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Long-range and short-range magnetic order in the singlet ground state system TbCo3B2
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The YCo3B2 compound is studied by polarized neutron powder diffraction in search of magnetic order. It
is found that YCo3B2 remains paramagnetic down to 10 K. Neutron powder diffraction study of the induced
transition in the Van Vleck paramagnet TbCo3B2 revealed a significant contribution of magnetic diffuse scattering
at small angles and near the (100) reflection. Analysis of these results leads to a revised magnetic structure of
TbCo3B2, in which the Tb sublattice orders ferromagnetically at 31 K, with no Co ordering. Also, short-range
magnetic order of the Tb sublattice, extending into the paramagnetic region, was found. The temperature evolution
of this short-range order’s correlation length, in the paramagnetic temperatures region, shows a significant anomaly
unique to induced transition magnetic ordering.
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I. INTRODUCTION

The RCo3B2 (R = lanthanides) materials are of hexagonal
symmetry (P 6/mmm [1]) and are derived from the RCo5 by
substitution of B for the Co at the 2c [1] site (Fig. 1) [2].
The magnetic ordering temperatures [3–6] of the RCo3B2

(<60 K) are significantly lower than those found [7] in
the RCo5 (�1000 K). The R sublattice in RCo3B2 orders
ferromagnetically, with reduced magnitude of the ordered
magnetic moment compared to RCo5 (approximate free ion
value) [3,4,8]. These properties were found [8] to be strongly
controlled by the crystalline electric field (CEF) and magnetic
exchange field (MEF) in these materials, which have been
extensively studied theoretically and experimentally for many
years [3–10].

The Tb sublattice in TbCo3B2 was reported [3] to undergo
a transition to ferromagnetic order at TTb �31 K. Later, it was
shown [8] that the CEF-only ground state of the Tb ions is a
nonmagnetic singlet, and the magnetic ordering transition is an
induced transition [11–13]. In an induced magnetic transition,
magnetic moment is induced into the singlet ground state by
a component of the MEF, perpendicular to the CEF, which
admixes higher lying states into the singlet ground state via
a mechanism similar to the Van Vleck susceptibility. The
induced moment causes the MEF to increase, in turn causing
the induced moment to increase, until order sets in through
a bootstraplike process. This is different from conventional
magnetic ordering in which order emerges through alignment,
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by MEF, of constant paramagnetic moments μeff . The CEF
and the MEF on the Tb 1a site were reported [8] to be parallel
and perpendicular to the hexagonal c axis, respectively.

The magnetic state of the Co sublattice in RCo3B2 (the 3g

site, Fig. 1) and its role in the magnetic ordering process were
subject to some controversy in the past. Previously, magnetic
ordering temperature was proposed to be �170 K, at which an
unexplained susceptibility increase was observed [3,8]. A Co
magnetic moment of �0.1 μB along the c axis was reported in
a neutron powder diffraction (NPD) study of TbCo3B2 [3].

Above TTb, NPD showed a neutron count in excess of that
contributed by the crystal lattice (i.e., nuclear scattering) at
several Bragg reflections positions [3]. We now recognize
that this excess count appears as broadened Bragg reflections.
Previously [3], this broadening was overlooked, and in the
application of the Rietveld refinement method, this excess
neutron count was included as magnetic Bragg scattering.
The magnetic ordering above TTb was proposed to be induced
by a MEF generated by the previously mentioned ordered
Co sublattice. However, several results are inconsistent with
ordering of the Co sublattice in RCo3B2. First, the theoretical
model and the induced transitions theory of the Tb sublattice
exclude interaction with other sublattices [8,13]. Second, an
inelastic neutron scattering experiment revealed no change in
the magnetic state of the Tb sublattice from 200 to 40 K
[8], whereas an ordering of the Co sublattice at 170 K
would have introduced such a change. Third, magnetization
measurements [6] performed on YCo3B2, in which the Tb3+
ions were replaced by the nonmagnetic Y3+, revealed little or
no magnetic response. Fourth, theoretical calculations did not
find a possibility for sustainable ferromagnetic Co ordering in
YCo3B2 [9]. Moreover, it was suggested [14] that the observed
susceptibility change �170 K, in TbCo3B2 and YCo3B2,
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FIG. 1. The CaCu5-type crystallographic structure of RCo3B2, in
which the R, Co, and B ions occupy the 1a (6/mmm), 3g (mmm), and
2c (6̄m2) sites, respectively.

originates from an itinerant response with no Co long-
range order (LRO). Finally, the reported [3] low-temperature
orientation of the ferrimagnetic (including Co LRO) axis in
TbCo3B2 was 74(2)° with respect to the hexagonal c axis,
whereas theoretical calculation of the magnetic anisotropy
predicted that the magnetic axis is oriented in the hexagonal
plane, perpendicular to the c axis [8], suggesting a systematic
error in the reported [3] model that includes LRO on the Co
sublattice.

