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We provide topological classification of possible phases with the symmetry of the planar phase of superfluid
3He. Compared to the B phase [class DIII in classification of A. Altland and M. R. Zirnbauer, Phys. Rev. B 55,
1142 (1997)], it has an additional symmetry, which modifies the topology. We analyze the topology in terms of
explicit mappings from the momentum space and also discuss explicitly topological invariants for the B phase.
We further show how the bulk-boundary correspondence for the three-dimensional (3D) B phase can be inferred
from that for the 2D planar phase. A general condition is derived for the existence of topologically stable zero
modes at the surfaces of 3D superconductors with class-DIII symmetries.
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I. INTRODUCTION

Recently, topological classification for generic symmetry
classes of topological insulators and superconductors was
given by Schnyder et al. [1] and Kitaev [2]. Depending on
the presence and properties of generic symmetries, namely
the time-reversal and particle-hole symmetry, ten symmetry
classes can be identified, and for each of them, depending on
the space dimensionality, topological classification gives an
integer invariant (Z), a binary invariant (Z2), or no invariant
(only trivial, “nontopological” insulators in this class). One
example of a topological insulator is provided by the time-
reversal invariant B phase of superfluid helium-3 which
belongs to the DIII symmetry class; a Hamiltonian in this class
respects time-reversal and particle-hole symmetries [1–3] (see
Sec. II A). In thin films of superfluid 3He, the time-reversal
invariant planar phase [4] can become stable. In this phase,
the superfluid gap, isotropic in the B phase, is anisotropic and
vanishes for the direction transverse to the film. Nevertheless,
in two dimensions (2D), this system is gapful (“insulating”).
While this phase has not been identified experimentally yet, in
recent experiments [5–9] strong suppression of the transverse
gap has been observed.

The planar phase has an extra discrete symmetry, a
combination of spin and phase rotations, which may modify the
topological classification, adding extra topological invariants.
In this paper, we set out to provide the topological classification
of insulators with this additional symmetry. We are partially
motivated by the above-mentioned experiments [5–9]. How-
ever, it is also interesting to see how additional symmetries
modify the results for one of the ten classes. Although, in
principle, additional (to time and charge reversal) unitary
symmetries can be dealt with in the Altland-Zirnbauer (AZ)
approach (cf. Ref. [10]), we also want to understand the
relevant topology and topological invariants directly in the
explicit language of the homotopy theory, that is, by analyzing
the homotopy equivalence of relevant mappings (cf. Ref. [11]).
This allows one to identify a topological class from the analysis
of the topology of the band structure (in the case of no disorder)
in the bulk. Such direct view is also of interest for the basic ten

classes. We begin with similar analysis for the B phase (that is,
for the DIII symmetry class) and reproduce the known results.
The topological classification of topological insulators in class
DIII in d = 1,2,3 dimensions is rederived, again in the explicit
language of homotopy topology. We then account for the addi-
tional symmetry of the planar phase and modify the classifica-
tion accordingly. The classification for the planar-phase sym-
metry in 2D is discussed, for which Volovik and Yakovenko
give an integer (Z) topological invariant in Ref. [12].

An extra motivation to study this particular case of the
planar phase is that we use it to construct a dimensional
reduction for general class-DIII topological superconductors.
We show that the topological properties of a 3D system and an
embedded (2 + 1)D system, which exist in any time-reversal
invariant cross section of the momentum space, are connected.
As an application of such a reduction, we derive a generalized
index theorem for 3D topological superconductors, which
provides an example of the bulk-boundary correspondence
in odd spatial dimensions.

We consider here a particular additional symmetry, which
is realized in the planar phase. This is a combination of a
π spin rotation around some axis, followed by a π/2 phase
rotation. This symmetry is satisfied in superfluid 3He, in which
the spin-orbit interaction is very weak, but not necessarily
in other materials. Nevertheless, the method of dimensional
reduction, discussed below, can be applied to other classes
of topological superconductors and insulators with various
additional exact or approximate symmetries, such as the point
symmetry groups in crystals (cf. Refs. [13,14]) and pseudospin
rotations in graphene.

II. TOPOLOGICAL CLASSIFICATION FOR
PLANAR-PHASE SYMMETRY

A. Parametrization and symmetries of the Hamiltonian

Our considerations of the planar-phase symmetry are based
on those for the DIII symmetry class, defined below, and
we begin with the latter case. We consider noninteracting
translationally invariant systems. This allows us to characterize
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the system by a single-particle Bloch Hamiltonian H (k).
Here H (k) is a mapping from the momentum space to the
space of Hamiltonians with certain constraints, depending on
symmetry. This is easily extended to interacting systems using
the Green-function formalism, with the effective Hamiltonian
being given by the Green function at zero frequency; see,
e.g., Ref. [15]. With such constraints, topologically (homo-
topically) nonequivalent mappings are possible, and the goal
of topological classification is to provide a complete list of the
equivalence classes of such mappings (two mappings are con-
sidered equivalent—homotopic—if they can be continuously
transformed to each other). In order to deal with the topology of
the mappings, let us first discuss their properties in more detail.

