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Enhanced dc spin pumping into a fluctuating ferromagnet near TC

Yuichi Ohnuma,1,2,* Hiroto Adachi,2,3 Eiji Saitoh,1,2,3,4 and Sadamichi Maekawa2,3

1Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
2Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195, Japan

3CREST, Japan Science and Technology Agency, Sanbancho, Tokyo 102-0075, Japan
4WPI Research Center, Advanced Institute for Material Research, Tohoku University, Sendai 980-8577, Japan

(Received 3 April 2014; published 15 May 2014)

A linear-response formulation of the dc spin pumping, i.e., a spin injection from a precessing ferromagnet into
an adjacent spin sink, is developed in view of describing many-body effects caused by spin fluctuations in the spin
sink. It is shown that when an itinerant ferromagnet near TC is used as the spin sink, the spin pumping is largely
increased owing to the fluctuation enhancement of the spin conductance across the precessing ferromagnet/spin
sink interface. As an example, the enhanced spin pumping from yttrium iron garnet into nickel palladium alloy
(TC � 20 K) is analyzed by means of a self-consistent renormalization scheme, and it is predicted that the
enhancement can be as large as tenfold.
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I. INTRODUCTION

There has been a growing demand for an efficient method
of generating a spin current because it is a key quantity in
driving the functionality of spintronic devices [1]. In the early
days, an idea of electrical spin current injection from a metallic
ferromagnet into nonmagnetic metals or semiconductors was
theoretically proposed [2], and later on, it was successfully
demonstrated in experiments [3]. Although such a technique
is by now recognized as a standard method for the spin
current injection [4], the method suffers from a problem called
impedance mismatch, which means that a huge reduction in
the spin injection efficiency appears when there is a large
difference in resistivity between the ferromagnetic spin current
injector and the spin current sink [5,6]. Moreover, such an
electrical spin injection method is available only when both the
spin current injector and the spin current sink are electrically
conducting.

Recently a completely different type of spin injection
method, termed spin pumping [7], has attracted much attention
as an alternative and efficient way for the spin injection [8–13].
In this method, nonequilibrium dynamics of magnetization in
a ferromagnet injector is driven by ferromagnetic resonance
(FMR), and the precessing magnetization “pumps” spins into
an adjacent spin sink by transferring spin angular momen-
tum through the s-d exchange interaction at the interface.
The FMR-driven spin pumping has an advantage that it
is unaccompanied by any charge transfer across the spin
injector/spin sink interface, such that it is free from the
impedance mismatch problem and thus available even when
the injector is an insulating magnet [10]. Because of this
versatility, the spin pumping in a variety of systems is now
a subject of intensive research [14–35]. Furthermore, a spin
injection from permalloy (Py) into GaAs by means of the spin
pumping, which would otherwise suffer from the impedance
mismatch problem, was successfully demonstrated [27].

Originally, the FMR-driven spin pumping is formulated [7]
in a close analogy to a theory of adiabatic charge pumping
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in mesoscopic systems [36]. The efficiency of the spin
pumping is then characterized by a quantity called spin mixing
conductance g↑↓, the value of which may be calculated by
the Landauer-Büttiker approach combined with first-principles
calculation [37]. However the physical meaning of g↑↓ and its
microscopic origin are obscure in the existing literature [7],
and moreover, there is no knowledge at present on how to take
account of many-body effects in the spin pumping theory.

By contrast, the linear-response formalism is a powerful
theoretical framework to describe nonequilibrium phenomena
near thermal equilibrium. In particular, it is amenable to the
language of the magnetism community, and more importantly,
it has an advantage that it can easily deal with many-body
effects when combined with a field-theoretical approach [38].
In the context of spintronics, the linear-response approach has
greatly contributed to the progress in a thermal version of
the spin pumping, termed the spin Seebeck effect [39–44]. It
was not until the advent of the linear-response formulation of
the spin Seebeck effect [45] that a description of the phonon-
drag process [46], which is now recognized as one of the
principal mechanisms of the spin Seebeck effect [47], was
made possible. Therefore, it is quite natural to develop a linear-
response formulation of the spin pumping in order to describe
many-body effects.

In this paper, we develop a linear-response theory of
the FMR-driven dc spin pumping by using field-theoretical
methods [48] in order to clarify the role of many-body effects.
We investigate intriguing effects of critical spin fluctuations on
the spin pumping, and show that when a metallic ferromagnet
near the Curie temperature TC is used as the spin sink, the
spin pumping is largely enhanced owing to the fluctuation
enhancement of the spin conductance across the spin injec-
tor/spin sink interface. Central to the above argument is the fact
that the interface spin conductance (conventionally denoted as
g↑↓) is proportional to the imaginary part of the dynamical
spin susceptibility of the spin sink, Imχk(ω), which is known
to be largely enhanced near TC [49]. This suggests that the
interface spin conductance is effectively enhanced if the spin
sink is made of an itinerant ferromagnet close to TC , and that
the resultant spin pumping attains a large enhancement. This
argument is justified in this work by a microscopic analysis
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which is supplemented by the self-consistent renormalization
(SCR) theory of spin fluctuations [50–52].

The plan of this paper is as follows. In the next section,
we introduce a model Hamiltonian to describe the dc spin
pumping. In Sec. III, we present a linear-response formulation
of the FMR-driven spin pumping that allows us to investigate
many-body effects on the spin pumping. Next, in Sec. IV, we
apply the linear-response formalism to the dc spin pumping
into a fluctuating itinerant ferromagnet near TC . For illus-
tration, we analyze the spin pumping into a weak itinerant
ferromagnet (NiPd alloy) from an insulating magnet (e.g.,
yttrium iron garnet) by using the SCR theory [50–52] and
demonstrate that the spin pumping is largely enhanced close
to the Curie temperature of the spin sink. The enhancement can
be detected experimentally by observing either the additional
Gilbert damping [53] or the pumped spin current [8]. Note that
this enhanced spin pumping should be distinguished from the
fluctuation effects on the spin Hall angle [54,55]. In Refs. [54]
and [55], the anomaly in the inverse spin Hall effect at TC due
to skew scattering in NiPd alloy has been studied (see the inset
of Fig. 5 below). In this paper, we examine the fluctuation
enhancement of the spin pumping (i.e., the dashed curve in
the inset of Fig. 5). In Sec. V we summarize and discuss our
result. In Appendix B, we briefly discuss the opposite case in
which the spin injector is made of a fluctuating ferromagnet
near TC whereas the spin sink is a nonmagnetic metal without
critical spin fluctuations.

II. MODEL

The system for observing the FMR-driven spin pumping
is a bilayer composed of a spin injector (SI) with precessing
spins and an adjacent spin sink (SS), as shown in Fig. 1. While
the SI can be either a ferromagnetic metal or a ferromagnetic
insulator since the spin pumping is not accompanied by any
charge transfer across the SI/SS interface, we consider here the
case of an insulating SI to simplify the argument. As for the
SS, a nonmagnetic metal, most typically Pt, is commonly used
because Pt shows a relatively large inverse spin Hall effect
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FIG. 1. (Color online) Schematic view of a system considered in
the present paper for the FMR-driven spin pumping. A bilayer of a
spin injector (SI) and a spin sink (SS) is placed in an external static
magnetic field H0. The wavy line (green) represents an external ac
magnetic field hrf which induces precessional motion of localized
spins in the SI.

that is necessary to electrically detect the pumped spin current
[8]. Although a use of Pt as the SS looks most promising,
an itinerant ferromagnet such as NiPd alloy is also known to
possess a moderate strength of the inverse spin Hall effect
[54,55] and hence it can be used as the SS in the spin pumping
experiments. We are particularly interested in such a situation
in which the SS is made of a weak itinerant ferromagnet having
a relatively low TC and possessing a sizable inverse spin Hall
effect, e.g., a bilayer system composed of NiPd alloy/yttrium
iron garnet.

