
PHYSICAL REVIEW B 89, 174432 (2014)

Magnetic ordering induced by interladder coupling in the spin-1
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We present specific-heat and neutron-scattering results for the S = 1/2 quantum antiferromagnet
(dimethylammonium)(3,5-dimethylpyridinium)CuBr4. The material orders magnetically at TN = 1.99(2) K,
and magnetic excitations are accompanied by an energy gap of 0.30(2) meV due to spin anisotropy. The system
is best described as coupled two-leg spin-1/2 ladders with the leg exchange Jleg = 0.60(2) meV, rung exchange
Jrung = 0.64(9) meV, interladder exchange Jint = 0.19(2) meV, and an interaction-anisotropy parameter λ =
0.93(2), according to inelastic neutron-scattering measurements. In contrast to most spin ladders reported to date,
the material is a rare example in which the interladder coupling is very near the critical value required to drive
the system to a Néel-ordered phase without the assistance of a magnetic field.
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I. INTRODUCTION

Quantum spin-1/2 two-leg ladders have attracted much
attention from both experimental and theoretical standpoints
because of their rich physical properties. At zero mag-
netic field, inelastic neutron-scattering experiments on these
materials [1–5] have provided comprehensive knowledge
on one-magnon and unconventional two-magnon excitations
[6–8] predicted by theory. In magnetic fields [9,10], they
exhibit novel quantum-critical behavior [11] such as Bose-
Einstein condensation [12,13], magnetic Bose glass [14],
and Tomonaga-Luttinger liquid phases [15–19]. In addition,
a quantum phase transition is expected to occur from a
quantum-disordered state to a magnetically ordered state, as
the strength of interladder couplings is increased [20–22].

To date, there have been very few detailed experimental
studies of coupled spin ladders because of a scarcity of
suitable model systems. Na2Co2(C2O4)3(H2O)2 [23] and
CaCu2O3 [24] were previously identified as such systems on
the basis of magnetization measurements. However, further
investigation with neutron scattering [25] has found that
Na2Co2(C2O4)3(H2O)2 is a system of almost isolated dimers,
with a singlet ground state, not of a ladder. In the case
of CaCu2O3, neutron-diffraction work [26] has revealed an
incommensurate spiral magnetic structure, which originates
from frustrated interladder couplings, making the system more
complicated than originally thought. Interladder couplings
have also been reported in the two-leg spin-ladder compounds
IPA-CuCl3 [27,28] and BiCu2PO6 [29], but their ground states
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remain spin liquids owing to frustrated terms in their Hamil-
tonian. Three-dimensional (3D) long-range ordering (LRO)
has been observed at ∼120 K in another ladder compound,
LaCuO2.5 [30], but the details of the magnetic structure and
the spin dynamics of this material are still unknown.

In the present paper, we report specific-heat measurements
and neutron-diffraction and inelastic neutron-scattering (INS)
experiments on what we shall show to be a coupled ladder case,
(dimethylammonium)(3,5-dimethylpyridinium)CuBr4, which
we call DLCB. This study reveals that a spin gap coexists in
this material with a 3D LRO. We also determine main exchange
interactions and interaction anisotropy from the measured dis-
persions both along and perpendicular to the ladder directions.
The ratio α = Jint/Jleg of the interladder exchange, Jint, to
the leg exchange, Jleg, indicates that DLCB is very close to a
quantum critical point at which the LRO vanishes.

The crystal structure of DLCB is triclinic, space group
P 1̄, and the lattice constants at 85 K are a = 7.459 Å, b =
8.270 Å, c = 13.720 Å, α = 107.41◦, β = 90.21◦, and γ =
91.37◦ [31]. Nearest-neighbor and next-nearest-neighbor con-
tacts between bromine atoms suggest that CuBr−2

4 anions
form two-leg ladders along the crystallographic b axis as
shown in Fig. 1(a). Jleg = 0.685 meV and a value of the
rung exchange, Jrung = 0.351 meV, have been obtained from
magnetic susceptibility, which shows no evidence for LRO
down to 2 K [31]. However, different from (Hpip)2CuBr4