In a completely translationally invariant d-dimensional
system, k runs over the infinite momentum space. In the
latter case, for a spherically symmetric system (3He-B) at
k→∞, the Hamiltonian has a fixed matrix form (up to an
inessential positive constant; cf. Sec. III) and this allows one to
compactify the momentum space by identifying all the points
at k→∞ to a single point, which reduces the d-dimensional
momentum space Rd to a sphere Sd . Similarly, in a system
with discrete translational symmetry (i.e., a periodic crystal,
a topological band insulator), the (quasi)momentum space
is the Brillouin zone (BZ), which is a d-dimensional torus,
Td . However, if we disregard the so-called weak topological
invariants and focus only on the strong topological invariants
robust to disorder [2,16], one can again replace Td by a
sphere Sd by gluing together all points at the BZ boundary.
Thus, below we consider mappings from the d-dimensional
“spherical Brillouin zone” Sd

BZ. Below, we sometimes use the
“spherical” language, assuming that k = 0 is the north pole,
and k = ∞ (or the boundary of BZ) corresponds to the south
pole. We further assume that opposite points, ±k, correspond
to the points on the opposite ends of a same-latitude line (that
is, differ by a π rotation about the z axis).

Further, the properties of the mapping are fixed by the con-
ditions that the Hamiltonian is Hermitian and nondegenerate
(i.e., has no zero-energy eigenvalues, a gapful spectrum) and by
the symmetry constraints. In class DIII of the tenfold Altland-
Zirnbauer classification [3] (see Refs. [1] for a summary and
further references), the system—the Bogolyubov-de-Gennes
(BdG) Hamiltonian in the case of our current interest—
possesses two symmetries, which are the time reversal and
charge conjugation. We consider a 4 = 2 × 2-dimensional
space of states (we show below that increasing this dimension-
ality does not modify the result). This corresponds to the spin
and two Bogolyubov indices, each taking one of two values;
below we use the Pauli matrices σi and τi for these indices,
respectively. In our notations below, the BdG Hamiltonian

has the form ( εk �̂k

�̂
†
k −εT

−k
), where �̂ is a spin-symmetric and

momentum-odd matrix (triplet pairing) of the superfluid order
parameter, while εk is the spectrum of excitations in the normal
state, e.g., εk = (k2/2m) − μ. The simplest form of �̂ for
3He-B and the planar phase is �̂B = (�B/kF )(σxpx + σypy +
σzpz)gσ and �̂P = (�P /kF )(σxpx + σypy)gσ , respectively.
Here, gσ = iσy . The time-reversal symmetry (TRS) implies
that

H (−k) = gσHT (k)g−1
σ . (TRS) (1)

(We follow the notations of Schnyder et al. [1].) The charge-
conjugation symmetry [or particle-hole symmetry (PHS)] also
relates H (k) and H (−k): specifically, H (−k) = −τ1H

T (k)τ1.
Since TRS and PHS are antiunitary symmetries, for conve-
nience we use their combination, which basically constrains
the structure of H (k) at each k (a chiral symmetry):

H (k) = −PH (k)P, P = τ1σy, (PHS ∗ TRS), (2)

that is, H (k) anticommutes with P . This implies that H (k)
is block-off-diagonal in the eigenbasis of P , and thus it is
completely defined by its block M above the diagonal (the
block below the diagonal being M†; cf. Ref. [1]). Equivalently
and more specifically, one easily finds from Eq. (2) that H

is a real linear combination of eight (instead of the initial
16) terms: H = aσx + bσz + cτ1σx + dτ1σz + eτ2 + f τ3 +
gτ2σy + hτ3σy . Then, the TRS relates the values of these
coefficients at k and −k: the coefficients f and g in front
of τ3 and τ2σy are the same, while the other six change sign.
It is convenient to combine these eight real numbers, a, b, c,
d, e, f , g, h, into the following matrix:

M =
(

A + iB C + iD

C − iD −A + iB

)
, (3)

where A = a − id, B = b + ic, C = h − ie, and D = −g −
if . Then the condition that H is gapped (det H �= 0 or,
equivalently, A2 + B2 + C2 + D2 �= 0) reads

det M �= 0, (4)

and the PHS maps M→ − MT .
Thus, our problem reduces to finding the classes of

topologically equivalent mappings M : BZ→GL(2,C) with
the property

M−k = −MT
k . (5)

We refer to this property by saying that the mapping M is odd.
It is useful to further simplify the problem by reducing (con-

tinuously tightening) GL(2,C) to U(2) in a standard manner.
Namely, each M ∈ GL(2,C) can be uniquely presented as a
product M = P̌U of a unitary U and a positive hermitian P̌

(polar decomposition). Then P̌ can be (e.g., linearly) retracted
to the identity 1̂. Formally speaking, this means that U(2) is
a deformation retract [17,18] of GL(2,C). Thus, we have to
classify mappings U : BZ→U(2) with U−k = −UT

k (one can
easily check all the details of this reduction).