In the present paper, a study in search of a magnetically
ordered Co sublattice in YCo3B2 is carried out using polarized
neutron powder diffraction (PNPD). Next, we revisit TbCo3B2,
by adding to the analysis the contribution of the excess
broadened count as magnetic diffuse scattering (MDS). The
results of these two show an absence of Co LRO in YCo3B2

and emergence (above TTb) of a Tb magnetic short-range order
(SRO) with no Co ordering in TbCo3B2.

II. EXPERIMENTS AND RESULTS

A. YCo3B2 PNPD study

Polycrystalline YCo3
11B2 was prepared in an arc melting

furnace using high purity elements (99.9%). We use here the
previously prepared sample; its processing and characteriza-
tion are described in detail in Ref. [5].

Polarized neutron powder diffraction experiments were
performed at 10 and 120 K. The measurements were carried out
at the very intense polarized (VIP, former 5C1) diffractometer
[15,16] at the Orpheé research reactor in the Laboratoire Léon
Brillouin, Centre d’Etudes Atomiques–Centre National de la
Recherche Scientifique, Saclay, France. A monochromatic
[λ = 0.84(1) Å] and polarized [P = 0.88(1)] incident neutron
beam was obtained using the Heusler crystal (Cu2MnAl)
method [17]. A cryoflipper, installed between the Heusler
crystal and the sample, was used for the neutron spin reversal
with respect to the externally applied magnetic field, H0,
perpendicular to the scattering plane in the up (+) direction.
The scattered neutrons were detected using a two-dimensional
(2D) position sensitive 3He detector, limiting the measured

FIG. 2. (Color online) FD, I+ − I−, profile of YCo3B2 at 10 K
(solid line) and 120 K (dashed line). The expected 2θ positions of the
Bragg reflections are marked below, and their hexagonal (P 6/mmm)
Miller indices are given above.

neutrons to a vertical acceptance angle of −5° to 5° about the
scattering plane. A 10.0(1) g YCo3

11B2 powder sample was
loaded into a Ti0.522Zr0.478 (Ti/Zr) cylindrical sample holder,
with a 5 mm diameter and �0.2 mm wall thickness. This
(Ti/Zr) holder was used to reduce possible coherent scattering
from the holder [18]. The loaded sample holder was placed in
the aforementioned external magnetic field, H0, of 5.75 T to
achieve saturation magnetization (if exists), at different sample
temperatures. The PNPD experiment yields the observed
neutron counts, I+ and I−, at scattering angle 2θ with the
incident neutron beam polarized parallel and antiparallel to
the external magnetic field direction, respectively. In practice,
these counts are represented by the neutron count collected
per 2θ channel per prefixed beam monitor counts.

The PNPD flipping difference (FD) neutron count: I+ − I−,
was shown [16,19,20] to eliminate all nonmagnetic scattering
(i.e., nuclear scattering, scattering from the cryomagnet,
multiple, or diffuse, scattering, and constant background),
enhancing sensitivity to magnetic scattering contribution from
small ordered magnetic moments compared with NPD.

The 2θ positions of the Bragg reflections (Fig. 2), were
calculated using the hexagonal lattice parameters: a0 = 5.04(1)
and c0 = 3.03(1) Å [5]. Above 2θ �35° (not shown), the
angular resolution of the VIP diffractometer becomes too poor
(full width at half-maximum > 3.5°) [16]. No Bragg reflections
are present below 10°. Clearly, the observed YCo3B2 FD
profile (Fig. 2) does not reveal any excess neutron count, above
statistical variation, in the vicinity of the Bragg positions at
either 120 or 10 K.

