) Profiles
of the internal field distribution B(r) at H = 0.02 as a function of
r/ξ0 at T/Tc = 0.1, 0.2, . . . ,0.9. The inset shows a density plot of
spatial structure of B(r). (d) The same as (c), but at H = 0.1. These
are for the s-wave pairing in the clean limit.

r = s1(u1 − u2) + s2u2 with −0.5 � si � 0.5 (i = 1,2),
u1 = (ax,0,0), u2 = (ax/2,ay,0), and axayH = φ0.
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ay/ax = √
3/2 for the triangular vortex lattice, and

ay/ax = 1/2 for the square vortex lattice.
We consider the case of nonmagnetic s-wave impurity

scatterings with impurity strength u0, and treat the self-energy
by the t-matrix approximation [18–24]. Thus 1/τ in Eq. (2) is
given by

1

τ
= 1/τ0

cos2 δ0 + (〈g〉2
k + 〈f 〉k〈f †〉k) sin2 δ0

(3)

and δ0 = tan−1(πN0u0). The scattering time τ0 in the normal
state is given by 1/τ0 = nsN0u

2
0/(1 + π2N2

0 u2
0), where ns is

the number density of impurities, and N0 is the DOS at the
Fermi energy in the normal state. In this paper, we write
�/2πkBTcτ0 → 1/τ0, since the scattering time τ0 is in unit of
2πkBTc/�. The relation to the mean free path l = vF0τ0 and the
zero-temperature coherence length ξ = �vF0/π�0 is given by
l/ξ = (2πkBTcτ0/�)(�0/2kBTc) → τ0�0/2kBTc in our unit.
In the Born limit of weak impurity scattering potential,
δ0 → 0. In the unitary limit of strong scattering potential,
δ0 → π/2.

As for self-consistent conditions, the pair potential is
calculated by the gap equation

�(r) = g0N0T
∑

0<ωn�ωcut

〈φ∗(k)(f + f †∗)〉k (4)

with (g0N0)−1 = ln T + 2T
∑

0<ωn�ωcut
ω−1

n . We use ωcut =
20kBTc. The vector potential for the internal magnetic field is
self-consistently determined by

∇ × (∇ × A) = ∇ × Mpara(r) − 2T

κ2

∑
0<ωn

〈vFImg〉k, (5)

where Mpara(r) = (0,0,Mpara(r)) with

Mpara(r) = M0

[
B(r)

H
− 2T

μH

∑
0<ωn

〈Im(g)〉k

]
, (6)

the normal state paramagnetic moment M0 = (μ/κ)2H , and
κ = B0/πkBTc

√
8πN0. We set the Ginzburg-Landau parame-

ter κ = 30 as typical type-II superconductors.
The calculations of Eqs. (2)–(6) in the vortex lattice

state are alternatively iterated, and we obtain self-consistent
solutions of the pair potential �(r), vector potential A(r), and
quasiclassical Green’s functions g, f , and f † [3,4,13,15,22].
We perform calculations for a scattering parameter 1/τ0 = 0.1
in the Born limit and in the unitary limit, in addition to the
clean limit 1/τ0 = 0, to examine the T and H dependencies in
each case. To calculate the paramagnetic susceptibility, we set
paramagnetic parameter as μ = 0.01. The contributions of the
paramagnetic pair breaking are negligible for this very small
μ. We report the cases of triangular vortex lattice, and add
some results on the square vortex lattice cases at higher fields
in the dx2−y2 -wave pairing.

We note that the self-consistent calculation of �(r) is
necessary to correctly estimate the H and T dependencies of
the vortex core size and the pair-potential’s amplitude. For the
quantitative estimate of physical quantities in the vortex state,
we have to exactly estimate the vortex core structure, including
the influences of the core contributions toward the outside of
vortices. In the non-self-consistent calculations, these H and T

dependencies are given as assumptions. While the calculation
method of Doppler shift neglects the vortex core contribution,
the vortex core gives significant contribution to the zero-energy
DOS, as shown in Fig. 1 of Ref. [27]. Also in the study of
two-band superconductors, we see the difference in the H

dependence of zero-energy DOS between the calculation of the
Doppler shift methods [28] and the self-consistent Eilenberger
calculation [29] in the clean limit. Therefore the self-consistent
calculation is valuable for the quantitative study of properties
of vortex state in the whole range of H and T .