B. 3He-B: A Z2 invariant in 2D

Each Hamiltonian is described by a unitary U , and we have
to classify mappings BZ→U(2) with the proper symmetries.
To find the classification, we recall that U(2) = (S1 × S3)/Z2;
more specifically, each unitary U can be presented as a product
of a phase factor and a special unitary matrix, U = eiφS, S ∈
SU(2) (i.e., det S = 1). This presentation is not unique, since
one can change simultaneously the sign of both terms in the
product. However, if we choose some presentation at one point,
say, k = 0, we can follow how the phase factor and the matrix
S vary continuously over the BZ [33].

If we parametrize S with a 4D unit vector m as S =
m01̂ + i(mxσx + myσy + mzσz), the symmetry properties of
U (k) (the odd parity) translate in the following: considering
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det U (k), we find that eiϕk is either equal or opposite to eiϕ−k .
Since they are equal at k = 0, we find that eiϕk is even:
ϕ−k = ϕk. This implies that Sk is odd, which means that
m0,mx,mz are odd and my is even:

m0(−k) = −m0(k), mx(−k) = −mx(k),
(6)

mz(−k) = −mz(k), my(−k) = my(k).

Hence we have to classify mappings eiφ : BZ→S1 and S :
BZ→SU(2) with these symmetry properties (6).

The first mapping is obviously always topologically trivial
because it is even. The mapping S : S2

BZ→S3
SU(2), however,

may be nontrivial: Because of the symmetry relation (6), the
points k = 0 and k = ∞ (the poles of S2

BZ) are mapped to
±iσy . Thus there is a topological Z2 invariant that shows
whether they are mapped to the same or to different points.

Clearly, both values of this invariant can be realized and
this gives a complete classification, that is, any odd mappings
BZ→S3 with the same value of thisZ2 invariant are homotopic
to each other within the class of odd mappings. To see this, let
us first consider the 1D case of the mapping S : S1

BZ→S3
SU(2)

from a 1D sphere (a circle). In this case, one can consider
the mapping of one-half of S1

BZ between the north and south
poles: (i) In the even case (with the zero Z2 invariant), this
can be contracted to its initial point, and the other half gets
contracted as well by the odd symmetry; hence the mapping is
topologically trivial. (ii) In the odd case (Z2-invariant 1), this
half starts at one pole of S3

SU(2) and ends at the other, and it can
be deformed to any standard path between the poles (e.g., a
meridian line), and the other half gets deformed by symmetry
to the other half of the meridian; hence all odd mappings can be
deformed to each other continuously. A similar consideration
can be found in the next section in more detail.

Going to the 2D case, one can imagine cutting S2
BZ by a

meridian circle in two hemispheres, thinking of this circle
as the 1D BZ. By first deforming this 1D BZ as above, and
then gluing to it the two 2D halves of the 2-sphere, we arrive
at the conclusion above. Notice, however, that by going to
d = 3 and using the same procedure, one finds out that the
3D hemispheres of S3

BZ can be attached to the 2D frame in
many topologically different ways, described by the degree of
the mapping. Thus we can see that in this case, the (integer)
degree of the mapping S : S3

BZ→S3
SU(2) is the only topological

invariant. In summary, in agreement with Refs. [1,2], we find
for class DIII a Z2 invariant in 1D and 2D and a Z invariant
in 3D.

Let us also remark that if, in addition, we assert that far away
from the Fermi surface (i.e., “far above and deep inside the
Fermi sea”), the Hamiltonian is dominated by the normal-state
part ∝ τ3, so that we fix also the images of k = 0,∞ in S1

ϕ

(to ±1), then we have an additional Z invariant that tells us
how many “half times” the image of Sd

BZ encircles S1
ϕ . In

other words, this invariant is given by the winding number of
det M along an arbitrary path from k = 0 to k = ∞, which is∫

tr(PH−1dH )/(4π ).

C. Planar phase

As we have discussed in Sec. I, the planar phase of
superfluid 3He has an extra symmetry as compared to 3He-B.

While in the bulk helium-3, only A and B phases are known
to be stable (in zero magnetic field), the planar phase may be
stabilized in thin films. In recent experiments [5–9], indications
of the strongly distorted B phase were found, and the planar
phase may become observable too. As estimated in Ref. [19],
the superfluid gap, which is isotropic in the B phase in the bulk,
becomes anisotropic in the films with the gap in the transverse
direction suppressed by a factor of about 0.4.

This motivates us to analyze the topological classifica-
tion for symmetry classes with “extra” symmetries on top
of the basic TRS and/or PHS symmetries. On one hand,
this can be analyzed within the general frame of the AZ
approach [10]. However, explicit results for symmetries of
interest and especially explicit expressions for respective
topological invariants are of great interest (cf. the discussion
for crystalline solids [20–24]).