(BPCB) [3,13] and (2,3-dmpyH)2CuBr4 (DIMPY) [16,18,32],
in which ladders are well separated from each other and
thus interladder couplings (∼μeV) are negligible, the inter-
ladder Cu-Cu distances in DLCB are comparable to or even
shorter than intraladder Cu-Cu distances. Based on the crystal
structure, we propose a minimal coupling between ladders as
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FIG. 1. (Color online) (a) Crystal structure of DLCB, in which
the ladder chain extends along the b axis. Outlined is a nuclear unit
cell. (b) Projection of CuBr−2

4 tetrahedra onto a plane perpendicular
to the b axis, showing proposed interladder couplings. Different lines
stand for the different bonds. Red and yellow lines indicate the
intraladder coupling Jrung and interladder coupling Jint, respectively.
Black arrows indicate the directions of the spins. The parallelogram
is a projection of a magnetic unit cell.

depicted in Fig. 1(b), which shows the magnetic interactions
between Cu2+ ions in the crystallographic ac plane. The red
bond is Jrung and the yellow one is the nearest-neighbor Jint

along the [101̄] direction in real space. As we shall show below,
this two-dimensional (2D) model of coupled spin ladders fully
accounts for experimentally observed magnon dispersions.

II. EXPERIMENTAL METHODS

Single crystals of deuterated DLCB were grown according
to the procedure described in Ref. [31]. The crystal structure
was determined at 4 K on the four-cycle diffractometer
(HB3A) at the High Flux Isotope Reactor (HFIR), Oak Ridge
National Laboratory.

The magnetic neutron-diffraction measurements were made
on a 0.2-g single crystal with a 0.4◦ mosaic spread, on a
thermal neutron triple-axis spectrometer (HB1A) at the HFIR,
with a neutron energy of 14.7 meV. A pyrolytic graphite (PG)
(002) monochromator and analyzer were used together with
horizontal collimation of 48′-48′-40′-80′. Contamination from
higher-order beams was removed using PG filters. The sample
was oriented horizontally in the (HKK̄) reciprocal-lattice plane
and a continuous-flow helium-3 cryostat was used.

Inelastic neutron-scattering measurements were performed
on a cold neutron triple-axis spectrometer (CTAX) at the HFIR
and on a multi-angle crystal spectrometer (MACS) [33] and
a disk chopper time-of-flight spectrometer (DCS) [34] at the
NIST Center for Neutron Research, on two co-aligned single
crystals with a total mass of 1.0 g and a 1.0◦ mosaic spread. The
sample was aligned in either the (HKH̄) or (HK0) scattering
plane and standard helium-4 cryostats were used. At CTAX,
the final neutron energy was set to either 3.5 or 5.0 meV by
a PG (002) analyzer. The horizontal collimation was guide-
open-80′-open. At MACS, the final neutron energy was set to

either 3.0 or 5.0 meV. Higher-order reflections were removed
by a cooled beryllium filter placed between the sample and the
analyzer. At DCS, a disk chopper was used to select a 167-Hz
pulsed neutron beam with 3.27 meV. Reduction and analysis
of the data were performed by using the software DAVE [35].

The specific heat was measured above 0.5 K by utilizing
a commercial setup (Quantum Design, Physical Property
Measurement System) [36] and below 0.5 K in a home-made
calorimeter [37] in a dilution refrigerator.

III. EXPERIMENTAL RESULTS

To investigate the ground state of DLCB, we first performed
specific-heat measurements, the results of which are shown in
Fig. 2(a). The sharp anomaly at about 2.0 K indicates a phase
transition to a LRO state. In addition, the exponential, activated
behavior at low temperatures, shown in the inset to the figure,
reveals the presence of a spin gap. By fitting the data to a for-
mula for the specific heat of a one-dimensional S = 1/2 gapped
Heisenberg antiferromagnet in the low-temperature limit [38]

Cm(T ) ∝
(

�

kBT

)3/2

�e−�/kBT , (1)

(a)