B. TbCo3B2 NPD study

The experimental data used in this section were collected at
the high-resolution powder thermal (HRPT) neutron diffrac-
tometer at the Paul Scherrer Institute (Switzerland), described
in a previous paper on TbCo3

11B2 [3].
Examination of the neutron count of the (100) reflection

at 39.4(1) K >TTb, [Fig. 3(a)] reveals that (i) the (full
profile) refined contribution (solid line) significantly exceeds
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FIG. 3. (Color online) Two sections of the observed (circles)
and Rietveld (solid line) NPD profiles of TbCo3B2 at 39.4(1) K.
The Rietveld profile was calculated using nuclear (dashed line) and
magnetic LRO components. (a) The observed profile of the (100)
reflection has large magnetic contribution and is significantly broader
than the Rietveld line width. (b) The observed profile of the (300,
211) reflections has practically no magnetic contribution and shows
no broadening compared to the Rietveld line widths. The error bars
in (b) are smaller than the symbol’s size.

the refined nuclear (dashed line) contribution due to magnetic
contribution; and (ii) the observed (100) profile is significantly
broadened compared to the refined width (solid line) and the
observed (300) width [Fig. 3(b)], which is dominated by a
nuclear contribution. The previously proposed contribution
from magnetic LRO on the Tb sublattice (Sec. III B 1), does
not account for the broadened line profile of the (100) reflection
[Fig. 3(a)]. Similar profile broadening is observed in the (102)
reflection (not shown), which is also dominated by magnetic
contribution.

The temperature evolution of the observed (100) profile at
the paramagnetic temperatures region is shown in Fig. 4. This
temperature-dependent broadening constitutes MDS and can
be accounted for by magnetic SRO.

Observed temperature evolutions of the neutron count at
2θ = 15° [Fig. 5(a)] and at 5° [Fig. 5(b)] are shown. The 5°
count includes the contribution of MDS to small scattering
angles, in addition to that found in the vicinity of Bragg
reflections. The 15° count reveals the contribution of other
scattering process to the 5° count, because at this angle the
magnetic form factor remains constant (Sec. III B 4). The
temperature evolution of the neutron count, obtained after
subtraction of the 15° count from the 5° count, exhibits a
“critical scattering”-like [20] behavior, which also indicates
the emergence of SRO.

III. ANALYSIS

A. YCo3B2 PNPD

1. Statistical noise analysis

The possible presence of small Bragg reflections is ex-
amined using analysis of the statistical variations in the
observed FD profile (Fig. 2). If FD reflections are absent or
are significantly lower than the statistical (random) noise, the
neutron count at each 2θ is distributed according to the Poisson

FIG. 4. (Color online) The temperature evolution of the observed
(circles) and Rietveld refined (solid line) (100) profile at various tem-
peratures in the paramagnetic temperatures region. The refined profile
is obtained using nuclear LRO, magnetic LRO, and magnetic SRO
(dashed line) components (Sec. III B). An appropriate background
was subtracted from the observed and refined profiles for display
purposes. If not shown, the error bars are smaller than the symbol’s
size.

statistics, originating from the counting process of radiation
quanta [21]. The observed I+ and I− (not shown) at each 2θ

were �104 neutron counts. Hence, the Poisson distribution
converges to normal (Gaussian) distribution, with standard
deviations of (I+)1/2 and (I−)1/2 for I+ and I−, respectively
[21]. In this case (absence of FD reflections), X [Eq. (1)] at
each 2θ , is a random number and its distribution over 2θ

(Fig. 2) should yield an average 〈X〉 = 0 and a standard
deviation (〈X2〉 − 〈X〉2)1/2 = 1 [21]:

X ≡ I+ − I−√
I+ + I−

(1)

The frequency [21] distribution of X, extracted from the
observed FD profile at 10 K (Fig. 2), is presented in Fig. 6
with a Gaussian curve best fit.

The obtained average and standard deviation of X (Fig. 6),
which are 0.01(2) and 0.98(3), respectively, agree (within
their respective precision) with those expected from a pure
random distribution. This result excludes the existence (within
precision) of any nonrandom contribution (e.g., magnetic
Bragg reflections) in the observed FD profile. Hence, either
no LRO is present or the magnitude of the ordered magnetic
moments is smaller than the VIP diffractometer’s sensitivity
limit.
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FIG. 5. (Color online) Temperature evolutions of (a) the neutron
count at 2θ = 15°, which corresponds to the nuclear incoherent
scattering and the paramagnetic scattering; (b) the neutron count
at 2θ = 5°, small-angle scattering, which corresponds (see text) to
paramagnetic scattering and MDS; and (c) the small-angle MDS
contribution, obtained from (b) − (a) (open circles). The MDS term
(solid circles) is calculated [Eq. (2)] using the refined B and ζ values
(Table I, see text). The dashed lines are guides to the eye. Where not
shown, the error bars are smaller than the symbol’s size.