III. s-WAVE PAIRING

A. Clean limit

In this section, we study the spatial structure of the Knight
shift Mpara(r) and the internal field distribution B(r) in the
s-wave pairing, to estimate the resonance line shapes P (M)
and P (B). First, we discuss behaviors in the clean limit. By
the self-consistent calculations, we obtain Mpara(r) and B(r)
shown in Fig. 1.

As for the T dependence presented in Figs. 1(a) and 1(b),
Mpara(r) is uniform near T = Tc. On lowering temperature,
Mpara(r) decreases outside of vortex core and increases inside
the vortex core. We see rapid increases at the vortex center
at low T . Both at low H = 0.02 and higher H = 0.1, the
main distribution is restricted inside the vortex core, r �
ξ0. This indicates that the characteristic length of Mpara(r)
distribution is the superconducting coherence length ξ0. In
the spatial structure of Mpara(r) at H = 0.02 in the insets
of Fig. 1(a), outside of the vortex core, Mpara(r) has flat
distribution and Mpara(r) ∼ 0 at low T and low H . At a higher
field H = 0.1 shown in the inset of Fig. 1(b), since foot of
Mpara(r) distribution around the vortex cores overlap each other
with those of neighbor vortex cores, Mpara(r) has the spatial
variation even outside of the vortex core.

Also in the T dependence of B(r) in Figs. 1(c) and 1(d),
B(r) is uniform near T = Tc. On lowering T , B(r) is enhanced
around vortex core, and suppressed in the outer region. The
difference from Mpara(r) is that the characteristic length of
B(r) is the penetration depth λ. Therefore B(r) decreases
monotonically as a function of radius r from the vortex center
until outside of vortex cores. In the T dependence, increase
of B(r) on lowering T is not restricted in the vortex core
region, which is determined by the intervortex distance rather
than the coherence length, as shown in Figs. 1(c) and 1(d).
Outside of the vortex, we see the structure of saddle points at
midpoints between nearest neighbor vortices, and minimum at
equidistant points from adjacent three vortices in the insets of
Figs. 1(c) and 1(d).

The above-mentioned properties of Mpara(r) and B(r)
induce differences of the resonance line shapes of the Knight
shift P (M) and the Redfield pattern P (B). In P (M) in
Figs. 2(a) and 2(b), the minimum edge Mmin decreases on
lowering T . The distribution P (M) has sharp peak, and peak
position Mpeak is located near Mmin in the distribution. This
is because the peak comes from the uniform distribution
outside of the vortex core. Compared with Fig. 2(b) at a higher
field H = 0.1, the peak position Mpeak in P (M) is shifted to
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FIG. 2. (Color online) Changes of the NMR resonance line shape
on lowering T in the s-wave pairing and in the clean limit. We show
the Knight shift spectrum P (M) as a function of M/M0 for (a) H =
0.02 and (b) 0.1 at T/Tc = 0.1, 0.2, . . . , 0.9. For the comparison we
also show the Redfield pattern P (B) as a function of B/H for (c)
H = 0.02 and (d) 0.1. The horizontal base line for each spectrum is
shifted by T/Tc.

lower M , and reduces to M = 0, in Fig. 2(a) at a lower field
H = 0.02.

Also in the Redfield pattern of P (B), the minimum edge
Bmin decreases on lowering T . Difference between P (M)
and P (B) is that the peak position Bpeak is located at a
different position from the minimum field Bmin, as presented
in Figs. 2(c) and 2(d). This is because B(r) has the spatial
distribution even outside of vortex core. That is, B(r) has
different values for Bpeak at the saddle point and for Bmin at
equidistant points from adjacent three vortices.