(b)

FIG. 2. (Color online) (a) Specific heat of DLCB. Inset: Semilog
plot of the magnetic component of specific heat, after subtrac-
tion of a phonon contribution, against 1/T . The solid line is a
fit showing exponential, activated behavior at low temperatures.
(b) Background-subtracted neutron-peak intensity at q = (0.5,0.5,

−0.5) as a function of temperature. Error bars represent one standard
deviation. The solid line is a fit to a power law as described in the
text. Inset: Rocking-curve scans through q = (0.5,0.5, − 0.5), made
at T = 0.3 and 2.5 K. The solid line is a guide to the eye.
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we find the energy gap � = 0.29(2) meV. In a conventional
S = 1/2 two-leg spin-ladder system, the presence of a spin gap
is tantamount to the ground state being quantum disordered. It
might therefore seem surprising that a spin gap coexists with
LRO in DLCB. We return later to this counterintuitive result.

To further examine the ordered ground state, we carried out
single-crystal neutron-diffraction measurements. At 0.3 K, we
have collected in total 26 nuclear and 32 magnetic reflections,
from which the magnetic propagation vector was found to be
(0.5,0.5,0.5). The data were analyzed by the Rietveld method
using the FULLPROF program [39]. The resulting collinear spin
structure is depicted in Fig. 1(b), with alternating moments
pointing along the c∗ axis in the reciprocal-lattice space.
Not shown in the figure, the directions of the moments also
alternate along the ladder. The size of the local moment is
only 0.39(5) μB even at 0.3 K, much smaller than μB , due to
quantum fluctuations.

The inset to Fig. 2(b) shows representative θ scans through
q = (0.5,0.5,−0.5) measured at 0.3 and 2.5 K. The scan at
0.3 K shows a peak, which disappears as the temperature is
raised above about 2.0 K, thus confirming its magnetic origin.
The temperature dependence of the intensity of the Bragg peak
at q = (0.5,0.5,−0.5) is plotted in Fig. 2(b). A power-law fit
of the form (1 − T/TN )2β gives a TN of 1.99(2) K, in good
agreement with the specific-heat data, and the critical exponent
β = 0.28(2), which is smaller than β � 0.37 and 0.33 for the 3D
Heisenberg and Ising universality classes, respectively [40].

INS was used to study the spin dynamics in DLCB. For
all the results presented here, data taken at 10 K with the
same instrument configuration have been subtracted as a back-
ground. Figure 3(a) shows a constant-q scan at the magnetic
zone center (0.5,0.5,−0.5) at T = 1.5 K. The instrumental-
resolution-limited peak indicates a spin gap of 0.30(2) meV,
in excellent agreement with the specific-heat result.

Figures 3(b)–3(e) show the evolution of the spin wave at
1.7 K in a few Brillouin zones (BZs) with increasing energy
�ω. The magnetic intensity develops above the spin gap. As
indicated by the ellipselike shape of the intensity profile in
Figs. 3(b) and 3(c), the dispersion is weaker along [101̄],
perpendicular to the ladder direction, than along the ladder di-
rection [010]. The intensity disappears at �ω ∼ 0.8 meV for the
dispersion perpendicular to the ladder and at about 1.3 meV for
the dispersion along the ladder, as shown in Figs. 3(d) and 3(e).

The spin-wave dispersions along these high-symmetry
directions, [010] and [101̄], are presented in Figs. 4(a) and
4(b), respectively. The bandwidths of the acoustic branch for
these directions are 0.82(3) and 0.35(3) meV. As a result of the
LRO, the magnetic unit cell is twice as large as the nuclear
unit cell along the ladder direction. Consequently, the BZ
is reduced to one half, and 0.25 and 0.75 become the zone
boundaries. The observed spectrum termination due to this
BZ folding is similar to that in the field-induced ordered phase
of IPA-CuCl3 [41]. Furthermore, the presence of a flat optical
branch as shown in Fig. 4(c) arises from the alternation of J

along the [101̄] direction.