2. Sensitivity limit of VIP

Consider the sensitivity or the detection limit of the VIP
diffractometer for an ordered magnetic moment located on
the 3g site (Fig. 1). This sensitivity depends on the neutron
flux, detection efficiency, angular resolution, measurement
time, total number of unit cells in the sample, and the
Bragg FD count (Appendix A). The neutron flux, detection
efficiency, and angular resolution of the VIP diffractometer
are determined by comparing results of a PNPD experiment
performed on TbCo2Ni3 under similar experimental conditions
(Appendix A) [16]. Using the calculated FD count for different
magnitudes of the ordered magnetic moment on the 3g site, it
is found that the sensitivity limit is �0.05, 0.02, and 0.03 μB

for a magnetic axis parallel to c, a magnetic axis perpendicular
to c, and a soft magnetic material, respectively (Appendix A).

B. TbCo3B2 NPD study

1. Generalized three-component Rietveld refinement

The observed profile broadening (Fig. 3) and its temperature
evolution (Fig. 4) originate from a contribution of MDS,
which can result from magnetic SRO. Thus, we reanalyze
the NPD data, including the MDS, in addition to the Bragg
contributions. The expected neutron count I for LRO and
SRO scattering as a function of the momentum transfer q

FIG. 6. (Color online) Frequency distribution of X [circles,
Eq. (1)], obtained using the YCo3B2 FD profile at 10 K (Fig. 2).
An error-sensitive fitting procedure of a Gaussian curve (line)
yields average and standard deviation 〈X〉 = 0.01(2) and (〈X2〉 −
〈X〉2)1/2 = 0.98(3), respectively.

relative to the momentum transfer, which corresponds to a
Bragg reflection τ , is [22–24]

I (q) =
∫ (

Aδ(q − q ′) + B

π

ζ−1

(q − q ′)2 + ζ−2

)

×R(q ′)f 2(q − q ′)dq ′ (2)

where A ∝ |Fn|2 + |Fm|2 corresponds to the integrated
neutron count of the LRO (Bragg) term [20]; Fn is the nuclear
structure factor for TbCo3B2 [3]; Fm = pμTb is the magnetic
structure factor of the Tb (1a) site, p ≡ 1/2γ r0gf (q) is the
magnetic scattering length [20], γ = 1.913 is the neutron’s
gyromagnetic ratio, r0 = 2.818 fm is the classical electron
radius, g = 3/2 is the Tb3+ Lande factor [8], f (q) is the
magnetic form factor of the Tb3+ ion [8], μTb is the magnitude
of the ordered (LRO) Tb magnetic moment; B ∝ |FSR|2 is the
integrated neutron count of the SRO (MDS) term with the same
proportionality constant as in A; and FSR ≡ pμSR, μSR is a
refined parameter (see below); q � K − τ , K = 4πsinθ /λ
is the scattering vector, 2θ is the scattering angle,
λ = 1.8857(5) Å [3] is the incident neutron’s wavelength,
τ = 2π/d is the reciprocal lattice vector, d is the lattice spac-
ing; ζ is the average range of the magnetic clusters (correlation
length); and R(q) is the angular resolution function.

In the present work, R(q) is equal to the instrumental
resolution function (finite collimation and nonideal monochro-
mation) [25], modified by the effect of the sample’s grain size
and microstrains. The instrumental resolution function of the
HRPT diffractometer is obtained using NPD Rietveld analysis
of a Na2Al2Ca3F14 standard [26,27]. The effect of microstrain
and finite size of the powder grains is found using the Rietveld
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refinement of the 298 K NPD profile, assuming that MDS
in this temperature is negligible. This assumption is then
confirmed by analysis (Fig. 4). While microstrains are found to
be absent, the typical size of the powder grains, �0.10(5) μm,
generates a Lorentzian line broadening of the Bragg reflections
[28]. A Gaussian line broadening component, which may also
appear due to the grains size [28,29], was considered and found
negligible.

The MDS originates from clusters of magnetically aligned
moments (SRO), which fluctuate over time. If present, antifer-
romagnetic SRO does not conform with the crystal structure
and requires the appearance of neutron count in the vicinity of
new Bragg reflections that are additional to those contributed
by the crystal lattice. Because no additional reflections were
observed [3], we conclude that only ferromagnetic SRO
is present. Because the range of these clusters is small
compared to the grain’s size, the reflections from them are
broadened compared to Bragg reflections [20,28]. Assuming
that the SRO is isotropic (i.e., the orientation of the cluster’s
magnetic moment in the grain is random), the angular profile
contributed by MDS in the vicinity of the Bragg reflections is
a Lorentzian [second term in Eq. (2)] to a first approximation
in qζ [28,30].