We begin with the following Hamiltonian:

H = HSS + HSI + Hsd + Hrf, (1)

where the first term [56],

HSS =
∑

p

ε pc
†
pc p′ + U

∑
i

ni↑ni↓

+
∑
p, p′

c†pV p− p′[1 + iηsoσ · ( p × p′)]c p′ , (2)

is the Hamiltonian describing the SS. Because we are interested
in the case where the SS is a weak itinerant ferromagnet,
we use a model of an itinerant ferromagnet with local
electron-electron interaction [56]. Here, c

†
p = (c†p,↑,c

†
p,↓) is

the electron creation operator for spin projection ↑ and ↓, ε p

is the kinetic energy of electrons, U is the on-site Coulomb
repulsion, and ni,σ = c

†
i,σ ci,σ is the spin-projected charge

density at a position r i , where ci,σ = N
−1/2
SS

∑
p,σ c pe

i p·r i with
NSS being the number of lattice sites in the SS. In addition
to the kinetic and Coulomb terms describing a clean weak
itinerant ferromagnet, we take account of impurity effects
given by the Fourier transform, V p− p′ , of the impurity potential
Vimp

∑
r imp∈impurities δ(r − r imp) with ηso measuring the strength

of the spin-orbit interaction [4]. The second term,

HSI = −Jex

∑
〈i,j〉∈SI

Si · Sj + γ �

∑
i∈SI

H0S
z
i , (3)

describes the SI, where Jex is the nearest-neighbor exchange
integral, Si the spin operator at a position r i , γ the gyromag-
netic ratio, and H0 the static magnetic field in the z direction.
The third term in Eq. (1),

Hsd = Jsd

∑
i∈SI/SS-interface

si · Si , (4)

describes the interaction between the SI and the SS [57], where
Jsd is the s-d exchange interaction at the SI/SS interface, and
si = c

†
i σci with Pauli matrices σ is the itinerant spin density

operator in the SS. Finally the last term in Eq. (1),

Hrf = γ �hrf ·
(∑

i∈SI

Si

)
, (5)

describes the effect on the SI of a circular polarized oscillating
magnetic field hrf(t) = hrf cos(	rf t)x̂ − hrf sin(	rf t) ŷ, which
is approximated to be spatially uniform since the wavelength
of the oscillating field is longer than the sample dimension.

Because we are interested in the low-energy excitation
of localized spins in the SI that is driven by the oscillating
field of GHz frequency (	rf ∼ GHz), we use the spin-wave
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approximation. Introducing magnon variables b
†
i and bi by

means of the linear Holstein-Primakoff transformation

Sx
i + iS

y

i =
√

2S0bi, (6)

Sx
i − iS

y

i =
√

2S0b
†
i , (7)

Eq. (3) is diagonalized to be

HSI = �

∑
q

ωqb
†
qbq, (8)

where S0 = |Si | and �ωq = 2Jexz0S0(1 − γq) + �γH0 with
γq = z−1

0

∑
δ eiq·δ being defined by the sum over z0 nearest

neighbors. Similarly, Eqs. (4) and (5) become

Hsd =
√

2S0

NSINSS

∑
k,q

Jsd(k,q)[s+
k b†q + s−

k bq], (9)

Hrf = γ �

√
2S0[h+

rf b
†
q=0e

−i	rf t + h−
rf bq=0e

i	rf t ], (10)

where sk = ∑
p c

†
p+kσc p, h±

rf = hx
rf ± ih

y

rf , Jsd(k,q) =∑
i∈SI/SS Jsde

i(k−q)·r i , and NSI is the number of lattice sites
in the SI. We use Eqs. (2), (8), (9), and (10) in the following
analysis.

III. LINEAR-RESPONSE FORMULATION
OF DC SPIN PUMPING

In this section, we present a linear-response formulation
of the FMR-driven spin pumping by using field-theoretical
methods [48]. The main purpose of our approach is to provide
a theoretical framework to take account of many-body effects
on the spin pumping. Therefore, we consider a situation where
the SS acts as a perfect spin sink towards the conduction-
electron spin current, by assuming that the thickness of the SS
is comparable to the conduction-electron spin diffusion length
of the SS (but much shorter than the magnon diffusion length
of the SS). The FMR-driven spin pumping manifests itself in
an appearance of both the pumped spin current [8,58] into the
SS and the additional Gilbert damping [7,53] in the precessing
SI.

We first calculate the spin current pumped into the SS.
Since we focus on the dc spin pumping, the pumped spin
current I pump

s has a polarization along the axis of magnetization
precession in the SI which we take as the z direction. The
pumped spin current I

pump
s can be calculated as the rate of

change of the itinerant spin density:

I pump
s =

∑
i∈SS

〈
∂t s

z
i

〉
, (11)

where 〈· · · 〉 denotes the statistical average. Note that the
definition of the pumped spin current is similar to that of
the tunneling current through a junction [59], such that the
time derivative of the itinerant spin density does not vanish
even in the steady state and the spin current I

pump
s thus defined

correctly describes the spin current pumped from the SI into
the SS (see Eq. (11) in Ref. [59]). Note also that although a
spin current in the form of magnon current may be pumped as
well in the case of a ferromagnetic SS, the pumped magnon

current is canceled by the backflow magnon current because
we assume that the magnon diffusion length is much larger
than the thickness of the SS.

Using sk defined below Eq. (10), the pumped spin current
can be expressed as I

pump
s = √

NSS〈∂t s
z
k0→0〉. The right-hand

side can be evaluated using the Heisenberg equation of motion
for sz

k0
, giving

∂t s
z
k0→0 = i

�

∑
k,q

√
2SJsd(k,q)√

NSINSS
bqs

−
k + H.c., (12)

where s±
k = 1

2 (sx
k ± is

y

k ). Taking the statistical average of the
above quantity, the right-hand side can be represented as

I pump
s = − 2

√
2S0√

NSSNSI�
Re

∑
k,q

Jsd(k,q)C<
k,q(t,t ′)

∣∣∣
t ′→t

, (13)

where C<
k,q(t,t ′) = −i〈bq(t ′)s−

k (t)〉 is the interface Green’s
function defined by magnon operator bq and the itinerant
spin-density operator s−

k .
In evaluating the right-hand side of Eq. (13), we adopt a

diagrammatic approach with perturbation expansion in term
of the external oscillating magnetic field hrf and the s-d
interaction Jsd at the interface. The dc spin pumping process,
which is proportional to the external microwave power and has
a Lorentzian form, is given by the diagram shown in Fig. 2.
Using the standard rules of evaluating the contour-ordered
Green’s function presented in Appendix A, the interface
Green’s function C<

k,q(t,t ′) is calculated to be

C<
k,q(t,t ′) = i

Jsd(k,q)

�

√
S3

0NSI

2NSS
(γ hrf)

2δq,0

×
∫

t1,t2,t3

χR
k (t,t1)G(0)A

0 (t2,t1)

×G
(0)R
0 (t ′,t3)ei	rf (t2−t3), (14)

where we introduced the shorthand notation
∫
t1,t2,t3

=∫ ∞
−∞ dt1dt2dt3. In the above equation, G

(0)R
0 (t3,t ′) =

iθ (t ′ − t3)〈[bq=0(t3),b+
q=0(t ′)]〉0 and G

(0)A
0 (t3,t ′) = iθ (t ′ −

t3)〈[bq=0(t3),b+
q=0(t ′)]〉0 are respectively the retarded and

photon photon

SS

SI

FIG. 2. (Color online) Feynman diagram representing the pro-
cess of the dc spin pumping. The red and black solid lines represent
conduction-electron Green’s function and uniform-mode magnon
Green’s function, respectively. The transverse susceptibility of itin-
erant spin density, χk(ω), is defined as a propagator of particle-hole
pairs. The green wavy line represents external ac magnetic field hrf .
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advanced parts of the bare Green’s function of the
uniform-mode magnon in the SI, whereas χR

k (t,t1) = iθ (t −
t1)〈[s−

k (t),s+
−k(t1)]〉 is the retarded part of the transverse spin

susceptibility in the SS that includes the interaction effects.
Because each Green’s function appearing in Eq. (14)

depends only on the difference of two time labels, it
is advantageous to work in frequency space. Introducing
the Fourier transform χk(t1,t2) = ∫ ∞

−∞
dω
2π

χk(ω)e−iω(t1−t2) and

G
(0)
0 (t1,t2) = ∫ ∞

−∞
dω
2π

G
(0)
0 (ω)e−iω(t1−t2), Eq. (14) becomes

C<
k,q(t,t ′) = i

Jsd(k,q)

�

√
S3

0NSI

2NSS
(γ hrf)

2δq,0

×χR
k (−	rf)|G(0)R

0 (	rf)|2ei	rf (t−t ′), (15)

where we have used the general relation G
(0)R
0 (ω) =

[G(0)A
0 (ω)]∗. In the above equation, because we do not consider

any anomalies occurring in the SI, the uniform-magnon
Green’s function is given in its bare form G

(0)R
0 (ω) = 1/(ω −

γH0 + iα0ω) with α0 being the bare Gilbert damping. On the
other hand, as schematically depicted in Fig. 2, the transverse
spin susceptibility of the SS, χR

k (ω), includes the many-body
effects. In the next section, the self-energy corrections caused
by magnetic critical fluctuations in the SS is analyzed by means
of a self-consistent renormalization scheme.