We analyze the symmetry class of the planar phase, that
is, the DIII class with an extra symmetry described below,
and provide a complete classification. We show below that
the Z2 invariant, found in the previous section for a 2D class-
DIII system, survives. Moreover, the complete classification
within this symmetry class gives rise to an integer topological
invariant, with theZ2 invariant being its parity [34]. We explain
these results below in this section.

The additional symmetry of the BdG Hamiltonian in the
planar phase in our notation is C = σz (that is, C = τ0σz),

H (k) = CH (k)C, C = σz, (7)

and we consider the symmetry class with this additional
symmetry constraint. Here, C is a combined Z2 symmetry—a
combination of the spin π rotation about the z axis and
the phase rotation by π/2. Note that the single-particle
Hamiltonian (and Green function) commutes also with the
transformations generated by C, exp(iαC), which form a
continuous U(1) symmetry group in similarity, e.g., to spin
rotations about z generated by Sz. This, however, does not
impose additional constraints on H and hence does not change
the topology of these single-particle quantities. Furthermore,
the many-body Hamiltonian and multiparticle quantities (e.g.,
the two-particle Green function) obey only the discrete, but
not the continuous, symmetry.

The Hamiltonian satisfying (7) can be transformed to the
off-diagonal form with

M = −M†, (8)

and thus U = −U †. Hence U is either ±i (the case of little
interest) or U = inσ , a spin rotation by π around an arbitrary
axis n. This second choice provides the nontrivial topology.
We have to classify mappings of the sphere S2

BZ to the sphere
S2

n that are odd: opposite points are mapped to opposite points
and, for both spheres, opposite refers to points related by a π

rotation around a specific axis (the z axis for S2
BZ and the y

axis [35] for S2
n).

In complete analogy with the 3D case for class DIII above,
we find that in 2D such mappings are completely classified by
the degree of the mapping, which could assume any integer
value. Moreover, whether this value is even or odd is related
to the Z2 invariant, defined above. Indeed, both k = 0 and
k = ∞ in BZ are mapped to ±iσy , and the Z2 invariant above
determines whether they are mapped to the same or to the
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opposite points of the n sphere. We show below that in the
former case the degree is even and in the latter case the degree
is odd.

To prove this statement, in analogy to the previous section,
let us cut the BZ sphere in two halves with a line through
k = 0 and k = ∞, for instance, with kx = 0 [equivalently, in
the language of spherical BZ S2

BZ, with a full meridian circle
on the BZ sphere, for instance, the zero and 180◦ meridians,
which are the blue solid and red dashed lines in Fig. 1(b)].
Because of the odd parity, the mappings of one hemisphere
completely define the full mapping. However, the mapping
of the hemisphere is constrained at the boundary (the 0 and
180◦ meridians)—the opposite points of the boundary, ±k,
should be mapped to the opposite points of S2

n. Such mappings
can always be thought of in the following way: (i) We have a
mapping of one half meridian (say, the 0 meridian) between
the poles to S2

n (with the ends mapped to the same or opposite
poles, depending on the Z2 invariant). (ii) The mapping of
the other half meridian (180◦ meridian) is determined by the
symmetry (odd parity). (iii) And the mapping from the interior
of the hemisphere somehow (arbitrarily) extends the mapping
of the boundary.

First, each mapping of the hemisphere can be continuously
deformed under the constraint of odd parity to a simpler map-
ping. Specifically, we can modify continuously the mapping
of the half meridian (with the mapping fixed at its ends), with
the other half meridian being modified in accordance with the
odd parity. One can easily see that because of the odd parity,
this modification does not change the total area on S2

n covered
by the image of the hemisphere in BZ (and, again by odd
parity, the other hemisphere covers the same area). It is more
convenient to describe this modification separately for two
possible values of the Z2 invariant.

In the case of the zero value of the Z2 invariant, when
two ends of the zero meridian are mapped to the same pole
[Fig. 1(a)], the image of this meridian (a loop starting and
ending at the same pole) can be continuously deformed to the
pole itself. Then, the area spanned by the hemisphere is an
integer, and the total area covered by the mapping S2

BZ→S2
n

is even. (Note that any integer degree can be realized: to see
that, one could just map the whole meridian to the pole.) In the
other case of odd Z2 invariant [Fig. 1(c)], when two ends of
the zero meridian on S2

BZ are mapped to the opposite poles, the
image of this meridian can be continuously deformed to “just
a straight line,” e.g., to the zero meridian on S2

n, as indicated
in Fig. 1(c). Then, the area spanned by the hemisphere is half
integer, and thus the full sphere S2

BZ covers S2
n an odd integer

number of times.
Thus, the degree of the mapping is the only invariant. It

can take any integer value. This value is even, when k = 0
and k = ∞ are mapped to the same point, and odd, if they are
mapped to different (then opposite) points. These two cases
correspond to two values of the Z2 invariant from the previous
section.