The MDS in the observed NPD profile (Fig. 4) is accounted
for in a generalized, three-component Rietveld analysis
[Eq. (2)]. The three components are nuclear Bragg (LRO),
magnetic Bragg (LRO), and magnetic diffuse (SRO). The
nuclear and magnetic Bragg components are included in the
first term [Eq. (2)], and the sum of their contributions is
equal to A. The third component is included in the second
term, and its contribution is equal to B. The grain size
feature, with the Lorentzian profile contribution offered by
the FullProf program [29], is used in the refinement of the
third component, with ζ playing the role of the refined grain
size at each NPD temperature. The refined parameter Y [29]
is related to ζ through the Scherrer [31] equation. In addition
a magnetic moment, μSR, related to B [Eq. (3)] is refined
at each NPD temperature. The pseudo-Voigt angular profile
function [29,32] offers an adequate representation of the
three-component profile [Eq. (2)].

It follows from the definitions of A and B [Eq. (2)] that
the following relation holds for B in the generalized three-
component refinement:

B = A
p2μ2

SR

|Fn|2 + p2μ2
Tb

(3)

The refined values of A, B, ζ/ζ0, μTb (present paper), and
μTb′ (previous paper [3]) are presented in Table I, where
ζ0 = 65(25) Å is the minimum value of ζ obtained at 39.4 K.

In addition to the three-component Rietveld refinement, a
second technique was used (Appendix B), in which A and (B,
ζ ) were separately and iteratively refined so that the calculated
[Eq. (2)] profile will best fit the observed profile. The A, B, and
ζ thus obtained were found to agree, within their uncertainties,
with those obtained using the generalized three-component
refinement (Table I). Using agreement requirement between
the two methods, a systematic uncertainty roughly equal in
size to the propagated (one standard deviation) experimental
uncertainty, which originates from correlation among the fitted

TABLE I. Refined values of the magnetic parameters of TbCo3B2.
The parameters A, B, and ζ , are defined in Eq. (2). ζ0 = 65(25) Å
is the minimum value of ζ . μTb and μTb′ are, respectively, the three
components (present paper) and two components (previous paper [3])
refined Tb magnetic moments. Numbers in parentheses represent the
standard deviation of the last significant digit. “*” denotes value is
missing due to no convergence of the fitting procedure. “–” denotes
values were not previously reported [3].

T (K) A (103cnt) B (103cnt) ζ/ζ0 μTb (μB) μTb′ (μB)

1.53(3) 51(4) 11(3) 2.8(1) 4.8(2) 5.2(1)
18.6(2) 43(6) 12(3) 2.0(1) 4.3(3) 4.8(1)
26.9(1) 9(3) 13(3) 1.2(2) 2.0(3) 2.4(1)
33.7(3) 0.14(2) 9.2(5) 1.06(6) 0.0(2) 0.88(1)
39.4(1) 0.16(2) 8.3(4) 1.00(5) 0.1(1) 0.83(1)
64.0(4) 0.12(2) 4.5(5) 1.35(6) − 0.1(1) 0.62(1)
82(1) 0.16(2) 3.9(6) 1.42(5) 0.1(1) 0.48(2)
102(1) 0.23(3) 3.3(6) 1.26(5) 0.2(1) 0.43(2)
122(2) 0.16(2) 2.8(5) 1.20(5) 0.1(1) 0.34(2)
127(1) 0.14(2) 2.8(5) 1.31(6) 0.1(1) –
132(1) 0.12(2) 2.3(5) 1.3(1) 0.1(1) –
137(1) 0.14(2) 2.3(5) 1.32(6) 0.0(1) 0.33(2)
142(1) 0.14(2) 2.3(6) 1.20(6) − 0.1(1) 0.29(2)
147(1) 0.14(2) 2.3(6) 1.2(1) − 0.1(1) –
151(1) 0.14(2) 2.2(7) 1.2(1) 0.0(1) 0.26(2)
220(1) 0.14(2) 1.4(9) 1.1(2) 0.00(5) 0
298(1) 0.14(2) 0.2(2) * 0.00(5) 0

A, B, and ζ , was estimated and added to the total error values
(one standard deviation) in Table I.