To discuss the T dependence of P (M), we focus on
behaviors of the peak position Mpeak, the minimum edge Mmin,
and the weighted center Mχ of P (M). Mχ is a paramagnetic
susceptibility obtained by the spatial average of Mpara(r). We
present the T dependence of Mpeak, Mmin, and Mχ in Figs. 3(a)
and 3(b). We also show the T dependence of the Yosida
function [1], which is for uniform states without vortices. At
a low field H = 0.02 in Fig. 3(a), Mpeak(∼Mmin) shows an
exponential T dependence, and it coincides with that of the
Yosida function, even in the vortex state. This indicates that
Mpeak reflects the local electronic structure outside of vortex
cores, and that the exponential T dependence of the s-wave
pairing can be observed by Mpeak even in the vortex state
at low H . The paramagnetic susceptibility Mχ is larger than
Mpeak, and the T dependence of Mχ is a power-law, because it

(a) H = 0.02 (b) H = 0.1

(c) H = 0.02 (d) H = 0.1

FIG. 3. (Color online) (a) T dependence of the peak position
Mpeak, minimum edge Mmin, and the weighted center Mχ of the
distribution P (M) at H = 0.02. We also show the T dependence
of the Yosida function. (b) The same as (a) but at H = 0.1. (c) T

dependence of the peak position Bpeak and the minimum field Bmin

of the distribution P (B) at H = 0.02. We plot the shift from the
external field as (Bpeak − Hex)/H , (Bmin − Hex)/H , respectively. We
also show the shift of the averaged internal field (H − Hex)/H , which
indicates the T dependence of the magnetization. The dashed line
indicates a fitting by an exponential function. (d) The same as (c) but
at H = 0.1. These are for the s-wave pairing in the clean limit.

includes low-energy excitations in the vortex core. At a higher
field H = 0.1 in Fig. 3(b), the T dependence of Mpeak deviates
from that of the Yosida function and shows a power-law T

dependence. This is because the contributions of low-energy
excitations at the vortex core extends to the outside region
between vortices.

The T dependence of the peak position Bpeak and the
lower-edge Bmin of the Redfield pattern P (B) is presented
in Figs. 3(c) and 3(d), where we show the shift from the
applied external field Hex. From the self-consistent solutions,
we obtain Hex as

Hex = H + 〈(B(r) − H )2〉r/H

+ T

κ2H

∑
ωn>0

〈〈
Re

[
(f †�φ + f �∗φ∗)g

2(g + 1)

+ωn(g − 1)

]〉
p

〉
r
, (7)

174504-4



KNIGHT SHIFT SPECTRUM IN VORTEX STATES IN . . . PHYSICAL REVIEW B 89, 174504 (2014)

which is derived by Doria-Gubernatis-Rainer scaling [25,30].
〈· · · 〉r indicates spatial average. The shift of the weighted
center H − Hex of P (B) indicates the T dependence of the
magnetization. We see Bmin < Bpeak until higher T in these
figures. Compared with those of Fig. 3(d), the T dependence
becomes weak at low T in the s-wave pairing at a low field
in Fig. 3(c). We also show a fitting by an exponential function
for the behavior in the figure.

B. Influence of impurity scattering

To discuss influences of the impurity scatterings in the
vortex state for the s-wave pairing, we show the profile of
Mpara(r) in Fig. 4(a). At the vortex core, Mpara(r) is suppressed
by the impurity scatterings. The suppression of Mpara(r) is
stronger in the Born limit, compared with the case of the
unitary limit. This comes from the fact that low-energy states
at the vortex core is smaller in the Born limit than in the unitary
limit [20]. On the other hand, at the outside region of the
vortex core Mpara(r) is not changed by the impurity scattering.
This indicates that the nonmagnetic impurity scattering does
not break the s-wave superconductivity in the uniform state,
which is similar situation as in Anderson’s theorem at a zero
field [31,32].

