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Damping of a nanocantilever by paramagnetic spins
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We compute damping of mechanical oscillations of a cantilever that contains flipping paramagnetic spins. This
kind of damping is mandated by the dynamics of the total angular momentum, spin + mechanical, and it does not
require an external magnetic field. Rigorous expression for the damping rate is derived in terms of the imaginary
part of the magnetic susceptibility. The effect of spins on the quality factor of the cantilever can be significant in
cantilevers of small length that have large concentration of paramagnetic spins of atomic and/or nuclear origin.
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I. INTRODUCTION

Small cantilevers have various applications in atomic force
microscopy (AFM), in micro- and nanoelectromechanical
systems (MEMS and NEMS), and for biological chemical
detection [1]. Submicron cantilevers have recently permitted
spatial resolution of the AFM that is sufficient to visualize tiny
details of the DNA double helix near physiological conditions
[2]. Further miniaturization of cantilevers has the potential
to revolutionize technology and medicine. The accuracy of
detectors based upon nanocantilevers relies on the quality
factor of the cantilever; see, e.g., Ref. [3]. Mechanical motion
of the cantilever is related to the dynamics of the angular
momentum. Coupling of the mechanical angular momentum
and the angular momentum associated with the magnetic
moment of a ferromagnetic body is described by the Barnett
and Einstein–de Haas effects [4,5]. In a paramagnetic body
that coupling is less transparent. The question is whether
thermal flipping of atomic and nuclear angular momenta inside
a nonmagnetic cantilever can affect its quality factor. For a
relatively large cantilever, having high moment of inertia, it
seems unlikely that tiny angular momenta of atoms and nuclei
may have any significant effect on the cantilever. However,
as we shall see, the effect scales inversely with the square of
the length of the cantilever and it may become important for
nanoscale cantilevers.

Coupling of cantilevers to classical magnetic moments has
been studied in the past. The possibility to reverse the magnetic
moment by mechanical motion [6,7]. The Einstein–de Haas
effect in a magnetic cantilever has been measured [8] and
explained [9] by the motion of a domain wall. Mechanical
friction of the cantilever oscillating near the surface of a solid,
which originates from the interaction between localized spins
in the cantilever and localized surface spins, has been proposed
in Ref. [10] as an explanation of the strong influence of the
proximity to the surface on the cantilever damping observed in
Ref. [11]. Coupling of cantilevers to the embedded quantum
spins has been investigated theoretically [12–14]. Experiment
has progressed to the measurement of a single molecular spin
in a NEMS obtained by drafting of a single-molecule magnet
on a carbon nanotube [15,16]. A theory of such an experiment
that treats both the spin and the cantilever as quantum objects
has been developed in Ref. [17].

In this paper we consider a nanoscale cantilever that consists
of a sufficiently large number of atoms to be treated as a

classical mechanical object. Paramagnetic spins of atomic or
nuclear origin, or both, inside the cantilever will be treated as
quantum spins flipping due to thermal effects and/or quantum
tunneling. Damping of micromechanical structures by param-
agnetic relaxation in the presence of strong external magnetic
field has been studied experimentally and theoretically in
Ref. [18]. It was argued that when the cantilever oscillates in
the external magnetic field the oscillation of the crystal-field
axes of Mn2+ ions generates the ac magnetic field that is
proportional to the external field and the amplitude of the
oscillations of the cantilever.

Our main result is the demonstration that paramagnetic
spins cause damping of the mechanical oscillations of the
cantilever even in the absence of the external field, and
that this kind of damping can be universally expressed via
the imaginary part of the magnetic susceptibility. One can
understand this effect by noticing that oscillations of the
cantilever generate the effective ac magnetic field, h = �/γ ,
in the rotating coordinate frame of the cantilever, with � being
the angular velocity and γ being the gyromagnetic ratio for the
spin [19]. In the absence of the external fields, all solid-state
interactions of the spins are defined in that coordinate frame. It
is therefore natural to solve the problem in the moving frame
of the cantilever. Switching to that frame cannot, of course,
generate any new physical effects. It is merely a method that
allows one to express the damping of the cantilever in terms of
measurable parameters without having the explicit knowledge
of microscopic interactions.

The paper is structured as follows: In Sec. II the physics
of the effect is elucidated by considering a rigid oscillating
beam that contains paramagnetic spins. The damping of the
cantilever is expressed via the imaginary part of the magnetic
susceptibility. The dynamics of a physical elastic cantilever
with paramagnetic spins is studied in Sec. III. It introduces a
correction factor to the damping rate and its dependence on
the oscillation mode. Discussion of the results and estimates
are given in Sec. IV.