2. LRO and magnetic structure

Below TTb, the revised μTb values—i.e., those refined with
MDS as a third component (present paper)—are slightly lower
than μTb′ refined with MDS included in the second component
(previous [3] paper). However, above TTb, the refined μTb

values are practically zero (Table I and Fig. 7)—unlike μTb′ ,
whose values increase monotonically from 0.26 μB at 151 K
to 0.88 μB at 33.7 K [3]. In addition, the revised low-
temperature orientation (not shown) of μTb is perpendicular
to the hexagonal c axis. This orientation is in agreement with
anisotropy calculations based on induced magnetic transition
theory [8], whereas the orientation of μTb′ was reported
(previous paper [3]) to be 74(2)° with respect to the c axis.

3. SRO and correlation length

The temperature evolution of ζ should be discussed in the
following context: SRO results from an equilibrium between
fluctuating MEFs, which create regions of aligned magnetic
moments, and temperature, which drives to random magnetic
moment orientations and magnitude (entropy) [28].

The temperature evolution of ζ , relative to its minimum
value ζ0 = 65(25) Å (Table I), is presented in Fig. 8. Three
temperature regions are identified: T	 < T , TTb < T < T	,
and T < TTb, where T	 = 63 K (Sec. IV). At high and low
temperatures (T	 <T and T <TTb, respectively), the evolution
of ζ/ζ0 (Fig. 8) follows theoretical prediction (Sec. IV) and
those reported [22,34,35] in other papers. In the second region,
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FIG. 7. (Color online) Temperature evolution of the refined
ordered magnetic moment μTb. Previous paper [3]: MDS was
included in the second component (magnetic Bragg) in the refinement
(solid circles). Present paper: MDS is included as a third component,
dominated by a Lorentzian line shape, in the refinement (open circles).
If not shown, the error bars are smaller than the symbol’s size.

TTb < T < T	, anomalous evolution is observed (Fig. 8).
This anomaly, and its relation to the magnetic state of Tb ions
in TbCo3B2, is discussed in Sec. IV.

A large systematic uncertainty of �30% in the absolute ζ

values is contributed by R(q). However, ζ/ζ0 is only weakly
affected by this uncertainty and is dominated by statistical
errors (Fig. 8).

4. Small-angle scattering

MDS also contributes to the neutron count in the vicinity
of the forward (2θ = 0) scattering direction (critical magnetic
scattering) [28]. Hence, the neutron count at small 2θ is the
sum of nuclear incoherent scattering, constant (negligible in
comparison to the other contributions) neutron background,
paramagnetic scattering, and MDS. Neglecting the change in
f 2(q) for Tb3+ between 5° and 15° (smaller than 5%) [8],
the observed neutron count of the aforementioned first three
contributions at 15° [Fig. 5(a)] equals that at 5° [Fig. 5(b)].
Hence, the forward direction MDS is obtained by subtracting
the neutron count obtained at 15° from that obtained at 5°.
The 5° observed MDS temperature evolution thus obtained
is shown (open circles) in Fig. 5(c). This MDS contribution
corresponds to the second term in Eq. (2). We calculate this
term using refined values of B and ζ (Table I) at q = 0.291 Å−1

(2θ = 5°) at each temperature (Table I). The values thus
obtained are also shown (solid circles) in Fig. 5(c). The
agreement with the observed MDS temperature evolution at
2θ = 5° corroborates the results (B and ζ ) of our MDS analysis
near the (100) reflection at 2θ �25°.

IV. DISCUSSION

The result of the present paper, namely, no Co LRO in
RCo3B2 (R = Tb, Y), allows us to state the following: Tb

FIG. 8. (Color online) The temperature evolution of the corre-
lation length relative to its minimum value ζ0 = 65(25) Å (circles,
Table I). TTb and T	 correspond to the temperatures of the ordering
and of the first excited state [8] of the Tb ions, respectively (see
text). In addition, the expected temperature evolutions for TTb < T ,
according to the MEF theory [33] and using the critical exponents
(Sec. IV) ν = 0.3 (dashed-dotted) and ν = 0.5 (dashed-double dotted),
are presented. The dashed line, which connects the circles, is a guide
to the eye.

orders magnetically in TbCo5 [36], TbCo4B [37], TbCo3B2,
and TbCo2Ni3 [16], while Co orders with the Tb whenever
it orders in the corresponding Y compound. This ordering
occurs when Co occupies (all or part of) the 2c site. This site
has a uniaxial symmetry 6̄m2 (6̄ along the c axis, Fig. 1) and
a strong magnetocrystalline anisotropy (MCA), with the soft
direction along the c axis. This MCA is responsible for the c

axis magnetism at high temperatures in the RCo5 compounds
[7]. In addition, the absence of Co LRO (i.e., the absence
of a localized ordered magnetic sublattice) in YCo3B2 sup-
ports the itinerant, exchange enhanced, paramagnetic nature
suggested by Burzo et al. [14] for the Co occupying the
3g site.