Substituting Eq. (15) into Eq. (13) and assuming the diffuse
scattering of magnons at the SI/SS interface, we finally obtain
the pumped spin current as

I pump
s = gs

	rf(γ hrf)2

(	rf − γH0)2 + (α0	rf)2
, (16)

where gs represents the spin conductance across the SI/SS
interface and is defined by

gs = 2J 2
sdS

2
0Nint

�2NSS

∑
k

1

	rf
ImχR

k (	rf) (17)

with Nint being the number of localized spin Si at the SI/SS
interface. Note that the spin conductance is proportional to
the momentum sum of the imaginary part of the dynamical
transverse spin susceptibility ImχR

k (ω), and that we have used
the relation ImχR

k (−	rf ) = −ImχR
k (	rf) to arrive at Eq. (17).

We next investigate the additional Gilbert damping caused
by the dc spin pumping. Information on the damping of
magnons at FMR is encoded in the imaginary part of the
self-energy of uniform-mode magnon Green’s function at the
resonance frequency, �R

0 (ω = 	rf), defined by the following
Dyson’s equation:[

GR
0 (ω)

]−1 = [
G

(0)R
0 (ω)

]−1 − �R
0 (ω), (18)

where GR
0 (ω) and G

(0)R
0 (ω) are respectively the renormalized

and bare Green’s functions of the uniform-mode magnon. Re-
calling that the imaginary part of �R

0 (ω) gives the damping rate
of uniform-mode magnon and that in general the imaginary
part of self-energy in a Bose system is proportional to its
frequency ω at small ω [60], we obtain the relationship between
the self-energy and additional Gilbert damping constant δα as

δα = − 1

	rf
Im�R

0 (	rf). (19)

SS

SI

FIG. 3. (Color online) Diagrammatic representation of renor-
malized Green’s function of uniform-mode magnon, GR

0 (ω), and the
corresponding self-energy, �R

0 (ω). The black line with arrow means
the bare magnon propagator G

(0)R
0 (ω).

The renormalized Green’s function GR
0 (ω) and self-enegy

�R
0 (ω) associated with the dc spin pumping is diagrammati-

cally given in Fig. 3. Comparing Dyson’s equation (18) with
Fig. 3 and Fig. 2, we identify

�R
0 (ω) = −2J 2

sdS0Nint

�2NSI

1

NSS

∑
k

ImχR
k (ω). (20)

Using the relation Eq. (19), we obtain the additional Gilbert
damping

δα = 1

S0NSI
gs, (21)

where gs is given in Eq. (17). Equations (16), (17), and (21)
are the main results of this section.

Before ending this section, it is instructive to discuss the
relationship between the present formalism and that given in
Ref. [7]. In Ref. [7], the pumped dc spin current with z-axis
polarization and the additional Gilbert damping are given by

I pump
s = g↑↓

4π
〈[m × ∂t m]z〉, (22)

δα = γ �

4πMsV
g↑↓, (23)

where g↑↓ is the so-called spin mixing conductance, m
is the magnetization direction vector, and Ms and V are
respectively the saturation magnetization and the volume of
the ferromagnet. The above equations mean that the pumped
spin current and the additional Gilbert damping are intimately
related through

I pump
s = δα

γ �

MsV
〈[m × ∂t m]z〉. (24)

Using γ �/(MsV) = 1/(S0NSI) and the expression

〈[m × ∂t m]z〉 = 	rf(γ hrf)2

(	rf − γH0)2 + (α0	rf )2
, (25)

which applies in a region where the Landau-Lifshitz-Gilbert
equation is valid, the consistency between our formalism and
that given in Ref. [7] [Eq. (16) ⇔ Eq. (22); and Eq. (21) ⇔
Eq. (23)] can be confirmed with the identification

g↑↓

4π
= gs. (26)
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IV. DC SPIN PUMPING INTO FLUCTUATING
FERROMAGNETS NEAR THE CURIE TEMPERATURE

In this section, we apply the formalism developed in the
previous section to the dc spin pumping into a fluctuating
ferromagnet near TC , and show that the resultant spin pumping
is largely enhanced owing to the fluctuation enhancement of
the interface spin conductance gs . In the previous section we
have shown, by deriving Eq. (16), that the pumped spin current
is determined by the following two factors: (i) the interface spin
conductance gs which reflects information on the transverse
susceptibility χR

k (ω) of the SS [see Eq. (17)], and (ii) the
Lorentzian factor, which is equivalent to the magnetization
damping torque 〈[m × ∂t m]z〉 in the SI [see Eq. (25)]. Because
the imaginary part of χR

k (ω) is known to be enhanced near its
TC owing to the critical spin fluctuations [49–52], we can
expect a fluctuation enhancement of gs and thus an enhanced
spin pumping when the SS is made of an itinerant ferromagnet
near TC .

Let us first analyze the critical spin fluctuation effects on
the transverse susceptibility χR

k (ω) by means of the SCR
theory [50,51]. In the following calculation, it is convenient to
introduce the dimensionless transverse susceptibility

χ̃R
k (ω) ≡ χR

k (ω)/χP, (27)

where χP is the Pauli paramagnetic susceptibility, and normal-
ize length by the lattice spacing d0. In the low frequency and
long wavelength limit, the bare transverse susceptibility of the
SS can be parametrized as

χ̃
(0)R
k (ω) = 1

δ(0) + c(0)k2 − iω/γ
(0)
k

, (28)

where c(0) is the bare stiffness and γ
(0)
k the bare damping

rate of the spin fluctuations. The bare mass δ(0) is given
by δ(0) = a(0) + b(0)(m(0))2, where a(0) = A(0)(T − T

(0)
C )/T

(0)
C

with a slope A(0) measures the distance from the transition
temperature in the mean-field approximation T

(0)
C , and b(0)

is the bare mode-coupling constant. Here, the magnitude
of a dimensionless magnetization m(0) is determined by the
equation of state [51]:

a(0)m(0) + b(0)(m(0))3 = H̃0, (29)

where H̃0 = H0/h0 is the dimensionless uniform external
magnetic field normalized by h0 = γ �/(2χPv0) with v0 = d3

0
being the cell volume.

If we apply the mean-field approximation to the Hamilto-
nian (2), we have [50] a(0) ≈ 1 − UN (0) with N (0) being
the density of states of electrons at the Fermi energy. In
a similar way, we have b(0) = (U 2/3!)

∫
d3p

(2π)3 [− d3

dε3
p
f (εp)]

with f (εp) being the Fermi distribution function, and c(0) =
(U 2/12)

∫
d3p

(2π)3 [ d3

dε3
p
f (εp)v2

p + 3 d2

dε2
p
M p] with v p = dε p/d p

and M p = (1/2)
∑

j=x,y,z d2ε p/dp
2
j . The bare damping rate

in the presence of spin-orbit interaction is given by γ
(0)
k =

Dk2 + τ−1
sf , where D and τsf are the spin diffusion coefficient

and spin-flip relaxation time, respectively [61].

It is instructive to transform Eq. (28) into the form

χ̃
(0)R
k (ω) = χ̃

(0)
0

1 + (ξ (0)k)2 − iω/�
(0)
k

, (30)

where χ̃
(0)
0 = 1/δ(0) is the dimensionless uniform suscepti-

bility, ξ (0) =
√

c(0)/δ(0) is the effective correlation length,
and �

(0)
k = γ

(0)
k δ(0) is the effective damping rate. From this

expression we see that, in the limit of vanishing external field
(H̃0 = 0), the uniform susceptibility diverges as χ̃

(0)
0 = (T −

T
(0)
C )−1, and thus the divergent correlation length appears in

ξ (0) ∝ (T − T
(0)
C )−1/2 and the critical slowing down manifests

itself in �
(0)
k ∝ (T − T

(0)
C ).

The SCR theory tells us how the bare transverse suscep-
tibility χ

(0)R
k (ω) is modified into the renormalized transverse

susceptibility χR
k (ω) due to the mode-mode coupling effect of

magnetic critical fluctuations. In the dimensionless form, it is
expressed as

1/χ̃R
k (ω) = 1/χ̃

(0)R
k (ω) + �, (31)

where the mode-coupling term � is given by

� = 3b

NSS

∑
k

∫ ∞

−∞

dω

2π
coth

(
�ω

2kBT

)
Imχ̃R

k (ω). (32)

The renormalized transverse susceptibility is assumed to have
the following form:

χ̃R
k (ω) = 1

δ + ck2 − iω/γk

, (33)

where c is the renormalized stiffness and γk is the renormalized
damping rate. The renormalized mass δ is given by δ =
a + bm2, where a ∝ (T − TC)/TC measures the distance
from the renormalized Curie temperature TC , and b is the
renormalized mode coupling constant. Here, the magnitude
of the magnetization m is determined by Eq. (29) with a(0)

and b(0) being replaced by a and b. Because the essential
renormalization effect appears through the coefficient a (and
thus δ), we set in the following b = b(0), c = c(0), and γk = γ

(0)
k

as is customarily done [51]. If we adopt the representation
similar to Eq. (30), we obtain

χ̃R
k (ω) = χ̃0

1 + (
ξk

)2 − iω/�k

, (34)

where χ̃0 = 1/δ, ξ = √
c/δ, and �k = γkδ.