II. RIGID BEAM

The kinematics of a physical cantilever shown in Fig. 2
is more complicated than that of a harmonic oscillator; see,
e.g., Ref. [20]. To explain the physics of the effect we will
start with a toy model in which the physical cantilever is
replaced with a rigid beam that swings as a harmonic oscillator
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FIG. 1. (Color online) Rigid beam with paramagnetic spins.

by changing its orientation with respect to the y axis, with
one end being at the origin of the coordinate frame; see
Fig. 1. This crude approximation allows one to understand
the physics of the effect in simple terms, as well as to
obtain the estimate of the cantilever damping which serves
as a test for the more involved computation with a physical
cantilever. Note that the rigid beam approximation only applies
to the motion of the cantilever as a whole and does not
prohibit in our model the spin-phonon processes inside the
beam.

The motion of the beam shown in Fig. 1 is characterized
by the angle of rotation, φ(t), about the x axis. We shall
approximate this motion by a harmonic oscillator with a
returning torque τx = −ω2

0φ. The equation of motion of the
beam is dJx/dt = τx , where Jx = Lx + Sx is the x component
of the total angular momentum. The latter consists of the
mechanical angular momentum Lx = I φ̇, with I being the
moment of inertia, and the spin angular momentum Sx =∑

i S
i
x , where the summation is over all spins in the beam.

This leads to the following equation of motion:

I
d2φ

dt2
+ Iω2

0φ = −�
dSx

dt
. (1)

In most practical situations the mechanical oscillator would
be a macroscopic object even for the smallest cantilevers. It
makes sense, therefore, to average the above equation over
thermal and quantum fluctuations of the spins,

I
d2φ

dt2
+ Iω2

0φ = −�
d

dt
〈Sx〉. (2)

The Hamiltonian of the spins, HS , that reflects their
interactions in a solid is always written in the coordinate
frame that is rigidly coupled to the solid. It is therefore natural
to solve the problem in that coordinate frame. As we shall
see, the power of that method is that it provides the answer
for cantilever damping in terms of the imaginary part of
the susceptibility. The latter can be independently measured
and, thus, does not require knowledge of the explicit form
of HS .

When the solid rotates the spin Hamiltonian becomes [19]

H = HS − �Sx

dφ

dt
. (3)

Consequently, the effect of the rotation on the spins is
equivalent to the effect of the magnetic field h = φ̇/γ , where
γ is the gyromagnetic ratio for the spin. Thus, using linear
response theory, one can write

�γ 〈Sx〉 = χ̂
φ̇

γ
, (4)

where χ is the magnetic susceptibility of the spins. Switching
to Fourier transforms in Eqs. (2) and (4) one obtains

I
(−ω2 + ω2

0

)
φω = i�ω〈Sx〉ω, (5)

〈Sx〉ω = − iωχ (ω)φω

�γ 2
. (6)

Substitution of Eq. (5) into Eq. (6) then gives

ω2 = ω2
0

1 + χ(ω)
γ 2I

. (7)

Neglecting renormalization of the real part of the cantilever
frequency by the spins and writing χ (ω) = χ ′(ω0) + iχ ′′(ω0),
ω = ω0 − i�, we get for the rate of damping of the mechanical
oscillations

� = ω0χ
′′(ω0)

2γ 2I
, (8)

where χ ′′ is the imaginary part of the paramagnetic suscepti-
bility.

We shall assume that temperature T is high compared
to the energy scale of the spin Hamiltonian (3) and will
neglect any resonant effects that may arise from the matching
of the cantilever frequency and the spin energy levels (see
discussion). Then the effect is dominated by the longitudinal
susceptibility with [21]

χ ′′(ω0) = f (ω0T1)χ0(T ), (9)

where χ0(T ) is the equilibrium static Curie susceptibility of
NS quantum spins of length S,

χ0(T ) = NS�
2γ 2S(S + 1)

3kBT
, (10)

and

f (ω0T1) = ω0T1

1 + (ω0T1)2
(11)

is the factor depending on the longitudinal spin relaxation time
T1. Substituting this into Eq. (8) one obtains

� = f (ω0T1)

[
NS�S(S + 1)

6I

]
�ωC

kBT

= f (ω0T1)

[
CS�S(S + 1)

2M1L2

]
�ωC

kBT
, (12)

where we have introduced I = 1
3NM1L

2 for the moment of
inertia (with L being the length of the beam, N being the
number of atoms in the beam, and M1 being the mass of one
atom) and CS = NS/N for the number of spins per atom.
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FIG. 2. (Color online) Elastic cantilever with paramagnetic spins.