A comment is in order on higher-dimensional matrices. So
far we considered the 4 = 2 × 2-dimensional Hilbert space
of possible states. In general, in these symmetry classes,
we can consider higher (2n × 2)-dimensional spaces, with
the 2D Bogolyubov-Nambu and 2n-dimensional “internal”
space (spin and other degrees of freedom); large values

FIG. 1. (Color online) The mappings f , analyzed for classifica-
tion of the planar-phase symmetry class, are from the Brillouin zone
(BZ), compactified to a sphere Sd

BZ with the poles at k = 0 and k = ∞,
to the sphere S2

n (see text). The mappings are odd: the images f (k)
and f (−k) on S2

n are related by a π rotation around the (vertical)
axis. (a) The 1D BZ—a circle. For the zero value of the Z2 invariant,
both poles of BZ are mapped to the same pole of S2

n . In this case, f

can be continuously deformed to the trivial mapping, which maps the
whole circle to one point. Indeed, the image of one semicircle (blue
solid line) can be continuously contracted to the pole as indicated
by the arrow; the other semicircle (red dashed line) is contracted
at the same time because the mapping is odd. (b) The 2D BZ, a
sphere, presented as a 1D frame (0 and 180◦ meridians) and two
hemispheres. For the zero Z2 invariant, the 1D frame is contracted to
a point (dashed arrows). Then the image of one hemisphere covers
S2

n an integer number of times (once in the figure), and, for an odd
mapping, the other hemisphere—the same number of times, giving
an even degree in total. (c) For the nonzero Z2 invariant, the two poles
of BZ are mapped to two different poles of S2

n . Then the image of one
semicircle from the 1D frame (blue solid line) can be deformed to a
standard path (zero meridian). The image of each hemisphere in BZ
covers the same half-integer part of S2

n , giving an odd degree in total
(degree one in the figure).

of n pertain to realistic condensed-matter systems [2]. The
symmetry conditions for TRS, PHS, and the extra planar-phase
symmetry then look the same as above (cf. Ref. [1]). The
anticommutation with P again implies the block-off-diagonal
form of the Hamiltonian, and Eqs. (4), (5), and (8) are valid.
Hence, as above, we have to classify odd mappings (5) U :
Sd

BZ→U(2n). The analysis follows the same route as above:
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for class DIII, first, presenting U = eiϕS with det S = 1, we
find that the map eiϕ is always trivial; as for S(k), each of
the poles k = 0,∞ is mapped to one of the two connected
components of antisymmetric matrices from SU(2n) with the
pfaffian Pf S = ±1, and this defines a Z2 invariant. As above,
from direct homotopic-theoretical considerations, we see that
for d = 1,2, there are no other invariants, while for d = 3,
the topological class is again fully characterized by an integer,
with the Z2 invariant above being its parity. Thus we find the
same results for topological classification for class DIII (Z2 in
d = 1,2 and Z in d = 3 dimensions).

Similar considerations apply for the planar-phase symmetry
class; in this case, we again find aZ2 classification in 1D andZ
in 2D, as opposed to a Z2 classification suggested earlier [25].
Note that this class contains 2n + 1 disconnected components:
iM (iU ) is a Hermitian operator with l positive and 2n − l

negative eigenvalues, where l may vary from 0 to 2n and is
related to the signature (2l,4n − 2l) of the Hermitian operator
CH . Each component [the set of unitary anti-Hermitian 2n ×
2n matrices U with l eigenvalues −i and 2n − l times i, i.e.,
the Grassmanian U(2n)/U(l) × U(2n − l)], except l = 0,2n,
has the same second homotopy group π2 = Z, and hence a
Z invariant in 2D arises. The cases l = 0,2n correspond to
U = ±i as above for n = 1 [see the discussion below Eq. (8)].

III. INDEX THEOREMS IN ODD SPATIAL DIMENSIONS

A. The problem

We have found a complete set of topological invariants for
the planar-phase symmetry and for the B-phase symmetry, and
further related questions need to be analyzed. In particular, it
would be useful to have an explicit (integral) expression for the
invariants. A further question of great current interest concerns
the bulk-boundary correspondence between the topological
invariants in the bulk and the properties of gapless boundary
modes.

Since the discovery of a topological invariant for the integer
quantum Hall state [26], there has been great interest in
deriving index theorems that connect the topology of the fully
gapped spectrum in the bulk with the number of gapless modes
at the boundary of the system or inside topological defects
(strings, domain walls, monopoles, etc.).