We calculate the renormalized mass a self-consistently
using Eqs. (31) and (32) combined with the equations of state
(29). In Fig. 4, we plot the magnetization m as a function
of reduced temperature (T − TC)/TC calculated for several
different choices of external magnetic field H0. Having NiPd
alloy [54] in mind, we use UN (0) = 1.0001, A(0) = 10.0,
b = 60.0, c = 20.0, and assume T

(0)
C = 100 K to reproduce

TC = 20 K.
Now we investigate the enhanced spin pumping into the spin

fluctuating SS. In Fig. 5, we show the temperature dependence
of the pumped spin current I

pump
s for several choices of 	rfτsf .

One can see that the pumped spin current is enhanced near
TC . Because the pumped spin current I

pump
s and the additional

Gilbert damping δα are intimately related through Eq. (24),
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FIG. 4. (Color online) Magnetization m as a function of reduced
temperature (T − TC)/TC for H0 = 0 G (solid line), H0 = 1000 G
(dashed line), and H0 = 10 000 G (dash-dotted line). The data is
normalized by its value at T = 0.

this enhancement can be seen in the temperature dependence
of the additional Gilbert damping as well. The enhancement
is larger for a smaller value of 	rfτsf , which means that the
enhancement is more visible in a material with a larger spin-
orbit interaction. The case of NiPd alloy is estimated to be
	rfτsf ∼ 0.1 using τsf ≈ 10−12 s, such that the enhancement
can be as large as tenfold.

FIG. 5. (Color online) Pumped spin current I pump
s [Eq. (16)] or

additional Gilbert damping δα [Eq. (21)] at the resonance condition
	rf = γH0, calculated for a fluctuating SS (NiPd alloy) as a function
of reduced temperature (T − TC)/TC with 	rfτsf = 0.1 (solid line),
0.2 (dashed line), and 0.3 (dash-dotted line). All the data are
normalized by their values at T/TC = 0.5. Inset: Inverse spin Hall
voltage used to electrically detect the enhanced spin pumping as a
function of temperature, calculated using data from Ref. [54]. The
dashed curve is given by the enhanced spin pumping predicted in
this work, and the deviation from the dashed curve comes from the
anomaly in the inverse spin Hall effect reported in Ref. [54]. For more
details, see the main text.

In experiments, the pumped spin current is detected
electrically via the inverse spin Hall effect [8]:

EISHE = θSHρ J s × σ , (35)

where EISHE = −∇VISHE is the electric field induced by
the inverse spin Hall effect, σ (‖ ẑ) is the spin polarization
direction, θSH and ρ are respectively the spin Hall angle and
the resistivity of the SS, and J s = (eI pump

s /Aint)x̂ with the
electronic charge e is the spin-current density across the SI/SS
interface having a contact area Aint (see Fig. 1).

In the inset of Fig. 5, we plot the temperature dependence
of the inverse spin Hall voltage calculated using the data
from Ref. [54]. Note that the spin Hall angle in NiPd alloy
near TC [54] is decomposed into a temperature-independent
background and the temperature-dependent component that
reflects temperature dependence of the nonlinear susceptibility
near TC [54,55]. The dashed curve is calculated using the
temperature-independent component of the spin Hall angle,
whereas the solid curve is calculated using the temperature-
dependent spin Hall angle [54]. In addition to a small structure
coming from the anomaly in the inverse spin Hall effect, we
see a clear enhancement of the inverse spin Hall voltage.
Therefore, the predicted enhancement of I

pump
s can be detected

electrically using the inverse spin Hall effect.

V. DISCUSSION AND CONCLUSION

The main message of this paper is the theoretical prediction
that the dc spin pumping can be largely enhanced if a
fluctuating ferromagnet near TC is used as the SS. Taking NiPd
alloy as a prototype example, we have demonstrated that the
enhancement can be as large as tenfold (Fig. 5). The underlying
physics is as follows. As has been shown in Eq. (17) the spin
conductance across the SI/SS interface that characterizes the
strength of the dc spin pumping is given by the square of the
s-d interaction Jsd at the SI/SS interface, multiplied by the
imaginary part of the transverse spin susceptibility of the SS,
Imχk(ω). Because the latter quantity is known to be largely
enhanced upon approaching TC , the interface spin conductance
is increased near TC , resulting in a large enhancement of the
dc spin pumping.

Such kinds of many-body effects arising from critical spin
fluctuations in the SS cannot be accounted for by the existing
spin pumping theory [7] combined with the Landauer-type
scattering approach [37]. In order to overcome this difficulty,
we have developed a linear response formalism of the dc spin
pumping, and calculated the fluctuation enhancement of the
dc spin pumping by means of the SCR theory. Furthermore, a
discussion is given in Appendix B on the opposite situation of
the dc spin pumping from a fluctuating ferromagnet near TC

into a nonfluctuating SS. The temperature dependence of the
dc spin pumping, which is expected from the knowledge on
dynamic critical phenomena [49], is calculated.

Concerning the issue of spin injection into semiconductors,
the spin pumping into GaAs and Si at room temperature has
already been reported in Refs. [27] and [29]. In the present
context, it would be interesting to test the spin pumping
into (Ga,Mn)As near its TC in order to prove our prediction.
Moreover, if a fluctuating room-temperature ferromagnetic
semiconductor is discovered in the future, in spite of the
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smallness of its saturation magnetization and spin polarization
at room temperature, we can achieve an efficient spin pumping
into such a semiconductor by using the present scheme.

To summarize, we have developed a linear-response formal-
ism of the dc spin pumping into a fluctuating ferromagnet near
TC , and shown that the spin pumping can be largely enhanced
owing to the fluctuation enhancement of the interface spin
conductance. This effect may be used to construct an efficient
spin current source using the dc spin pumping.
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APPENDIX A: EVALUATION OF THE INTERFACE
GREEN’S FUNCTION

In this appendix, we provide the procedure to evaluate the
interface Green’s function C<

k,q(t,t ′). Using the technique to
calculate the contour-ordered Green’s function, the diagram in
Fig. 2 is written as

C<
k,q(t,t ′) = i

Jsd(k,q)

�

√
S3

0NSI

2NSS
(γ hrf)

2δq,0

×
∫

C

dτ1dτ2dτ3
[
χk(t,τ1)

×G
(0)
0 (τ2,τ1)G(0)

0 (t ′,τ3)
]<

e−i	rf (τ2−τ3), (A1)

where τ1,τ2,τ3 are contour variables on the closed time path,
χk(t,t ′) = −i〈TC[sk(t)s+

−k(t ′)]〉 is the contour-ordered trans-

verse susceptibility of itinerant spins in the SS, G
(0)
0 (t,t ′) =

−i〈TC[bq=0(t)b†q=0(t ′)]〉0 is the contour-ordered bare Green’s

function of uniform-mode magnon in the SI [48], and B≷

means the greater/lesser part of Green’s function B. It is
convenient to introduce a convolution function

Fk(t,τ2) =
∫

C

dτ1χk(t,τ1)G(0)
0 (τ2,τ1). (A2)

The integral over τ2 is evaluated in the following way. First,
we deform the contour into the real-time contour [48]. In doing
so, we use the fact that the exponentially oscillating factor
has no singularity across the real-time axis, such that it can
be dropped temporary in discussing the contour deformation.
Thus, we have∫

C

dτ2Fk(t,τ2) =
∫ t

−∞
dt2F

>
k (t,t2) +

∫ −∞

t

dt2F
<
k (t,t2)

=
∫ ∞

−∞
dt2F

R
k (t,t2), (A3)

where F≷ and FR are explicitly given by

F
≷
k (t,τ2) =

∫ ∞

−∞
dt1

[
χR

k (t,t1)G(0)≶
0 (t1,t2)

+χ
≶
k (t,t1)G(0)R

0 (t1,t2)
]

(A4)

and

FR
k (t,τ2) =

∫ ∞

−∞
dt1χ

R
k (t,t1)G(0)A

0 (t2,t1) (A5)

with BR (BA) being the retarded (advanced) part of a Green’s
function B.

The integral over τ3 is performed in a similar way, giving∫
C

dτ3G
(0)
0 (t ′,τ3)

=
∫ t

−∞
dt3G

(0)>
0 (t ′,t3) +

∫ −∞

t

dt3G
(0)<
0 (t ′,t3)

=
∫ ∞

−∞
dt3G

(0)R
0 (t ′,t3). (A6)

Substituting Eqs. (A3) and (A6) into Eq. (A1), we obtain
Eq. (14) in Sec. III.