SRO (that is, aligned Tb magnetic moment clusters) is found
in the ferromagnetic and paramagnetic temperature regions of
TbCo3B2. In the paramagnetic region, the SRO extends well
above the magnetic ordering temperature TTb and vanishes
only above T /TTb �7. We suggest that the existence of a
nonmagnetic singlet ground state, well separated from the
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first excited state by an energy gap 	 = 5.5(5) meV [8]
that corresponds to T	 = 63(5) K (Fig. 8), leads to rapidly
fluctuating MEFs. The magnitude of this energy gap compared
to the energy associated with the MEF, μBHm, is estimated as
	/μBHm ≈ 10 [8]. These fluctuating MEFs create clusters
of Tb ions with partially admixed [8] levels, which tend to
align (SRO). Above TTb, the rate of de-excitation (back to the
nonmagnetic ground state) that causes the clusters to vanish is
greater than that of the admixture, and magnetic LRO is not
sustainable.

The isotropic MEF theory [33] predicts the temperature
evolution of the correlation length to be ζ ∝ (T − TC)−ν ,
where TC is the ordering temperature and ν is the critical
exponent. ν = 0.5, 0.63, 0.71, and 1 for isotropic, three-
dimensional (3D) Heisenberg, 3D Ising, and 2D Ising ferro-
magnets, respectively. The temperature evolution of ζ deduced
in the present paper (Fig. 8) approximately follows, at high
temperatures (T	 < T ) the predicted evolution with ν � 0.3.
However, a strong anomaly is observed at lower temperatures
(T < T	). This anomaly is caused by the increase (upon
cooling) in the thermal occupancy of the nonmagnetic singlet
ground state. This decreases the admixture of excited magnetic
states [8] and, in turn, decreases (upon cooling) the extent
(i.e., correlation length) of the magnetic clusters. At low
temperatures (T < TTb), the ground state turns magnetic,
causing this trend to reverse and follow the predicted [33]
evolution (though with a considerable shift).

V. CONCLUSIONS

Polarized neutron diffraction confirmed that the Co sub-
lattice in materials derived from RCo5 (R = Tb, Y) orders
ferromagnetically [7,38,39] when Co occupies part of the 2c

site. In RCo3B2, the complete occupancy of the 2c site by B

leads to a nonmagnetic Co sublattice. This finding supports
the itinerant magnetic nature proposed by Burzo et al. [14] for
the Co at the 3g site.

The neutron counts in excess of those contributed by the
crystal (nuclear scattering) found in NPD of TbCo3B2 in the
paramagnetic region consists of MDS, contributed by the Tb
SRO. After this MDS contribution is correctly introduced
into the analysis, the resulting revised magnetic structure
contains (i) no Co ordering at all temperatures, in agree-
ment with the aforementioned nonmagnetism of the 3g site,
(ii) above TTb, only short-range magnetic ordering of the
Tb ions, (iii) below TTb, ferromagnetism of the Tb with
the magnetic axis perpendicular to the hexagonal axis, in
agreement with anisotropy calculations [8].

The emergence of SRO in this singlet ground state system
is driven by the mechanism of induced ordering (Sec. I) [8,13].
Consequently, the temperature evolution of the correlation
length for this SRO in the paramagnetic region is funda-
mentally different from that predicted by isotropic MEF [29]
theory.
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APPENDIX A: VIP DIFFRACTOMETER
DETECTION LIMIT

The VIP diffractometer detection limit (sensitivity) for
an ordered Co sublattice at the 3g site (Fig. 1) depends on
the instrumental scale factor [25] L [Eq. (A1)] and angular
resolution R [Eq. (2)].