In Figs. 4(b) and 4(c), we present the T dependence of
Mpeak and Mχ in the presence of the impurity scattering. The
behavior of Mpeak whose contributions are from outside of the

(a)

(b) H = 0.02 (c) H = 0.1

FIG. 4. (Color online) (a) Profile of Mpara(r) as a function of
radius r/ξ0 from the vortex center along the nearest neighbor vortex
direction at T/Tc = 0.1 and H = 0.1 for the s-wave pairing. We show
the cases of the Born limit and the unitary limit of 1/τ = 0.1, with
that of the clean limit. (b) T dependence of the peak position Mpeak

and the weighted center Mχ of the distribution P (M) at H = 0.02 for
the s-wave pairing in the Born limit and the unitary limit of 1/τ = 0.1
in addition to the clean limit case. We also show the T dependence
of the Yosida function. (c) The same as (b) but at H = 0.1.

vortex core is not changed by the nonmagnetic impurities. In
the T dependence of Mχ which includes contributions of the
vortex cores, there are small changes by the impurity scattering
at low T . The changes are larger at higher H in Fig. 4(c).

C. Magnetic field dependence

Figure 5 presents the H dependence of Mpeak, Mmin,
and Mχ in the s-wave pairing. At low T , the paramagnetic
susceptibility Mχ is proportional to the zero-energy DOS. In
Fig. 5, we see the linear H dependence, Mχ ∝ H , at low H

both in the clean limit and in the presence of the impurity
scatterings. However, since Mpeak < Mχ at low fields, Mpeak

shows different H dependence from the linear relation. On
the other hand, Mpeak ∼ Mχ at higher fields. These behaviors
are related to the line shape of P (M) and the spatial structure
of Mpara(r), as presented in Fig. 6. At a low field H = 0.1,
Mpara(r) is localized within the vortex core, and P (M) has a
sharp peak at the minimum edge Mmin. Thus Mmin ∼ Mpeak <

Mχ . At higher fields, the main distributions of Mpara(r) are
connected by the tails between neighbor vortices. Thus the
structures of saddle points and minimum points appear in the
outside region of the vortex core. Therefore the peak position
of P (M), coming from the saddle points, moves to larger-M
position from the minimum-edge Mmin in the distribution
P (M). Therefore Mmin < Mpeak ∼ Mχ at higher fields.

In the clean limit in Fig. 6(a), since the intervortex
connection of Mpara(r) has fine structures, the resonance line
shape of P (M) has fine structure with many subpeaks. In the

(a)

(b)

FIG. 5. (Color online) (a) H dependence of the peak position
Mpeak, the minimum edge Mmin, and the weighted center Mχ of the
distribution P (M) in the clean limit at T/Tc = 0.1 for the s-wave
pairing. (b) The same as (a) but in the Born limit (solid lines) and in
the unitary limit (dashed lines) of 1/τ = 0.1.
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FIG. 6. (Color online) (a) Resonance line shape of P (M) [left
panels] and density plots of Mpara(r) [right panels] at H = 0.10, 0.30,
and 0.48 in the clean limit for the s-wave pairing. T/Tc = 0.1. The
horizontal base line for each P (M) is shifted. (b) The same as (a) but
at H = 0.10, 0.38, and 0.58 in the Born limit with 1/τ = 0.1. We
also show P (M) for the unitary limit by thin lines in the left panel.

presence of the impurity scattering, as presented in Fig. 6(b),
the intervortex connection of Mpara(r) are smeared. Thus, the
fine structures of P (M) is smeared to smooth spectrum shape.

IV. dx2− y2 -WAVE PAIRING

A. Clean limit

In unconventional superconductors, the anisotropic pairing
function changes the sign on the Fermi surface. And due
to the node structure of the pairing function, there appear
low-energy states within the superconducting gap. As an
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FIG. 7. (Color online) Change of the NMR resonance line shape
on lowering T in the dx2−y2 -wave pairing and in the clean limit. We
show the Knight shift spectrum P (M) for (a) H = 0.02 and (b) 0.1
at T/Tc = 0.1, 0.2, . . . , 0.9. For the comparison we also show the
Redfield pattern spectrum P (B) for (c) H = 0.02 and (d) 0.1. The
horizontal base line for each spectrum is shifted by T/Tc.

example of the anisotropic superconductivity, we study the
case of dx2−y2 -wave pairing, and discuss how behaviors of the
NMR resonance line shape change from the case of s-wave
pairing in the previous section.