APPENDIX B: SPIN PUMPING FROM FLUCTUATING
FERROMAGNETS

In this appendix, we briefly discuss an issue of the dc
spin pumping from a fluctuating ferromagnet near TC into
a nonfluctuating SS, such as a case of a EuO/Pt bilayer,
by neglecting mode-mode coupling effects. Because we are
interested in a temperature region near the Curie temperature
of the SI, where the Landau-Lifshitz-Gilbert equation with
fixed magnetization size is invalid, we begin with the following
time-dependent Ginzburg-Landau type equation [62]:

∂t S̃ = γ Heff × S̃ + �
Heff

h0
, (B1)

where S̃(r,t) is the coarse-grained localized spin defined by

S̃(r,t) = 1√
NSI

∑
q<1/l0

Sqe
iq·r (B2)

with the momentum sum restricted to the wavelength being
longer than a cutoff wavelength l0 [62], � is the dissipative
coefficient, and h0 is a unit of magnetic field defined below
Eq. (B7). If we were concerned about a spin-conserving
system, the dissipative coefficient � would be given by a spin
diffusion process and expressed as � = −D∇2 with the spin
diffusion coefficient D [63]. However, because we are dealing
with a spin nonconserving system with spin-orbit interaction,
we set � to be a constant �0.

The effective magnetic field Heff is given by

Heff = H0 + hrf − Jsd

γ �
s − v0

γ �

δFGL

δ S̃
, (B3)

where H0 is the uniform external magnetic field, hrf =
hrf cos(	rf t)x̂ − hrf sin(	rf t) ŷ is the oscillating magnetic
field, Jsd(r)s/γ � = (Jsds/γ �)

∑
r0∈SI/SS δr0,r describes the

effect of spin accumulation s with Jsd being the s-d interaction
at the SI/SS interface, and v0 = l3

0 is the volume of a coarse-
grained block spin volume. The free energy FGL in the last
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term is given in the Ginzburg-Landau form [64]:

FGL = ε0

∫
d3r

(
aGL

2
S̃2 + bGL

4
S̃4

)
, (B4)

where ε0 is the magnetic energy density, aGL = (T − TC)/TC

measures the distance from the Curie temperature TC , bGL is
the quartic term coefficient, and the gradient term is discarded
because it is sufficient to consider only the uniform mode
dynamics for the present discussion on the FMR-driven spin
pumping. If necessary, these coefficients can be determined
from material parameters as

ε0 = �C

d
dT

[M2
s (T )

M2
s (0)

]
TC

, (B5)

bGL = 1

TC
d

dT

[M2
s (T )

M2
s (0)

]
TC

, (B6)

where �C is the specific heat jump per unit volume in the limit
of the mean-field approximation and Ms(T ) is the saturation
magnetization at a temperature T . Under a finite uniform
magnetic field H0 to realize the magnetic resonance, the
equilibrium localized spin S̃eq is determined by the equation

H0 = h0
(
aGLS̃eq + bGLS̃3

eq

)
, (B7)

where h0 = ε0v0/γ � gives the unit of a magnetic field (a very
crude estimate for EuO gives h0 to be of the order of one tesla
[65]). This equation is derived from the condition Heff = 0
in the absence of hrf and s. In the following, we measure the
strength of the magnetic field in the unit of h0 and introduce
H̃0 = H0/h0, and the size of the localized spin S̃ is measured
with respect to its zero temperature value.

Noticing that δFGL/δ S̃ is parallel to S̃ and using the value
of S̃eq, Eq. (B1) can be rewritten as

∂t S̃ = γ

(
H0 + hrf − Jsd

γ �
s
)

× S̃ − ←→
� eff (̃S − S̃eq), (B8)

where we have defined the effective damping tensor←→
� eff = diag(�+−

eff ,�+−
eff ,�z

eff) with �+−
eff = �0(aGL + bGLS̃2

eq)
and �z

eff = �0(aGL + 3bGLS̃2
eq). We combine Eq. (B8) with the

following Bloch equation for s:

∂t s = −Jsd

�
S̃ × s + D∇2s − 1

τsf
(s − s0 S̃), (B9)

where D is the spin diffusion coefficient of the SS, τsf is the
spin-flip relaxation time in the SS, and s0 = χPJsd is the local
equilibrium spin density with χP being the Pauli paramagnetic
susceptibility of the SS.

Starting from Eqs. (B8) and (B9), we calculate the spin
current pumped into the nonmagnetic SS. We first define the
pumped spin current I pump

s as the rate of change in the itinerant
spin density in the nonmagnetic SS as I

pump
s = 〈∂t s

z(t)〉. Then,
performing the perturbative approach in the Bloch equation
(B9) with respect to Jsd, we obtain

I pump
s (t) = Jsd

�NSS

∑
k

Im〈S−
q=0(t)s+

k (t)〉, (B10)

where S± = Sx ± iSy and s± = sx ± isy . Introducing the
Fourier representation f (t) = ∫

dω
2π

f (ω)e−iωt , we obtain

I pump
s = Jsd

�NSS

∑
k

Im〈S−
q=0(	rf)s

+
k (−	rf)〉. (B11)

To evaluate the right hand side of Eq. (B11), the transverse
components of Eqs. (B8) and (B9) are linearized with respect
to S± and s±. Then, to the lowest order in Jsd, we obtain

S−
q=0(	rf) = −G0(	rf)γ h−

rf (B12)

and

s+
k (	rf) = −s0χ̃k(	rf)G

∗
0(−	rf)γ h+

rf , (B13)

where h±
rf = hx

rf ± ih
y

rf . Here, we have introduced the (normal-
ized) paramagnetic susceptibility

χ̃k(ω) = 1

1 + λ2k2 − iωτsf
(B14)

as well as the ferromagnetic susceptibility

G0(ω) = S̃eq

ω − γH0 + i�+−
eff

, (B15)

where λ = √
Dτsf is the spin-diffusion length. Note that the

critical slowing down manifests itself in the shrinking of the
damping term �+−

eff � �0 on approaching the Curie tempera-
ture TC . Substituting the above equations into Eq. (B11), the
spin current pumped into the SS can be expressed as

I pump
s = − J 2

sd

�NSS

∑
k

Imχk(	rf)|G0(	rf)|2(γ hrf)
2 (B16)

= gs

	rf (γ hrf)2

(	rf − γH0)2 + (�+−
eff )2

, (B17)

where gs = (JsdS̃eq)2

�2NSS

∑
k

1
	rf

Imχk(	rf), and we have defined the
dynamical transverse susceptibility χk(ω) = χPχ̃k(ω).

Figure 6(a) shows the effective longitudinal damping
coefficient �z

eff introduced below Eq. (B8) as a function of
temperature for several different values of an external magnetic
field H̃0. Temperature dependence of the equilibrium spin
value is also plotted in the inset. Because the longitudinal

H0
~

=0.001
H0
~

=0.01

0
~
H =0.05

H0
~

=0.001

0
~
H =0.05

H0
~

=0.01

H0=0
~ H0

~
=0.01

H0
~

=0.05

Γ e
ffz

Γ 0/

/Γ
0

Γ e
ff+−

(T−TC )/TC

s e
q

~

(T−TC )/TC (T−TC )/TC

0.5

(a) (b)

 0

 0.8

 1.6

−0.4 0
 0

 0.2

 0.4

−0.4 0  0.4 0.4

 0.4−0.4  0
 0

FIG. 6. (Color online) (a) Effective longitudinal damping coeffi-
cient �z

eff as a function of reduced temperature. Inset: Temperature
dependence of equilibrium spin S̃eq. (b) Effective transverse damping
coefficient �+−

eff as a function of reduced temperature. In both figures,
bGL = 1.0 is used.
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H0
~

=0.01

0
~
H =0.05

(T−TC )/TC

I s
p

u
m

p
(T

)

 0

 4

 8

 12

−0.4 −0.2  0  0.2  0.4

FIG. 7. (Color online) Temperature dependence of pumped spin
current near TC . The data is normalized by its value at T = TC , and
bGL = 1.0 is used.

spin dynamics is strongly related to the spin diffusion [62,66],
the critical slowing down (shrinking of �z

eff) in the limit
of an infinitesimally small external field appears almost
symmetrically for T > TC and T < TC . By contrast, the

effective transverse damping coefficient �+−
eff does not show

such a symmetric critical slowing down across TC .
Figure 6(b) shows the effective transverse damping coef-

ficient �+−
eff as a function of temperature for several different

values of an external magnetic field H̃0. Upon lowering the
temperature across TC the transverse damping coefficient �+−

eff
keeps decreasing, in contrast to the behavior of �z

eff . This
calculated behavior is consistent with experimental results for
iron [67] and yttrium iron garnet [68], once recalling that
the transverse damping coefficient �+−

eff is proportional to the
FMR linewidth near TC . Note that the transverse damping
coefficient �+−

eff is also responsible for the dc spin pumping
given by Eq. (B17).