A full classification is still absent, though there is cer-
tain progress in understanding for even spatial dimensions,
especially when the bulk system is characterized by an
integer-valued topological invariant of group Z. In 2D, one
can mention three representatives of such systems: the integer
quantum Hall effect state (class A according to the general
tenfold classification), the 3He-A phase and chiral kx + iky

superconductivity (class D), and the planar phase of 3He.
Among systems in odd spatial dimensions, of particular

interest is the topological superfluid 3He-B, which belongs
to class DIII according to the general classification scheme.
The 3He-B Hamiltonian and the related Hamiltonians have the
following form:

H3D = τ3ε(k) + τ1[σxfx(k) + σyfy(k) + σzfz(k)]. (9)

This Hamiltonian is gapful, when f(k) does not vanish at the
Fermi surface, where ε(k) = 0. For convenience, here and

below, we use the form of the BdG Hamiltonian, corresponding
to an alternative definition of the Nambu spinor (see p. 77 in
Ref. [27] for definition); it differs from the standard form by a
unitary transformation,

H = U †HU, U = 1 + τ3

2
+ iσy

1 − τ3

2
. (10)

For clarity, we use calligraphic letters for operators in this form.
For the p-wave 3He-B, the functions of the three-momentum
k can be chosen as

ε(k) = k2/2m − k2
F /2m,

(11)
f(k) = f k,

where f > 0. The Hamiltonian (11) has a symmetry-protected
topological invariant (17) with NB = 2. The more general
Hamiltonian (9) may have any even invariant NB under the
conditions that fi(k)/ε(k)→0 at k→∞, where i = x,y,z, and
ε(|k|→∞) > 0. These conditions allow compactification of
the momentum space to S3, but they are not needed in crystals,
since in that case the Brillouin zone is a compact space. An
example of a nontrivial mapping with a higher topological
charge NB = 2n is

fz(k) = f kz,

fx(k) = f Re(kx ± iky)|n|,
(12)

fy(k) = f Im(kx ± iky)|n|,

ε(k) = μ[(k/kF )2|n| − 1],

where n ∈ Z and the upper (lower) sign corresponds to n >

(<) 0. The form of ε(k) dispersion in Eq. (12) is chosen in
such a way to allow compactification of momentum space.
Alternatively, higher values of the topological invariant can be
obtained in a system consisting of several layers of the planar
phase.

In order to derive the index theorem for 3He-B (11) and
related Hamiltonians (12), we assume that the boundary plane
is y = 0, so that the conserved momentum projections are kx,z.
To find the complete spectrum of bound states εb = εb(kx,kz),
it is enough to consider a set of 2D spectral problems for the
cross sections of momentum space,

kz cos θ + kx sin θ = 0, (13)

where 2π > θ � 0. Indeed, the bound states at the interface
between the nontopological insulator and 3He-B are formed
due to the subsequent Andreev and normal reflections of
particles and holes, as shown schematically in Fig. 2. The
momenta of both the incident particle and the one reflected
from the boundary belong to the same cross section (13).
Further, we will use the fact that the planes determined by
Eq. (13) are time-reversal invariant in the sense that they
contain states with opposite momenta k and −k.

An example of such a dimensional reduction to the plane
kz = 0 is shown in Fig. 2(a). The 2D Hamiltonian in this cross
section reduced from the 3D phase (12) is given by

H2D = τ3ε(kx,ky) + τ1[σxfx(kx,ky) + σyfy(kx,ky)]. (14)

The 2D Hamiltonian of the form (14) has the symmetry of
the generalized planar state (7). In our current representation
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FIG. 2. (Color online) Dimensional reduction of the surface-state
spectral problem in 3D to that in a time-reversal invariant cross section
of momentum space kz = 0. (a) Reduction from the Z topological
superfluid 3He-B results in the Z topological planar phase at kz = 0.
(b) Reduction from a general Z topological superconductor of class
DIII produces a Z2 topological superconductor at kz = 0.

of the BdG Hamiltonians [see below Eq. (9)], the operator
of this additional symmetry—the matrix commuting with the
Hamiltonian (14)—is C = U †CU = τ3σz, with the unitary
operator from Eq. (10). The Hamiltonians satisfying this addi-
tional symmetry are classified by an integer-valued topological
invariant. The explicit form given by Eq. (19) expressed via
the Green function gives an even-valued topological invariant
NP. For the particular set of parameters (12), this invariant is
NP = 2n. In general, it gives the Chern number NP/2 for each
spin projection and therefore yields an index theorem for the
number of edge states. Hence we conclude that NP defines the
number of zero edge modes at kz = 0 in the parent 3D 3He-B
phase (12) as well.

Below we show that the topological invariants for the
Hamiltonians (9) and (14) coincide, NB = NP, for quite a
general form of the order parameter with arbitrary functions
fx,y(k) and fz(k) ∝ kz. Then the index theorem for 3He-B
states that the number of zero modes at the kz = 0 cross section
of the momentum space is given by the 3D invariant NB. This
particular choice of a cross section is determined by the specific
form of the 3He-B Hamiltonian given by Eqs. (9) and (12).
Using this result, we argue that for a general Hamiltonian of
class DIII, the time-reversal invariant cross sections (13) have
a Z2 invariant, a nonzero value of which protects at least one
stable zero of the bound-state spectrum εb = εb(kx,kz) along
each line from the one-parameter family (13).