In Fig. 7, we present the temperature evolution of the NMR
resonance line shape P (M) and P (B) in the dx2−y2 -wave
pairing at H = 0.02 and 0.1. In the Knight shift spectrum
P (M) in Figs. 7(a) and 7(b), at higher T > 0.4Tc, the peak
position Mpeak is located at the minimum edge Mmin, as in
the s-wave pairing. However, at lower T , position of Mpeak

deviates from Mmin. The T dependencies of Mpeak, Mmin, and
the weighted center Mχ are presented in Figs. 8(a) and 8(b).
Due to the low-energy excitations by the node of the pairing
function, the T dependence is different from that in the s-wave
pairing, including the T dependence of the Yosida function for
a uniform state in the dx2−y2 -wave pairing. At a low field
H = 0.02, Mpeak follow the T dependence of the Yosida
function at higher T > 0.4Tc, but deviates from it at lower
T . Mmin follows the power-law T dependence of the Yosida
function until low T . The T dependence of the weighted center
Mχ also shows the power law behavior as a function of T , and
Mχ > Mpeak.

The Redfield pattern P (B) is presented in Figs. 7(c) and
7(d). In the dx2−y2 -wave pairing, we see the second peak in
P (B). It comes from the fourfold vortex core shape in the
dx2−y2 -wave pairing [13,33]. Compared to the s-wave pairing
case in Figs. 2(c) and Figs. 2(d), the peak position Bpeak and the
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(a) H = 0.02 (b) H = 0.1

(c) H = 0.02 (d) H = 0.1

FIG. 8. (Color online) (a) T dependence of the peak position
Mpeak, minimum edge Mmin, and the weighted center Mχ of the
distribution P (M) at H = 0.02. We also show the T dependence
of the Yosida function of the dx2−y2 -wave pairing. (b) The same
as (a) but at H = 0.1. (c) T dependence of the peak position
Bpeak and the minimum field Bmin of the distribution P (B) at H =
0.02. We plot the shift from the external field as (Bpeak − Hex)/H ,
(Bmin − Hex)/H , respectively. We also show the shift of the averaged
internal field (H − Hex)/H , which indicates the T dependence of
the magnetization. Dashed lines indicate fittings by a exponential
function and a power function. (d) The same as (c) but at H = 0.1.
These are for the dx2−y2 -wave pairing in the clean limit.

minimum edge Bmin are larger in the dx2−y2 -wave pairing case
in Figs. 7(c) and 7(d). Even at low T (T/Tc � 0.2), Bpeak and
Bmin continue to decrease on lowering T in the dx2−y2 -wave
pairing. These behaviors are also seen in Figs. 8(a) and 8(b),
where the low T behaviors are fitted by T 2 function. They are
related to the difference of the T dependence of the superfluid
density between the s-wave pairing and the dx2−y2 -wave
pairing. This is because the internal field B(r) determined
by Eq. (5) and the magnetization calculated by Eq. (7) have
a term with a factor κ−2 ∝ λ−2, which is proportional to the
superfluid density.

B. Influence of impurity scattering

In Eilenberger equation (2), the Fermi surface average 〈f 〉k
of the impurity scattering is canceled by the sign change of
the pairing function on the Fermi surface. Therefore, in the
dx2−y2 -wave pairing, the influence of the impurity scattering is

(a)

(b) H = 0.02 (c) H = 0.1

FIG. 9. (Color online) (a) Profile of Mpara(r) as a function of
radius r/ξ0 from the vortex center along the nearest neighbor vortex
direction at T/Tc = 0.1 and H = 0.1 for the dx2−y2 -wave pairing. We
show the cases of the Born limit and the unitary limit of 1/τ = 0.1,
with that of the clean limit. (b) T dependence of the peak position
Mpeak (dashed lines) and the weighted center Mχ (solid lines) of the
distribution P (M) at H = 0.02 in the Born limit and the unitary
limit of 1/τ = 0.1. We also show those of the clean limit, and the
T dependence of the Yosida function for the dx2−y2 -wave pairing.
(c) The same as (b) but at H = 0.1.

different from the s-wave pairing. For example, nonmagnetic
impurity scattering suppresses the superconducting transition
temperature Tc in the dx2−y2 -wave pairing.