The value of L is extracted from the refinement of
the magnetic parameters of TbCo2Ni3 [16], which fits the
calculated FD, I+ − I− [Eq. (A1)], to the observed integrated
FD count [40] for the 101 reflection. The extracted value is
L = 200 integrated neutron counts per hour of irradiation per
mole of unit cells in the powder sample:

I+ − I− = LNctD(2θ)T (2θ )〈cosβ〉hkl

× e−2BTsin2θ/λ2

sinθsin2θ
mhklRe{FNF

†
M} (A1)

where Nc is the number of unit cell moles in the sample, t is the
irradiation time (in hours), D(2θ ) is the beam depolarization
inside the sample, T (2θ ) is the absorption corrected geomet-
rical transmission function (in Debye-Scherrer’s geometry),
〈cosβ〉hkl [40] is the fractional domain magnetization in the
externally applied magnetic field averaged over the grains
contributing to reflection hkl, and the other notations have
their usual [40] meanings.

The PNPD was shown to be highly sensitive to the
anisotropy of the investigated magnetic structure [40,41]. We
simulate a FD profile from LRO Co in YCo3B2 with μCo = 0.05
μB. Three MCA models (Fig. 9) are considered: soft magnetic
structure, hard magnetic structure with the easy direction
perpendicular to the hexagonal c axis, and hard magnetic
structure with the easy direction parallel to the hexagonal c

axis. For the soft magnetic structure, 〈cosβ〉hkl = 1 [40]. For
hard uniaxial magnetic materials in which the magnetic axis is

FIG. 9. (Color online) The observed (solid line, 10 K) and
calculated (see text) FD profiles, I+ − I−, for YCo3B2, assuming
an ordered moment of 0.05 μB at the 3g site. Three models for
the Co MCA are considered: soft (dashed line), hard oriented
parallel (dotted line), and hard oriented perpendicular (dashed-
dotted line) to the hexagonal c axis. The expected reflections
2θ positions are marked, and their Miller (P 6/mmm) indices are
given.
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oriented with an inclination angle � with respect to the unique
axis, 〈cosβ〉hkl is [40]

〈cosβ〉hkl = 2

π
(cos�sinαhkl+sin�E (π/2−αhkl)) (A2)

where αhkl is the angle between the magnetic moment and the
direction of the hkl reflecting planes and E(π/2 − αhkl) is the
complete elliptic integral of the second kind [40].

The FD integrated neutron count for the hkl reflections
(Fig. 2) are calculated using Eqs. (A1) and (A2), the irradiation
time t of �50 h (at 10 K), and the number of unit cells in the
YCo3B2 powder sample Nc �0.035 moles. Using VIP [16]
angular resolution, these calculated integrated neutron counts
are converted back to FD profiles. The profiles thus obtained
for soft (dashed line); hard, oriented parallel (dashed-dotted
line); and perpendicular (dotted line) to the hexagonal c axis,
are shown in Fig. 9.

Let us adopt the criterion that the sensitivity limit is
achieved when the amplitude of a FD reflection becomes
about equal to the amplitude in a strong fluctuation of
the FD background noise (�75 cnt, Fig. 9). Using the
three calculated profiles for μCo = 0.05 μB (Fig. 9) and
the amplitude of a FD reflection being proportional to μ

[Eq. (A1)], we obtain the following sensitivity limits: μCo

�0.05, 0.02, and 0.03 μB for the magnetic axis parallel to c,

magnetic axis perpendicular to c, and soft magnetic material,
respectively.

APPENDIX B: THE SEPARATE LRO SRO
ANALYSIS PROCESS

The proposed fitting procedure is based on two Bragg
component Rietveld refinement (nuclear and magnetic LRO)
and a least-squares (LS) minimization procedure [27] that fits
the MDS to a Lorentz profile. The two procedures are applied
sequentially by iterations until the sum of the Rietveld (Bragg)
and the LS (MDS) profiles gives a good fit to the observed
profile.

This procedure includes four steps that are repeated
iteratively: (i) the LRO component A(1) is refined using the
two-component Rietveld refinement (whole NPD profile fit);
(ii) the angular LRO profile, calculated using this A(1), is
subtracted from the observed profile, revealing the MDS
contribution; (iii) B(1) and ζ (1) are refined to fit this MDS
contribution using the LS process; (iv) the angular SRO profile,
calculated using B(1) and ζ (1), is subtracted from the observed
profile, revealing the Bragg profile. The A(2) is refined to fit this
Bragg profile in a manner similar to step (i). This procedure is
repeated until the change in iteration j, between A(j+1), B(j+1)

and A(j), B(j) is smaller than the experimental precision of the
observed integrated neutron count.
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