We construct a map of the 3D slice in the 4D momentum-
frequency space to the space of Green-function matrices
(kx,ky,t)→GL(4,C),

G = G(kx,ky,t,α), (15)

where 0 < α < 2π is a parameter, as shown in Fig. 3. The
map is designed to coincide with that for the planar state at
α = 0, when t = ω, and for 3He-B at α = π/2, when t = kz.
They transform to each other by a continuous change of the
orientation of the 3D slice in the 4D momentum-frequency
(ω,k) space. We show below that the homotopy class is
independent of α, and this proves that the generalized 3D
3He-B is topologically equivalent to the generalized 2 + 1
planar state in the kz = 0 cross section.

FIG. 3. (Color online) Slices of the 3 + 1-dimensional space
(ω,kx,ky,kz) that are used to define the topological invariants for
the (a) 3D 3He-B phase, (b) 2 + 1-dimensional planar phase, and
(c) smooth transformation between 3D and 2 + 1-dimensional invari-
ants. The axillary axis is t = ω cos α + kz sin α.

B. Dimensional reduction from 3He-B to the planar state

We start with a particular case of the simplified Green func-
tion describing the (3 + 1)-dimensional topological superfluid:

G−1(ω,k) = iω − H3D(k), (16)

where H3D(k) is given by Eq. (9) with fz ∝ kz. There are two
special cases: (i) ω = 0 and (ii) kz = 0.

In the case ω = 0, the Green function G−1(0,kx,ky,kz) rep-
resents a 3He-B-like Hamiltonian, which anticommutes with
the matrix P = τ2, P2 = 1 (chiral symmetry). The Hamil-
tonians with such symmetry have the following symmetry-
protected topological invariant:

NB = eij l

24π2
tr

∫
ω=0

d3kPG∂ki
G−1G∂kj

G−1G∂kl
G−1, (17)

where P = τ2. Here the integral is taken over the momentum
space, i.e., over the ω = 0 slice in the 4D (ω,kx,ky,kz) space,
as shown in Fig. 3(a). The choice of slices in the frequency-
momentum space of the Standard Model of particle physics is
given in Ref. [15]. One can check by a direct calculation that
the invariant (17) is twice the Z invariant from Sec. II B in 3D,
that is, the degree of the mapping from BZ to the 3-sphere of
SU(2) (it accumulates equal contributions from M and M†).
For 3He-B parameters (11) in Eq. (16), one finds that NB = 2
and all the higher values of the invariant NB = 2n, n ∈ Z are
realized by the set (12).

In the case kz = 0, Eq. (16) represents the Green function
of the generalized planar phase,

G−1(ω,kx,ky) = iω − H2D(kx,ky), (18)

where the Hamiltonian H2D = H2D(kx,ky) is given by
Eq. (14). The Green function of a 2 + 1 system with symmetry
C has a symmetry-protected topological invariant, which
determines transport properties of the 2 + 1 system. Indeed,
it defines the quantized spin Hall conductivity in the absence
of external magnetic field [12]. The invariant involves the
symmetry operator C = τ3σz, which commutes with the Green
function:

NP = eij l

24π2
tr

∫
d2kdωCG∂ki

G−1G∂kj
G−1G∂kl

G−1. (19)

Here the integral is taken over the kz = 0 slice, ki = (ω,kx,ky),
in the 4D (ω,kx,ky,kz) space, as shown in Fig. 3(b). Again, one
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checks by a direct calculation that this invariant is twice the
Z invariant from Sec. II C in 2D, that is, the degree of the
mapping from BZ to the 2-sphere S2

n.
For particular cases, e.g., for the set of Hamiltonians with

the order parameter (12), one finds that the invariant (19) in
the 2D cross section kz = 0 coincides with the value of the
invariant in the parent 3D phase (17), NP = NB = 2n. This is
not a coincidence. Let us show that in a more general case
of arbitrary functions fx,y(k) and fz(k) ∝ kz, the even-valued
integrals (17) and (19) can be continuously transformed to
each other by the rotation of the 3D slices in the 4D space,
shown schematically in Fig. 3. Such transformation allows us
to connect topological properties of the Hamiltonians in 3D
and in 2D at kz = 0.

To construct the connection between topological invari-
ants (17) and (19), let us use the Green function in the form
G̃−1 = −iG−1τ2:

G̃−1(ω,k) = ωτ2 − τ3σzf kz − H̃ , (20)

H̃ = −τ1ε(k) + τ3[σxfx(k) + σyfy(k)]. (21)

The “Hamiltonian” H̃ in Eq. (21) anticommutes both with
P = τ2 (P 2 = 1) and C = τ3σz (C2 = 1), while the whole
Green function (20) anticommutes with f kzτ2 + ωτ3σz. As a
result there exist 3D slices (ω = t sin α,f kz = t cos α) with
fixed α [shown in Fig. 3(c)], where H̃ anticommutes with the
constant matrix

Qα = τ2 cos α + τ3σz sin α, Q2
α = 1. (22)

The topological charge for a given parameter α is

Nα = eij l

24π2
tr

∫
d2kdtQαG̃∂ki

G̃−1G̃∂kj
G̃−1G̃∂kl

G̃−1, (23)

where ki = (t,kx,ky) and

G̃−1(t,kx,ky |α) = t(τ2 sin α − τ3σz cos α)

+ τ1ε(k)−τ3[σxfx(k)+σyfy(k)], (24)

where k = (kx,ky,f
−1t cos α). When the parameter α changes

from 0 to π/2, the topological charge (23) transforms from
Eq. (17) for the (3 + 1)-dimensional 3He-B to Eq. (19) for
the (2 + 1)-dimensional planar phase. Naturally, along this
path, the topological invariant is Nα = 2n, including the cases
α = 0,π/2, so that NB = NP.