In Fig. 9(a), we present profiles of Mpara(r) around a vortex
with and without nonmagnetic impurity scattering. At the
vortex center, height of Mpara(r) is suppressed by the impurity
scattering. Outside of the vortex core, Mpara(r) is enhanced
toward the recovery to the normal state value. These effect is
stronger in the unitary limit than in the Born limit.

In Figs. 9(b) and 9(c), we show the T dependence of Mpeak

and Mχ in the presence of impurity scattering. Compared with
the case of the clean limit, both Mpeak and Mχ shift to higher
M by the impurity scattering, because the superconducting
transition temperature is suppressed. Values of Mpeak and Mχ

are larger in the unitary limit than in the Born limit, because the
low-energy states by the impurity scattering are more enhanced
in the unitary limit. Both at H = 0.02 and 0.1, we find Mχ >

Mpeak also in the presence of the impurity scattering. In the
unitary limit, the T dependencies are saturated, and Mpeak and
Mχ are, respectively, reduces to higher values at T → 0.

C. Magnetic field dependence

In Fig. 10, we show the H dependence of Mpeak, Mmin, and
Mχ at T/Tc = 0.1. At the low T , since Mχ is proportional to
zero-energy DOS, we see the relation Mχ ∝ √

H in the low H
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(a) Clean limit (b) Born limit (c) Unitary limit

FIG. 10. (Color online) (a) H dependence of the peak position Mpeak, the minimum edge Mmin, and the weighted center Mχ of the
distribution P (M) in the clean limit at T/Tc = 0.1 for the dx2−y2 -wave pairing. The solid (dashed) lines are for the triangular (square) vortex
lattice. (b) The same as (a), but in the Born limit of 1/τ = 0.1. (c) The same as (b) but in the unitary limit.

range due to the Volovik effect. By the impurity scattering, Hc2

is suppressed by the suppression of Tc. Thus, both Mpeak and
Mχ shift to higher M , compared with the clean limit case. In the
unitary limit, Mχ , Mmin, and Mpeak approach finite values in the
limit H → 0. In all cases with and without impurity scattering,
Mmin < Mpeak < Mχ at the low H range, and Mmin < Mpeak ∼
Mχ at the high H range near Hc2.

To discuss these behaviors, we present the resonance line
shape P (M) of the Knight shift and the spatial structure of
Mpara(r) in Fig. 11 in the clean limit, in the Born limit, and
in the unitary limit. We present P (M) also for the square
vortex lattice case in addition to the triangular vortex lattice
case, because the square lattice is stabilized at higher H in
the dx2−y2 -wave pairing [13]. The following discussions do
not seriously depend on the shape of the vortex lattice. In
the clean limit, due to the spectrum with many subpeaks
in P (M), the main peak position Mpeak is scattered in the
H dependence in Fig. 10(a). These subpeak structure in
the clean limit is smeared by the impurity scattering. P (M) in
the unitary limit is shifted to higher M , compared to the Born
limit case. The spectrum of P (M) has similar shape in both
limits. In these spectra of P (M), the main peak is located near
minimum edge Mmin at low fields, and it is shifted to middle

of the P (M) distribution at higher H . These are related to
the spatial structure of Mpara(r). In the dx2−y2 -wave pairing,
zero-energy DOS at the vortex center extends outside towards
the node direction [13,33]. These tails of zero-energy DOS
make interference with those of neighbor vortices, and form
intervortex connections of Mpara(r). Therefore, we see saddle
points and minimum points at the boundary region of a unit cell
of the vortex lattice. This is a reason why the peak position
Mpeak by the contribution of the saddle points are deviated
from the minimum Mmin. The fine structure of the intervortex
connection of Mpara(r) is smeared by the impurity scattering.
By the smearing, P (M) becomes smooth spectrum shape as
seen in Figs. 11(b) and 11(c).