In Fig. 7, the pumped spin current calculated from Eq. (B17)
is shown as a function of temperature. Upon lowering the
temperature, the pumped spin current is largely enhanced
owing to the shrinking of the linewidth �+−

eff and the increase
of the interface spin conductance gs ∝ S̃2

eq. The overall
temperature dependence looks consistent with an experimental
result of the spin pumping from (Ga,Mn)As into p-type GaAs
reported in Ref. [35]. Note that the dc spin pumping appears
even in the paramagnetic region above TC under a condition
of sizable external magnetic field to obtain the magnetic
resonance, which means that the spin pumping can be driven
by electron paramagnetic resonance (EPR) above TC .

[1] S. Maekawa, S. O. Valenzuela, E. Saitoh, and T. Kimura, Spin
Current (Oxford University Press, Oxford, 2011).

[2] A. G. Aronov and G. E. Pikus, Fiz. Tekh. Poluprovodn. 10, 1177
(1976) [,Sov. Phys. Semicond. 10, 698 (1976)].

[3] M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985).
[4] See, e.g., S. Takahashi and S. Maekawa, J. Phys. Soc. Jpn. 77,

031009 (2008) and references therein.
[5] G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and

B. J. van Wees, Phys. Rev. B 62, R4790 (2000).
[6] E. I. Rashba, Phys. Rev. B 62, R16267 (2000).
[7] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev.

Lett. 88, 117601 (2002).
[8] E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Appl. Phys.

Lett. 88, 182509 (2006).
[9] K. Ando, Y. Kajiwara, S. Takahashi, S. Maekawa, K. Takemoto,

M. Takatsu, and E. Saitoh, Phys. Rev. B 78, 014413 (2008).
[10] Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida,

M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi,
S. Maekawa, and E. Saitoh, Nature (London) 464, 262 (2010).

[11] A. K. Patra, S. Singh, B. Barin, Y. Lee, J.-H. Ahn, E. del Barco,
E. R. Mucciolo, and B. Ozyilmaz, Appl. Phys. Lett. 101, 162407
(2012).

[12] C. Hahn, G. de Loubens, O. Klein, M. Viret, V. V. Naletov, and
J. Ben Youssef, Phys. Rev. B 87, 174417 (2013).

[13] J.-C. Rojas-Sánchez, M. Cubukcu, A. Jain, C. Vergnaud, C.
Portemont, C. Ducruet, A. Barski, A. Marty, L. Vila, J.-P.
Attane, E. Augendre, G. Desfonds, S. Gambarelli, H. Jaffres,
J.-M. George, and M. Jamet, Phys. Rev. B 88, 064403 (2013).

[14] K. Harii, K. Ando, K. Sasage, and E. Saitoh, Phys. Status Solidi
(c) 4, 4437 (2007).

[15] K. Ando, S. Takahashi, K. Harii, K. Sasage, J. Ieda, S. Maekawa,
and E. Saitoh, Phys. Rev. Lett. 101, 036601 (2008).

[16] Y. Kajiwara, K. Ando, K. Sasage, and E. Saitoh, J. Phys.: Conf.
Ser. 150, 042080 (2009).

[17] O. Mosendz, J. E. Pearson, F. Y. Fradin, G. E. W. Bauer, S. D.
Bader, and A. Hoffmann, Phys. Rev. Lett. 104, 046601 (2010).

[18] K. Ando and E. Saitoh, J. Appl. Phys. 108, 113925 (2010).
[19] T. Yoshino, Y. Kajiwara, K. Ando, H. Nakayama, T. Ota, K.

Uchida, and E. Saitoh, J. Phys.: Conf. Ser. 200, 062038 (2010).
[20] H. Nakayama, K. Ando, K. Harii, Y. Kajiwara, T. Yoshino, K.

Uchida, T. Ota, and E. Saitoh, J. Phys.: Conf. Ser. 200, 062014
(2010).

[21] C. W. Sandweg, Y. Kajiwara, A. V. Chumak, A. A. Serga, V.
I. Vasyuchka, M. B. Jungfleisch, E. Saitoh, and B. Hillebrands,
Phys. Rev. Lett. 106, 216601 (2011).

[22] R. Iguchi, K. Ando, E. Saitoh, and T. Sato, J. Phys.: Conf. Ser.
266, 012089 (2011).

[23] T. Yoshino, K. Ando, K. Harii, H. Nakayama, Y. Kajiwara, and
E. Saitoh, Appl. Phys. Lett. 98, 132503 (2011).

[24] B. Heinrich, C. Burrowes, E. Montoya, B. Kardasz, E. Girt, Y.-Y.
Song, Y. Sun, and M. Wu, Phys. Rev. Lett. 107, 066604 (2011).

[25] F. D. Czeschka, L. Dreher, M. S. Brandt, M. Weiler, M.
Althammer, I.-M. Imort, G. Reiss, A. Thomas, W. Schoch, W.
Limmer, H. Huebl, R. Gross, and S. T. B. Goennenwein, Phys.
Rev. Lett. 107, 046601 (2011).

[26] L. H. Vilela-Leão, C. Salvador, A. Azevedo, and S. M. Rezende,
Appl. Phys. Lett. 99, 102505 (2011).

[27] K. Ando, S. Takahashi, J. Ieda, H. Kurebayashi, T. Trypiniotis,
C. H. Barnes, S. Maekawa, and E. Saitoh, Nat. Mater. 10, 655
(2011).

174417-9

http://dx.doi.org/10.1103/PhysRevLett.55.1790
http://dx.doi.org/10.1103/PhysRevLett.55.1790
http://dx.doi.org/10.1103/PhysRevLett.55.1790
http://dx.doi.org/10.1103/PhysRevLett.55.1790
http://dx.doi.org/10.1143/JPSJ.77.031009
http://dx.doi.org/10.1143/JPSJ.77.031009
http://dx.doi.org/10.1143/JPSJ.77.031009
http://dx.doi.org/10.1143/JPSJ.77.031009
http://dx.doi.org/10.1103/PhysRevB.62.R4790
http://dx.doi.org/10.1103/PhysRevB.62.R4790
http://dx.doi.org/10.1103/PhysRevB.62.R4790
http://dx.doi.org/10.1103/PhysRevB.62.R4790
http://dx.doi.org/10.1103/PhysRevB.62.R16267
http://dx.doi.org/10.1103/PhysRevB.62.R16267
http://dx.doi.org/10.1103/PhysRevB.62.R16267
http://dx.doi.org/10.1103/PhysRevB.62.R16267
http://dx.doi.org/10.1103/PhysRevLett.88.117601
http://dx.doi.org/10.1103/PhysRevLett.88.117601
http://dx.doi.org/10.1103/PhysRevLett.88.117601
http://dx.doi.org/10.1103/PhysRevLett.88.117601
http://dx.doi.org/10.1063/1.2199473
http://dx.doi.org/10.1063/1.2199473
http://dx.doi.org/10.1063/1.2199473
http://dx.doi.org/10.1063/1.2199473
http://dx.doi.org/10.1103/PhysRevB.78.014413
http://dx.doi.org/10.1103/PhysRevB.78.014413
http://dx.doi.org/10.1103/PhysRevB.78.014413
http://dx.doi.org/10.1103/PhysRevB.78.014413
http://dx.doi.org/10.1038/nature08876
http://dx.doi.org/10.1038/nature08876
http://dx.doi.org/10.1038/nature08876
http://dx.doi.org/10.1038/nature08876
http://dx.doi.org/10.1063/1.4761932
http://dx.doi.org/10.1063/1.4761932
http://dx.doi.org/10.1063/1.4761932
http://dx.doi.org/10.1063/1.4761932
http://dx.doi.org/10.1103/PhysRevB.87.174417
http://dx.doi.org/10.1103/PhysRevB.87.174417
http://dx.doi.org/10.1103/PhysRevB.87.174417
http://dx.doi.org/10.1103/PhysRevB.87.174417
http://dx.doi.org/10.1103/PhysRevB.88.064403
http://dx.doi.org/10.1103/PhysRevB.88.064403
http://dx.doi.org/10.1103/PhysRevB.88.064403
http://dx.doi.org/10.1103/PhysRevB.88.064403
http://dx.doi.org/10.1002/pssc.200777281
http://dx.doi.org/10.1002/pssc.200777281
http://dx.doi.org/10.1002/pssc.200777281
http://dx.doi.org/10.1002/pssc.200777281
http://dx.doi.org/10.1103/PhysRevLett.101.036601
http://dx.doi.org/10.1103/PhysRevLett.101.036601
http://dx.doi.org/10.1103/PhysRevLett.101.036601
http://dx.doi.org/10.1103/PhysRevLett.101.036601
http://dx.doi.org/10.1088/1742-6596/150/4/042080
http://dx.doi.org/10.1088/1742-6596/150/4/042080
http://dx.doi.org/10.1088/1742-6596/150/4/042080
http://dx.doi.org/10.1088/1742-6596/150/4/042080
http://dx.doi.org/10.1103/PhysRevLett.104.046601
http://dx.doi.org/10.1103/PhysRevLett.104.046601
http://dx.doi.org/10.1103/PhysRevLett.104.046601
http://dx.doi.org/10.1103/PhysRevLett.104.046601
http://dx.doi.org/10.1063/1.3517131
http://dx.doi.org/10.1063/1.3517131
http://dx.doi.org/10.1063/1.3517131
http://dx.doi.org/10.1063/1.3517131
http://dx.doi.org/10.1088/1742-6596/200/6/062038
http://dx.doi.org/10.1088/1742-6596/200/6/062038
http://dx.doi.org/10.1088/1742-6596/200/6/062038
http://dx.doi.org/10.1088/1742-6596/200/6/062038
http://dx.doi.org/10.1088/1742-6596/200/6/062014
http://dx.doi.org/10.1088/1742-6596/200/6/062014
http://dx.doi.org/10.1088/1742-6596/200/6/062014
http://dx.doi.org/10.1088/1742-6596/200/6/062014
http://dx.doi.org/10.1103/PhysRevLett.106.216601
http://dx.doi.org/10.1103/PhysRevLett.106.216601
http://dx.doi.org/10.1103/PhysRevLett.106.216601
http://dx.doi.org/10.1103/PhysRevLett.106.216601
http://dx.doi.org/10.1088/1742-6596/266/1/012089
http://dx.doi.org/10.1088/1742-6596/266/1/012089
http://dx.doi.org/10.1088/1742-6596/266/1/012089
http://dx.doi.org/10.1088/1742-6596/266/1/012089
http://dx.doi.org/10.1063/1.3571556
http://dx.doi.org/10.1063/1.3571556
http://dx.doi.org/10.1063/1.3571556
http://dx.doi.org/10.1063/1.3571556
http://dx.doi.org/10.1103/PhysRevLett.107.066604
http://dx.doi.org/10.1103/PhysRevLett.107.066604
http://dx.doi.org/10.1103/PhysRevLett.107.066604
http://dx.doi.org/10.1103/PhysRevLett.107.066604
http://dx.doi.org/10.1103/PhysRevLett.107.046601
http://dx.doi.org/10.1103/PhysRevLett.107.046601
http://dx.doi.org/10.1103/PhysRevLett.107.046601
http://dx.doi.org/10.1103/PhysRevLett.107.046601
http://dx.doi.org/10.1063/1.3631683
http://dx.doi.org/10.1063/1.3631683
http://dx.doi.org/10.1063/1.3631683
http://dx.doi.org/10.1063/1.3631683
http://dx.doi.org/10.1038/nmat3052
http://dx.doi.org/10.1038/nmat3052
http://dx.doi.org/10.1038/nmat3052
http://dx.doi.org/10.1038/nmat3052