III. PHYSICAL CANTILEVER

The physical elastic cantilever is shown in Fig. 2. Its
motion is described by the displacement uz(y,t) from the
equilibrium horizontal position. The dynamical equation for
the displacement is [20]

ρ
∂2uα

∂t2
= ∂σαβ

∂xβ

, (13)

where σαβ = δHtot/δeαβ is the stress tensor, eαβ = ∂uα/∂xβ is
the strain tensor, ρ is the mass density of the material, and Htot

is the total Hamiltonian of the system. It was shown in Ref. [9]
that in the presence of the spins the stress tensor can be divided
into two parts: the usual elastic part and the part coming from
the local internal torques generated by the flipping of the spins.
The equation that replaces Eq. (2) is [9]

ρ
∂2uz

∂t2
+ h2E

12(1 − σ 2)

∂4uz

∂y4
= �

2

∂

∂y

∂

∂t
Sx(y,t), (14)

FIG. 3. Profiles of the oscillating cantilever at different moments
of time for n = 1,2,3.

where ρ is the mass density of the cantilever, h is its thickness,
E and σ are the Young’s modulus and the Poisson elastic
coefficient (−1 < σ < 1/2), respectively, and Sx is the x

component of the spin density.
Let us write as before 〈Sx〉 = χ̂ φ̇/(�γ 2), where χ̂ is now

the susceptibility of the unit volume. Using the fact that
φ = ∂uz/∂y, one has

〈Sx〉 = 1

�γ 2

∂

∂t
χ̂

∂uz

∂y
, (15)

ρ
∂2uz

∂t2
+ h2E

12(1 − σ 2)

∂4uz

∂y4
= 1

2γ 2

∂2

∂t2
χ̂

∂2uz

∂y2
. (16)

It is convenient to switch to dimensionless variables,

ūz = uz

L
, ȳ = y

L
, t̄ = tν, ν ≡

√
Eh2

12ρ(1 − σ 2)L4
,

(17)

where ν determines the scale of the eigenfrequencies of the
cantilever. In terms of these variables Eq. (16) becomes

∂2ūz

∂ t̄2
+ ∂4ūz

∂ȳ4
= 1

2γ 2ρL2

∂2

∂t̄2
χ̂

∂2ūz

∂ȳ2
. (18)

This equation has to be solved with the boundary conditions
ūz = 0, ∂ūz/∂ȳ = 0 at ȳ = 0 and ∂2ūz/∂ȳ2 = 0, ∂3ūz/∂ȳ3 =
0 at ȳ = 1. The first two conditions correspond to the absence
of the displacement and the absence of the bending of the
cantilever at the fixed end, while the last two conditions
correspond to the absence of the torque and the force,
respectively, at the free end.

For the free oscillations of the cantilever in the absence of
the spins one writes

ūz(ȳ,t̄) = ū(ȳ) cos(ω̄t̄). (19)

Substitution into Eq. (18) with χ̂ = 0 then gives

∂4ū

∂ȳ4
− κ4ū = 0, κ2 ≡ ω̄. (20)

Solution of this equation with the boundary conditions gives
[20]

ū(ȳ) = (cos κ + cosh κ) [cos(κȳ) − cosh(κȳ)]

+ (sin κ − sinh κ) [sin(κȳ) − sinh(κȳ)] , (21)

with

cos κ cosh κ + 1 = 0 (22)

for the frequencies of the normal modes of the cantilever,
ω̄n = κ2

n [measured in the units of ν of Eq. (17)]. The
fundamental (minimal) frequency is ω̄1 ≈ 3.516. The next
two frequencies are ω̄2 ≈ 22.03 and ω̄3 ≈ 61.70. The profiles
of the oscillations of the cantilever for the first three normal
modes (n = 1,2,3) are shown in Fig. 3.

Accounting for the term on the right-hand side of Eqs. (18)
and (20) becomes

∂4ū

∂ȳ4
− κ ′4ū = − κ ′4

2γ 2ρL2
χω

∂2ū

∂ȳ2
. (23)
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Since the right-hand side of this equation is small, to obtain
the frequency ω̄′2 = κ ′4 renormalized by the presence of
the spins, one can safely substitute here the eigenmode
of Eq. (21), for which ∂2ū/∂ȳ2 = −κ2ū, ∂4ū/∂ȳ4 = κ4ū.
This gives

ω′2
n = ω2

n

1 + κ2
nχ(ωn)

2γ 2ρL2

. (24)

The imaginary part of the frequency is

�n = ωnκ
2
n

2γ 2
n ρL2

χ ′′(ωn), (25)

with

χ ′′(ωn) = f (ωnT1)

[
nS�

2γ 2S(S + 1)