V. SUMMARY

We studied the resonance line shape of the NMR spectrum
in the vortex states based on quantitative calculation by
Eilenberger theory, to clarify the difference of Knight shift
spectrum P (M) and the Redfield pattern spectrum P (B). The
former is the case when the hyperfine coupling constant Ahf is
large, and the latter is the opposite case of negligible Ahf .
Since the characteristic length for the spatial structure of

FIG. 11. (Color online) (a) Line shape of P (M) (left) and density plots of Mpara(r) (right) at H = 0.10, 0.30, and 0.50 for triangular vortex
lattice in the clean limit for the dx2−y2 -wave pairing. T/Tc = 0.1. We also show P (M) for the square vortex lattice by thin lines in the left
panels. The horizontal base line for each P (M) is shifted. (b) The same as (a) but at H = 0.07, 0.18, and 0.28 in the Born limit with 1/τ = 0.1.
(c) The same as (b) but in the unitary limit.
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the paramagnetic moment Mpara(r) is the coherence length,
dominant distribution of Mpara(r) is restricted within the vortex
core region, and in the outside region Mpara(r) is uniform with
minimum value Mmin. Thus, the peak of P (M) comes from the
signal outside of vortex core, and the peak position Mpeak is
located near the minimum edge Mmin of P (M) at low fields. On
the other hand, the characteristic length for the spatial structure
of the internal magnetic field B(r) is the penetration length,
spatial variation of B(r) occurs even outside of the vortex core.
As B(r) has different values for Bpeak at the saddle points and
for Bmin at the minimum points, the peak position Bpeak is apart
from the minimum edge Bmin in the Redfield pattern P (B).

We estimated the temperature dependence and the magnetic
field dependence of the Knight shift spectrum P (M), and
studied the differences between the full gap s-wave pairing
case and the anisotropic dx2−y2 -wave pairing case. In addition
to results in the clean limit, we also discussed the influence
of the impurity scattering both in Born limit and in the
unitary limit. To extract the characteristic H dependence of
zero-energy DOS N (E = 0), we have to evaluate the weighted
center Mχ of P (M). Since Mχ ∝ N (E = 0), we expect

Mχ ∝ H for the s-wave pairing, and Mχ ∝ √
H for the

dx2−y2 -wave pairing with line nodes. It is noted that the peak
position Mpeak of P (M) deviates from Mχ . At low fields,
signal of the peak position Mpeak can be used to observe the
T dependence of the Yosida function, which distinguish the
pairing symmetry, even in the vortex state, because signal
at Mpeak selectively comes from the outside of the vortex
core.

The NMR spectrum in the multigap superconductors,
such as Fe-based superconductors and MgB2, is one of
interesting topics, and belongs to future studies. There, the
weighted center Mχ of P (M) will follow the characteristic
H dependence of zero-energy DOS reflecting low-energy
excitations in the small-gap band [28,29]. And it is also
interesting to study the H dependence of the peak position
Mpeak, which will deviate from Mχ .

We hope that these theoretical estimates of P (M) and P (B)
will be confirmed by the NMR experiment, and will be used
for the analysis of the pairing symmetry and contributions of
nonmagnetic impurity scattering in the superconducting states
by the T and H dependencies of the NMR spectrum.
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[22] P. Miranović, M. Ichioka, and K. Machida, Phys. Rev. B 70,

104510 (2004).
[23] N. Hayashi, Y. Kato, and M. Sigrist, J. Low Temp. Phys. 139,

79 (2005).
[24] J. A. Sauls and M. Eschrig, New J. Phys. 11, 075008 (2009).
[25] K. Watanabe, T. Kita, and M. Arai, Phys. Rev. B 71, 144515

(2005).
[26] U. Klein, D. Rainer, and H. Shimahara, J. Low Temp. Phys. 118,

91 (2000).
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