OHNUMA, ADACHI, SAITOH, AND MAEKAWA PHYSICAL REVIEW B 89, 174417 (2014)

[28] D. Hou, Z. Qiu, K. Harii, Y. Kajiwara, K. Uchida, Y. Fujikawa,
H. Nakayama, T. Yoshino, T. An, K. Ando, Xiaofeng Jin, and
E. Saitoh, Appl. Phys. Lett. 101, 042403 (2012).

[29] K. Ando and E. Saitoh, Nat. Commun. 3, 629 (2012).
[30] Z. Qiu, Y. Kajiwara, K. Ando, Y. Fujikawa, K. Uchida, T.

Tashiro, K. Harii, T. Yoshino, and E. Saitoh, Appl. Phys. Lett.
100, 022402 (2012).

[31] V. Castel, N. Vlietstra, J. Ben Youssef, and B. J. van Wees, Appl.
Phys. Lett. 101, 132414 (2012).

[32] E. Shikoh, K. Ando, K. Kubo, E. Saitoh, T. Shinjo, and M.
Shiraishi, Phys. Rev. Lett. 110, 127201 (2013).

[33] C. H. Du, H. L. Wang, Y. Pu, T. L. Meyer, P. M. Woodward, F. Y.
Yang, and P. C. Hammel, Phys. Rev. Lett. 111, 247202 (2013).

[34] K. Ando, S. Watanabe, S. Mooser, E. Saitoh, and H. Sirringhaus,
Nat. Mater. 12, 622 (2013).

[35] L. Chen, F. Matsukura, and H. Ohno, Nat. Commun. 4, 2055
(2013).

[36] P. W. Brouwer, Phys. Rev. B 58, R10135 (1998).
[37] Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin,

Rev. Mod. Phys. 77, 1375 (2005).
[38] G. Mahan, Many-Particle Physics (Kluwer Academic, New

York, 1981).
[39] K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K.

Ando, S. Maekawa, and E. Saitoh, Nature (London) 455, 778
(2008).

[40] K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda,
T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer,
S. Maekawa, and E. Saitoh, Nat. Mater. 9, 894 (2010).

[41] C. M. Jaworski, J. Yang, S. Mack, D. D. Awschalom, J. P.
Heremans, and R. C. Myers, Nat. Mater. 9, 898 (2010).

[42] R. Ramos, T. Kikkawa, K. Uchida, H. Adachi, I. Lucas, M. H.
Aguirre, P. Algarabel, L. Morellon, S. Maekawa, E. Saitoh, and
M. R. Ibarra, Appl. Phys. Lett. 102, 072413 (2013).

[43] H. Adachi, K. Uchida, E. Saitoh, and S. Maekawa, Rep. Prog.
Phys. 76, 036501 (2013).

[44] Y. Ohnuma, H. Adachi, E. Saitoh, and S. Maekawa, Phys. Rev.
B 87, 014423 (2013).

[45] H. Adachi, J.-i. Ohe, S. Takahashi, and S. Maekawa, Phys. Rev.
B 83, 094410 (2011).

[46] H. Adachi K. Uchida, E. Saitoh, J. Ohe, S. Takahashi, and
S. Maekawa, Appl. Phys. Lett. 97, 252506 (2010).

[47] K. Uchida, H. Adachi, T. An, T. Ota, M. Toda, B. Hille-
brands, S. Maekawa, and E. Saitoh, Nat. Mater. 10, 737
(2011).

[48] J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).
[49] P. C. Hohenberg and H. I. Halperin, Rev. Mod. Phys. 49, 435

(1977).
[50] T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism

(Springer, Berlin, 1985).
[51] G. G. Lonzarich and L. Taillefer, J. Phys. C: Solid State Phys.

18, 4339 (1985).
[52] G. G. Lonzarich, N. R. Bernhoeft, and D. McK. Paul, Physica

B 156-157, 699 (1989).
[53] S. Mizukami, Y. Ando, and T. Miyazaki, Phys. Rev. B 66, 104413

(2002).
[54] D. H. Wei, Y. Niimi, B. Gu, T. Ziman, S. Maekawa, and Y. Otani,

Nat. Commun. 3, 1058 (2012).
[55] B. Gu, T. Ziman, and S. Maekawa, Phys. Rev. B 86, 241303

(2012).
[56] A. Kawabata, J. Phys. F: Metal Phys. 4, 1477 (1974).
[57] S. Takahashi, E. Saitoh, and S. Maekawa, J. Phys.: Conf. Ser.

200, 062030 (2010).
[58] A. Brataas, Y. Tserkovnyak, G. E. W. Bauer, and B. I. Halperin,

Phys. Rev. B 66, 060404 (2002).
[59] M. H. Cohen, L. M. Falicov, and J. C. Phillips, Phys. Rev. Lett.

8, 316 (1962).
[60] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods

of Quantum Field Theory in Statistical Physics (Dover, New
York, 1975).

[61] P. Fulde and A. Luther, Phys. Rev. 175, 337 (1968).
[62] S. K. Ma and G. F. Mazenko, Phys. Rev. B 11, 4077 (1975).
[63] J. A. Hertz, Phys. Rev. B 14, 1165 (1976).
[64] P. M. Chaikin and T. C. Lubensky, Principles of Condensed

Matter Physics (Cambridge University Press, 1995).
[65] A. S. Borukhovich, M. S. Marunya, V. G. Bamburov, N. I.

Ignat’eva, and P. V. Gel’d, Zh. Eksp. Teor. Fiz. 69, 565 (1975)
[,Sov. Phys. JETP 42, 288 (1976)].

[66] K. Kawasaki, J. Phys. Chem. Solids 28, 1277 (1967).
[67] S. M. Bhagat and M. S. Rothstein, Solid State Commun. 11,

1535 (1972).
[68] V. N. Berzhanskii and V. I. Ivanov, Phys. Status Solidi (b) 151,

259 (1989).