IV. ANALYSIS AND DISCUSSION

One peculiarity of the LRO in DLCB is that it does
not produce a linear, gapless Nambu-Goldstone mode. This

FIG. 3. (Color online) (a) Background-subtracted constant-q
scan in DLCB at the magnetic zone center (0.5,0.5,−0.5), measured
at CTAX at T = 1.5 K. The solid line is a fit to a Gaussian
profile convolved with the instrumental resolution function. Error
bars represent one standard deviation. (b–e) Background-subtracted
constant-energy slices measured at MACS at T = 1.7 K for excitation
energies of 0.2–0.4, 0.4–0.6, 0.7–0.9, and 1.2–1.4 meV.

absence must arise from an inherent easy-axis anisotropy,
which reduces the symmetry of the system to an axial one.
In the ordered state, the spins form a collinear structure as
shown in Fig. 1(b), a structure which does not break the
axial symmetry, hence the absence of a Nambu-Goldstone
mode. This reasoning is borne out by detailed analysis of the
spin-wave dispersions, as described below.

The simplest Hamiltonian that accounts for this scenario is

H =
∑

γ,〈i,j〉
Jγ

[
Sz

i S
z
j + λ

(
Sx

i S
x
j + S

y
i S

y
j

)]
, (2)

where the subscript γ reads either “rung,” “leg,” or “int”—for
Jγ being the rung, leg, or interladder exchange constant—and
i and j are nearest-neighbor lattice sites. The parameter λ

specifies an interaction anisotropy, with λ = 0 and 1 being
the limiting cases of Ising and Heisenberg interactions,
respectively. We assume that λ is the same for all three Jγ ’s
in order to minimize the number of fitting parameters to be
determined from our spin-wave dispersion data.
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FIG. 4. (Color online) False-color map of the spin-wave spectra
at T = 1.5 K (a) along the ladders [010] and (b) perpendicular to the
ladders along [101̄] measured at DCS and (c) perpendicular to the
ladders along [100] measured at MACS. Red and yellow lines are
calculations for the acoustic and optical branches of one-magnon
dispersion, respectively. Data shown as circles were obtained at
CTAX.

To calculate the dispersion for this 2D model, we first
perform a sublattice rotation, which transforms Eq. (2) to

H =
∑

γ,〈i,j〉
Jγ

[
−Sz

i S
z
j − λ

2
(S+

i S+
j + S−

i S−
j )

]
. (3)

We then introduce hardcore-boson operators â†
ν and âν (b̂†ν

and b̂ν), which create and annihilate a magnon at site A

(B) belonging to rung ν in the ferromagnetic reference state,
obtaining the hardcore-boson Hamiltonian:

Ĥ

J̃
= −N

2
+

∑
ν

(
n̂(a)

ν + n̂(b)
ν

)

+
∑

ν

[T̂ν,0 + λ(T̂ν,−2 + T̂ν,+2)], (4)

where J̃ = Jleg + (Jrung + Jint)/2, N is the number of unit
cells, n̂(a)

ν = â†
ν âν , and n̂(b)

ν = b̂†ν b̂ν . The sums are taken over
all rungs. The operators T̂ν,n, with T̂ν,−2 = T̂

†
ν,+2, are given by

T̂ν,0 = −xrungn̂
(a)
ν n̂(b)

ν − xintn̂
(b)
ν n̂

(a)
ν+δx

− xleg
(
n̂(a)

ν n̂
(a)
ν+δy + n̂(b)

ν n̂
(b)
ν+δy

)
(5)

and

T̂ν,+2 = −xrungâ
†
ν b̂

†
ν − xintb̂

†
ν â

†
ν+δx

− xleg(â†
ν â

†
ν+δy + b̂†ν b̂

†
ν+δy), (6)

where xγ = Jγ /J̃ , and δx (δy) is the distance between two
neighboring rungs belonging to different ladders (the same
ladder).