The constructed connection between topological properties
of 3He-B and the planar phase can be generalized to include
all Hamiltonians within the DIII symmetry class, as we show
in the next section.

C. Bulk-boundary correspondence for general DIII
topological superconductors

In Sec. III A, we have discussed the index theorem for a
subclass of DIII topological superconductors in 3D described
by Hamiltonians, similar to that of 3He-B. In particular, we
assumed that the Hamiltonian at the kz = 0 cross section
of momentum space is equivalent to that of the planar
phase, which has a topological invariant protected by an
additional symmetry. However, this is not the case for the

general Hamiltonian of class DIII. The reduction to kz = 0
shown in Fig. 2(b) and, in general, to any time-reversal
invariant plane (13) produces, in this case, a DIII topological
superconductor in 2D. As discussed in Sec. II B, the only
symmetries that exist in general for the 2D case are the TRS
and PHS, which allow only the Z2 classification given by
ν = (NB/2) mod 2.

The proof can be constructed as follows. First, we note
that the set of Hamiltonians given by Eqs. (9) and (12) with
n ∈ Z contains representatives from all topological classes
of DIII symmetric Hamiltonians. Thus we can continuously
transform any given DIII Hamiltonian to one of this set,
preserving the value of NB. This generates a deformation of
the 2D Hamiltonian in the kz = 0 cross section to that of the
generalized planar phase, given by Eqs. (14) and (12). This
deformation does not change the value of the Z2 invariant,
which coincides with that of the generalized planar state:
ν = (NB/2) mod 2 = (NP/2) mod 2 in accordance with the
dimensional reduction arguments of Sec. III B.

Finally, we note that the choice of the cross section kz = 0
is arbitrary. Instead, we can choose any time-reversal invariant
plane of the form (13), which allows one to investigate the
properties of bound states at the y = 0 interface between
a topological superconductor of class DIII and a nontopo-
logical insulator. In this case, all of the 2D Hamiltonians
describing quasiparticles in each cross section (13) have the
same Z2 invariant, ν = (NB/2) mod 2. According to the
bulk-boundary correspondence in 2D time-reversal invariant
topological insulators, a nonzero value of the Z2 invariant
protects topologically stable Kramers pairs of zero-energy
surface states [28]. Therefore, we conclude that the bulk-
boundary correspondence in DIII topological superconductors
can be formulated as follows: Provided the value of the bulk 3D
invariant NB/2 is odd, the spectrum εb = εb(kx,kz) of surface
states at the boundary plane y = 0 with a nontopological
insulator has at least one Kramers pair of topologically stable
zero modes along each line (13).

IV. CONCLUSION

It is known that there exists a dimensional reduction,
which connects the classification of fully gapped topological
materials and the classification of nodal systems with topolog-
ically protected zeros in the energy spectrum (Fermi surfaces)
described by Hořava using the K-theory [29]. An example
of this connection is provided by the relation between the
topological invariant (19), which describes the fully gapped
2 + 1 planar phase, and the topological invariant, that protects
the point nodes in the gapless 3 + 1 planar phase [27]. The
invariants are given by the same integral, but instead of
integration over the whole (ω,kx,ky) space in Eq. (19), the
integral is taken over the sphere S3 around the node in the
(ω,kx,ky,ky) space.

Here we explicitly demonstrated a dimensional reduction,
which connects the fully gapped time-reversal invariant topo-
logical materials of different classes: the 2 + 1 planar phase of
superfluid 3He and the 3 + 1 superfluid 3He-B. As a result, two
3 + 1 topological systems become connected: the 3 + 1 gapless
planar phase and the gapful 3He-B. It is noteworthy that the

174502-7



YURIY MAKHLIN, MIKHAIL SILAEV, AND G. E. VOLOVIK PHYSICAL REVIEW B 89, 174502 (2014)

planar phase of 3He is topologically equivalent to the vacuum
of the Standard Model of particle physics in its massless phase
of topological semimetal [27,30,31], while the superfluid 3He-
B is topologically equivalent to the Standard Model vacuum in
its massive phase of topological insulator [15,32]. That is why
the discussed connection between the 3 + 1 topological states
can be useful for investigation of the topology of the Standard
Model, which is also supported by symmetry. The phe-
nomenon discussed here, when the discrete symmetry of the
system leads to the continuous symmetry of the single-particle
Green function and correspondingly to an integer topological

invariant, is applicable to the vacuum of the Standard
Model.
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