174417-10

http://dx.doi.org/10.1063/1.4738786
http://dx.doi.org/10.1063/1.4738786
http://dx.doi.org/10.1063/1.4738786
http://dx.doi.org/10.1063/1.4738786
http://dx.doi.org/10.1038/ncomms1640
http://dx.doi.org/10.1038/ncomms1640
http://dx.doi.org/10.1038/ncomms1640
http://dx.doi.org/10.1038/ncomms1640
http://dx.doi.org/10.1063/1.3675463
http://dx.doi.org/10.1063/1.3675463
http://dx.doi.org/10.1063/1.3675463
http://dx.doi.org/10.1063/1.3675463
http://dx.doi.org/10.1063/1.4754837
http://dx.doi.org/10.1063/1.4754837
http://dx.doi.org/10.1063/1.4754837
http://dx.doi.org/10.1063/1.4754837
http://dx.doi.org/10.1103/PhysRevLett.110.127201
http://dx.doi.org/10.1103/PhysRevLett.110.127201
http://dx.doi.org/10.1103/PhysRevLett.110.127201
http://dx.doi.org/10.1103/PhysRevLett.110.127201
http://dx.doi.org/10.1103/PhysRevLett.111.247202
http://dx.doi.org/10.1103/PhysRevLett.111.247202
http://dx.doi.org/10.1103/PhysRevLett.111.247202
http://dx.doi.org/10.1103/PhysRevLett.111.247202
http://dx.doi.org/10.1038/nmat3634
http://dx.doi.org/10.1038/nmat3634
http://dx.doi.org/10.1038/nmat3634
http://dx.doi.org/10.1038/nmat3634
http://dx.doi.org/10.1038/ncomms3055
http://dx.doi.org/10.1038/ncomms3055
http://dx.doi.org/10.1038/ncomms3055
http://dx.doi.org/10.1038/ncomms3055
http://dx.doi.org/10.1103/PhysRevB.58.R10135
http://dx.doi.org/10.1103/PhysRevB.58.R10135
http://dx.doi.org/10.1103/PhysRevB.58.R10135
http://dx.doi.org/10.1103/PhysRevB.58.R10135
http://dx.doi.org/10.1103/RevModPhys.77.1375
http://dx.doi.org/10.1103/RevModPhys.77.1375
http://dx.doi.org/10.1103/RevModPhys.77.1375
http://dx.doi.org/10.1103/RevModPhys.77.1375
http://dx.doi.org/10.1038/nature07321
http://dx.doi.org/10.1038/nature07321
http://dx.doi.org/10.1038/nature07321
http://dx.doi.org/10.1038/nature07321
http://dx.doi.org/10.1038/nmat2856
http://dx.doi.org/10.1038/nmat2856
http://dx.doi.org/10.1038/nmat2856
http://dx.doi.org/10.1038/nmat2856
http://dx.doi.org/10.1038/nmat2860
http://dx.doi.org/10.1038/nmat2860
http://dx.doi.org/10.1038/nmat2860
http://dx.doi.org/10.1038/nmat2860
http://dx.doi.org/10.1063/1.4793486
http://dx.doi.org/10.1063/1.4793486
http://dx.doi.org/10.1063/1.4793486
http://dx.doi.org/10.1063/1.4793486
http://dx.doi.org/10.1088/0034-4885/76/3/036501
http://dx.doi.org/10.1088/0034-4885/76/3/036501
http://dx.doi.org/10.1088/0034-4885/76/3/036501
http://dx.doi.org/10.1088/0034-4885/76/3/036501
http://dx.doi.org/10.1103/PhysRevB.87.014423
http://dx.doi.org/10.1103/PhysRevB.87.014423
http://dx.doi.org/10.1103/PhysRevB.87.014423
http://dx.doi.org/10.1103/PhysRevB.87.014423
http://dx.doi.org/10.1103/PhysRevB.83.094410
http://dx.doi.org/10.1103/PhysRevB.83.094410
http://dx.doi.org/10.1103/PhysRevB.83.094410
http://dx.doi.org/10.1103/PhysRevB.83.094410
http://dx.doi.org/10.1063/1.3529944
http://dx.doi.org/10.1063/1.3529944
http://dx.doi.org/10.1063/1.3529944
http://dx.doi.org/10.1063/1.3529944
http://dx.doi.org/10.1038/nmat3099
http://dx.doi.org/10.1038/nmat3099
http://dx.doi.org/10.1038/nmat3099
http://dx.doi.org/10.1038/nmat3099
http://dx.doi.org/10.1103/RevModPhys.58.323
http://dx.doi.org/10.1103/RevModPhys.58.323
http://dx.doi.org/10.1103/RevModPhys.58.323
http://dx.doi.org/10.1103/RevModPhys.58.323
http://dx.doi.org/10.1103/RevModPhys.49.435
http://dx.doi.org/10.1103/RevModPhys.49.435
http://dx.doi.org/10.1103/RevModPhys.49.435
http://dx.doi.org/10.1103/RevModPhys.49.435
http://dx.doi.org/10.1088/0022-3719/18/22/017
http://dx.doi.org/10.1088/0022-3719/18/22/017
http://dx.doi.org/10.1088/0022-3719/18/22/017
http://dx.doi.org/10.1088/0022-3719/18/22/017
http://dx.doi.org/10.1016/0921-4526(89)90767-9
http://dx.doi.org/10.1016/0921-4526(89)90767-9
http://dx.doi.org/10.1016/0921-4526(89)90767-9
http://dx.doi.org/10.1016/0921-4526(89)90767-9
http://dx.doi.org/10.1103/PhysRevB.66.104413
http://dx.doi.org/10.1103/PhysRevB.66.104413
http://dx.doi.org/10.1103/PhysRevB.66.104413
http://dx.doi.org/10.1103/PhysRevB.66.104413
http://dx.doi.org/10.1038/ncomms2063
http://dx.doi.org/10.1038/ncomms2063
http://dx.doi.org/10.1038/ncomms2063
http://dx.doi.org/10.1038/ncomms2063
http://dx.doi.org/10.1103/PhysRevB.86.241303
http://dx.doi.org/10.1103/PhysRevB.86.241303
http://dx.doi.org/10.1103/PhysRevB.86.241303
http://dx.doi.org/10.1103/PhysRevB.86.241303
http://dx.doi.org/10.1088/0305-4608/4/9/019
http://dx.doi.org/10.1088/0305-4608/4/9/019
http://dx.doi.org/10.1088/0305-4608/4/9/019
http://dx.doi.org/10.1088/0305-4608/4/9/019
http://dx.doi.org/10.1088/1742-6596/200/6/062030
http://dx.doi.org/10.1088/1742-6596/200/6/062030
http://dx.doi.org/10.1088/1742-6596/200/6/062030
http://dx.doi.org/10.1088/1742-6596/200/6/062030
http://dx.doi.org/10.1103/PhysRevB.66.060404
http://dx.doi.org/10.1103/PhysRevB.66.060404
http://dx.doi.org/10.1103/PhysRevB.66.060404
http://dx.doi.org/10.1103/PhysRevB.66.060404
http://dx.doi.org/10.1103/PhysRevLett.8.316
http://dx.doi.org/10.1103/PhysRevLett.8.316
http://dx.doi.org/10.1103/PhysRevLett.8.316
http://dx.doi.org/10.1103/PhysRevLett.8.316
http://dx.doi.org/10.1103/PhysRev.175.337
http://dx.doi.org/10.1103/PhysRev.175.337
http://dx.doi.org/10.1103/PhysRev.175.337
http://dx.doi.org/10.1103/PhysRev.175.337
http://dx.doi.org/10.1103/PhysRevB.11.4077
http://dx.doi.org/10.1103/PhysRevB.11.4077
http://dx.doi.org/10.1103/PhysRevB.11.4077
http://dx.doi.org/10.1103/PhysRevB.11.4077
http://dx.doi.org/10.1103/PhysRevB.14.1165
http://dx.doi.org/10.1103/PhysRevB.14.1165
http://dx.doi.org/10.1103/PhysRevB.14.1165
http://dx.doi.org/10.1103/PhysRevB.14.1165
http://dx.doi.org/10.1016/0022-3697(67)90071-6
http://dx.doi.org/10.1016/0022-3697(67)90071-6
http://dx.doi.org/10.1016/0022-3697(67)90071-6
http://dx.doi.org/10.1016/0022-3697(67)90071-6
http://dx.doi.org/10.1016/0038-1098(72)90515-7
http://dx.doi.org/10.1016/0038-1098(72)90515-7
http://dx.doi.org/10.1016/0038-1098(72)90515-7
http://dx.doi.org/10.1016/0038-1098(72)90515-7
http://dx.doi.org/10.1002/pssb.2221510130
http://dx.doi.org/10.1002/pssb.2221510130
http://dx.doi.org/10.1002/pssb.2221510130
http://dx.doi.org/10.1002/pssb.2221510130