Finally, perturbative continuous unitary transformations
[42,43] map Eq. (4) to an effective model, Heff , which
conserves the number of magnons. The one-magnon sector
H

(1)
eff , which is of interest to us, can be simplified by Fourier

transform to

H
(1)
eff =

∑
k

(ωα(k)α†
kαk + ωβ(k)β†

kβk), (7)

where ωα(k) and ωβ(k) denote the two one-magnon branches
stemming from the two-site unit cell. They are calculated as
follows.

We first replace xγ in Eqs. (5) and (6) with τxγ , so that
at τ = 0 Eq. (4) will contain only the first two terms. This
is our unperturbed Hamiltonian. The perturbation expansion
then gives ωα(k) and ωβ(k) as power series of τ . We next
express ω2

α(k) and ω2
β(k) as Padé approximants Pl(τ )/Qm(τ ),

where Pl(τ ) and Qm(τ ) are power polynomials of order l and
m, respectively. The approximants are uniquely determined
by choosing l + m = n, where n is the order of the raw
perturbation series.

The reason for casting ω2
α(k) and ω2

β(k), instead of ωα(k)
and ωβ(k), as Padé approximants is that the one-magnon
energy gap � = ω(0,0) of a square-lattice antiferromagnet
vanishes at λ = 1 with a square-root singularity [44]. In other
words �2 is a linear function of λ close to the critical point.
This behavior of �2 is ensured by expressing ω2

α(k) as a Padé
approximant.

Finally, we set τ = 1 to obtain ω2
α(k) and ω2

β(k) for the
full Hamiltonian, Eq. (4). We have found that perturbation ex-
pansion up to order n = 13 results in theoretical uncertainties
that are well below the experimental error bars for all the data
points shown in Fig. 4.

To compare the calculation with the experimental data
shown in Fig. 4, we (i) shift the two spin-wave dispersions
ωα(k) and ωβ(k) by k = (0,π ) and (ii) fold the resulting
dispersions into the reduced BZ in the y direction, because the
unit cell of the Néel-ordered state comprises four sites before
the sublattice rotation. We choose the exchange constants Jγ

and λ such that the calculated curves lie within experimental
error bars. The results are in excellent agreement with the
observed dispersions, as shown in Fig. 4, yielding Jleg =
0.60(2) meV, Jrung = 0.64(9) meV, Jint = 0.19(2) meV, and
λ = 0.93(2). The value of Jleg is somewhat smaller than
0.685 meV determined from magnetic susceptibility, whereas

174432-4



MAGNETIC ORDERING INDUCED BY INTERLADDER . . . PHYSICAL REVIEW B 89, 174432 (2014)

Jrung is much larger than 0.351 meV from the susceptibility
[31]. The discrepancy is not surprising, given that the suscep-
tibility analysis has assumed that Jint is negligible.

The exchange ratios x = Jleg/Jrung and α = Jint/Jleg are
0.94(14) and 0.32(3), respectively. For Heisenberg S = 1/2
coupled two-leg square (x = 1) ladders, the quantum critical
point between the spin-liquid phase and the Néel-ordered
phase has been predicted to be at αc ∼ 0.3 [22]. Since
difference of the energy gaps of isolated spin ladders with
x = 0.94 and 1 is as small as 0.01Jrung [16], which is
negligible, we expect αc for x = 0.94 to be ∼0.3/0.94 = 0.32,
which turns out to be the same as α for DLCB within our
uncertainties. Thus DLCB is an ideal experimental realization
of a coupled spin-ladder system in which the ground state
becomes magnetically ordered with an α very close to the
critical value. The weak Ising-like anisotropy (λ = 0.93)
prevents the gap from closing, while allowing—and to some
extent even promoting—the ordering at finite temperature even
if the interlayer coupling is absent.

V. CONCLUSION

In summary, we have carried out specific-heat and neutron-
scattering measurements on DLCB to determine its spin

Hamiltonian and the ground state. We have found a long-
range magnetic order coexisting with a spin energy gap. An
easy-axis anisotropy, which accounts for the coexistence, has
also been identified. The measured magnetic dispersions are
quantitatively consistent with a coupled S = 1/2 two-leg
spin-ladder model with ladder legs along the b direction.
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