3kBT

]
, (26)

where ns = NS/V = CS(ρ/M1) is the number of spin per unit
volume. Consequently

�n = f (ωnT1)

[
CSκ

2
n�S(S + 1)

6M1L2

]
�ωn

kBT
. (27)

For the first eigenmode, κ2
1 ≈ 3.516, the damping rate of

the physical cantilever, given by Eq. (27), is greater than
the damping rate of the rigid harmonic beam, given by
Eq. (12), by a factor 3.516/3 = 1.172. Notice, however, that
the corresponding factor becomes significantly greater for
higher modes, κ2

2 /3 ≈ 7.343, κ2
3 /3 ≈ 20.57, and so on. This is

because dφ/dt and the corresponding effective magnetic field
acting on the spins in the rotating frame, φ̇/γ , is greater for
higher modes; see Fig. 3.

IV. DISCUSSION

We have computed the contribution of paramagnetic spins
to the damping of the mechanical oscillations of the cantilever.
The universal formula (25) has been obtained that expresses the
damping via the imaginary part of the magnetic susceptibility
that can be measured independently either in the cantilever or
in the material it is made of. Thus, in principle, the damping
due to spins can be obtained without the explicit knowledge
of the concentration of spins or microscopic mechanisms of
spin-lattice interactions.

The effect can be estimated with help of Eq. (27) that
provides the damping rate of the nth mode in terms of the
concentration CS of spins of length S, flipping with the
time constant T1. Since �n depends on parameters that are
usually known in experiment, it can be easily assessed for a
given cantilever. When different kinds of spins are present,
they contribute to the damping additively in accordance with
Eqs. (25) and (27). Note that f (ωnT1) has a maximum at
ωnT1 = 1. Thus, at comparable concentrations, the spins that
flip at a rate comparable to ωn provide the maximal damping.
For ωn in the kHz range these would normally be the nuclear
spins, while for ωn in the GHz range these would be the atomic
spins. Here we have ignored resonant effects that may, in
principle, exist in the coupling between cantilever and spin
modes. The general formula (25) is correct, however, and
accounts for resonant effects as well. Such effects have been

studied in the context of, e.g., spin tunneling and decoherence
in Ref. [14]. They require external fields to manipulate spin
energy levels because cantilever modes are fixed.

As we have seen, up to a numerical factor the damping
can be computed by replacing the physical cantilever with
a rotating rigid beam. The study of a physical cantilever
improves the result by introducing differential rotations along
the length of the cantilever. This provides a clear picture of the
mechanism of the damping studied in this paper. Oscillations
of the cantilever generate an effective ac magnetic field in
the coordinate frame of the rotating solid. This well-known
phenomenon in the statistical mechanics of rotating bodies can
also be viewed as a noninertial effect of rotating local crystal
fields [19,22]. It couples the dynamics of the cantilever with
the dynamics of the spins in the absence of any external fields.
Thermal and/or quantum effects inside the cantilever make
the spins flip. Spin flips transfer angular momentum to the
cantilever, causing damping. At the end these are the internal
interactions in a solid that are responsible for the damping; that
is, responsible for the conversion of the mechanical kinetic
energy of the cantilever into its thermal energy. The transition
to the rotating frame is merely a useful mathematical method
that allows one to express cantilever damping due to spins
via the imaginary part of susceptibility, without invoking
microscopic interactions.

The quality factor of the cantilever is Qn = ωn/�n. In
practical situations one would want to know if the quality
factor observed in experiment had anything to do with the
spins. To answer this questions we notice that the maximal
value of f is 1/2. Consequently, the spins cannot make the
quality factor lower than

Q(n)
min = 12M1L

2kBT

�2k2
nCSS(S + 1)

. (28)

Resonant interaction of the oscillations of the cantilever
with the spin energy levels would lower the quality factor
significantly. However, as has been mentioned above, this
would be an extraordinary situation because in the absence
of the external fields neither spin levels nor cantilever modes
can be easily manipulated. Notice the proportionality of Q(n)

min
to temperature. In the kelvin range one obtains from Eq. (28)
Q(1)

min ∼ 105 for the cantilever of length L ∼ 0.1 μm and
Q(1)

min ∼ 103 at L ∼ 10 nm and concentration of paramagnetic
spins comparable to the number of atoms. The values of
Q(n)

min become progressively smaller at higher n and lower
temperature. This suggests that paramagnetic spins should be
suspect when the quality factor of a small cantilever becomes
small upon decreasing the temperature. This mechanism of
damping can also apply to the oscillations of nanowires
and macromolecules. Recently, molecular-based cantilevers
of length under 5 nm have been reported [23]. The effect
described in this paper must be especially important in such
small cantilevers.
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